Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Stroke ; 54(9): 2434-2437, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37465995

RESUMEN

BACKGROUND: Mosaic loss of chromosome Y (LOY) is associated with cardiovascular and neurodegenerative diseases in men, and genetic predisposition to LOY is associated with poor poststroke outcome. We, therefore, tested the hypothesis that LOY itself is associated with functional outcome after ischemic stroke. METHODS: The study comprised male patients with ischemic stroke from the cohort studies SAHLSIS2 (Sahlgrenska Academy Study on Ischemic Stroke Phase 2; n=588) and LSR (Lund Stroke Register; n=735). We used binary logistic regression to analyze associations between LOY, determined by DNA microarray intensity data, and poor 3-month functional outcome (modified Rankin Scale score, >2) in each cohort separately and combined. Patients who received recanalization therapy were excluded from sensitivity analyses. RESULTS: LOY was associated with about 2.5-fold increased risk of poor outcome in univariable analyses (P<0.001). This association withstood separate adjustment for stroke severity and diabetes in both cohorts but not age. In sensitivity analyses restricted to the nonrecanalization group (n=987 in the combined cohort), the association was significant also after separate adjustment for age (odds ratio, 1.6 [95% CI, 1.1-2.4]) and when additionally adjusting for stroke severity and diabetes (odds ratio, 1.6 [95% CI, 1.1-2.5]). CONCLUSIONS: We observed an association between LOY and poor outcome after ischemic stroke in patients not receiving recanalization therapy. Future studies on LOY and other somatic genetic alterations in larger stroke cohorts are warranted.


Asunto(s)
Diabetes Mellitus , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Masculino , Accidente Cerebrovascular Isquémico/complicaciones , Cromosomas Humanos Y , Mosaicismo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/terapia
2.
Hum Brain Mapp ; 44(4): 1579-1592, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36440953

RESUMEN

This study aimed to investigate the influence of stroke lesions in predefined highly interconnected (rich-club) brain regions on functional outcome post-stroke, determine their spatial specificity and explore the effects of biological sex on their relevance. We analyzed MRI data recorded at index stroke and ~3-months modified Rankin Scale (mRS) data from patients with acute ischemic stroke enrolled in the multisite MRI-GENIE study. Spatially normalized structural stroke lesions were parcellated into 108 atlas-defined bilateral (sub)cortical brain regions. Unfavorable outcome (mRS > 2) was modeled in a Bayesian logistic regression framework. Effects of individual brain regions were captured as two compound effects for (i) six bilateral rich club and (ii) all further non-rich club regions. In spatial specificity analyses, we randomized the split into "rich club" and "non-rich club" regions and compared the effect of the actual rich club regions to the distribution of effects from 1000 combinations of six random regions. In sex-specific analyses, we introduced an additional hierarchical level in our model structure to compare male and female-specific rich club effects. A total of 822 patients (age: 64.7[15.0], 39% women) were analyzed. Rich club regions had substantial relevance in explaining unfavorable functional outcome (mean of posterior distribution: 0.08, area under the curve: 0.8). In particular, the rich club-combination had a higher relevance than 98.4% of random constellations. Rich club regions were substantially more important in explaining long-term outcome in women than in men. All in all, lesions in rich club regions were associated with increased odds of unfavorable outcome. These effects were spatially specific and more pronounced in women.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Teorema de Bayes , Encéfalo , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/patología , Modelos Neurológicos
3.
J Neuroinflammation ; 20(1): 224, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794467

RESUMEN

BACKGROUND: The inflammatory response to cerebral ischemia is complex; however, most clinical studies of stroke outcome focus on a few selected proteins. We, therefore, aimed to profile a broad range of inflammation-related proteins to: identify proteins associated with ischemic stroke outcome that are independent of established clinical predictors; identify proteins subsets for outcome prediction; and perform sex and etiological subtype stratified analyses. METHODS: Acute-phase plasma levels of 65 inflammation-related proteins were measured in 534 ischemic stroke cases. Logistic regression was used to estimate associations to unfavorable 3-month functional outcome (modified Rankin Scale score > 2) and LASSO regressions to identify proteins with independent effects. RESULTS: Twenty proteins were associated with outcome in univariable models after correction for multiple testing (FDR < 0.05), and for 5 the association was independent of clinical variables, including stroke severity (TNFSF14 [LIGHT], OSM, SIRT2, STAMBP, and 4E-BP1). LASSO identified 9 proteins that could best separate favorable and unfavorable outcome with a predicted diagnostic accuracy (AUC) of 0.81; three associated with favorable (CCL25, TRAIL [TNFSF10], and Flt3L) and 6 with unfavorable outcome (CSF-1, EN-RAGE [S100A12], HGF, IL-6, OSM, and TNFSF14). Finally, we identified sex- and etiologic subtype-specific associations with the best discriminative ability achieved for cardioembolic, followed by cryptogenic stroke. CONCLUSIONS: We identified candidate blood-based protein biomarkers for post-stroke functional outcome involved in, e.g., NLRP3 inflammasome regulation and signaling pathways, such as TNF, JAK/STAT, MAPK, and NF-κB. These proteins warrant further study for stroke outcome prediction as well as investigations into the putative causal role for stroke outcome.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Proteómica , Inflamación/complicaciones , Proteínas Sanguíneas
4.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298072

RESUMEN

Insulin-like growth factor-binding protein-1 (IGFBP-1) regulates insulin-like growth factor-I (IGF-I) bioactivity, and is a central player in normal growth, metabolism, and stroke recovery. However, the role of serum IGFBP-1 (s-IGFBP-1) after ischemic stroke is unclear. We determined whether s-IGFBP-1 is predictive of poststroke outcome. The study population comprised patients (n = 470) and controls (n = 471) from the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS). Functional outcome was evaluated after 3 months, 2, and 7 years using the modified Rankin Scale (mRS). Survival was followed for a minimum of 7 years or until death. S-IGFBP-1 was increased after 3 months (p < 0.01), but not in the acute phase after stroke, compared with the controls. Higher acute s-IGFBP-1 was associated with poor functional outcome (mRS score > 2) after 7 years [fully adjusted odds ratio (OR) per log increase 2.9, 95% confidence interval (CI): 1.4-5.9]. Moreover, higher s-IGFBP-1 after 3 months was associated with a risk of poor functional outcome after 2 and 7 years (fully adjusted: OR 3.4, 95% CI: 1.4-8.5 and OR 5.7, 95% CI: 2.5-12.8, respectively) and with increased mortality risk (fully adjusted: HR 2.0, 95% CI: 1.1-3.7). Thus, high acute s-IGFBP-1 was only associated with poor functional outcome after 7 years, whereas s-IGFBP-1 after 3 months was an independent predictor of poor long-term functional outcome and poststroke mortality.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Isquemia Encefálica/complicaciones , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina , Factores de Riesgo , Accidente Cerebrovascular/complicaciones
5.
Stroke ; 53(9): 2847-2858, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35686557

RESUMEN

BACKGROUND: Inflammation contributes both to the pathogenesis of stroke and the response to brain injury. We aimed to identify proteins reflecting the acute-phase response and proteins more likely to reflect proinflammatory processes present before stroke by broadly profiling inflammation-related plasma proteins in a longitudinal ischemic stroke study. METHODS: Participants were from a Swedish ischemic stroke cohort (SAHLSIS [Sahlgrenska Academy Study on Ischemic Stroke], n=600 cases and n=600 controls). Plasma levels of 65 proteins including chemokines, interleukins, surface molecules, and immune receptors were measured once in controls and at 3× in cases: during the acute phase, after 3 months, and for a subgroup (n=223) at 7-year follow-up. Associations between proteins and ischemic stroke or subtype were investigated in multivariable binary regression models corrected for age, sex, vascular risk factors, and multiple testing. RESULTS: In the acute phase, 48 proteins were significantly and independently associated with ischemic stroke (false discovery rate adjusted P<0.05). At 3-month follow-up, 51 proteins and at 7-year follow-up 50 proteins were associated with ischemic stroke. The majority of proteins were upregulated in cases compared with controls (n=34 at all time points) and the most upregulated were CXCL5 (CXC chemokine ligand 5) and OSM (oncostatin M). Generally, large artery and cardioembolic stroke had the highest protein levels. However, several interesting subtype-specific differences were also detected at each time point. CONCLUSIONS: We found inflammation-related proteins that were differentially regulated in ischemic stroke cases compared with controls only in the acute phase and others that remained elevated also at later time points. This latter group of proteins could reflect underlying pathophysiological processes of relevance. Future studies both in terms of disease risk and prognostication are warranted.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Isquemia Encefálica/complicaciones , Humanos , Inflamación/complicaciones , Estudios Longitudinales , Proteómica , Factores de Riesgo , Accidente Cerebrovascular/etiología
6.
Circ Res ; 124(1): 114-120, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30582445

RESUMEN

RATIONALE: Ischemic stroke is among the leading causes of adult disability. Part of the variability in functional outcome after stroke has been attributed to genetic factors but no locus has been consistently associated with stroke outcome. OBJECTIVE: Our aim was to identify genetic loci influencing the recovery process using accurate phenotyping to produce the largest GWAS (genome-wide association study) in ischemic stroke recovery to date. METHODS AND RESULTS: A 12-cohort, 2-phase (discovery-replication and joint) meta-analysis of GWAS included anterior-territory and previously independent ischemic stroke cases. Functional outcome was recorded using 3-month modified Rankin Scale. Analyses were adjusted for confounders such as discharge National Institutes of Health Stroke Scale. A gene-based burden test was performed. The discovery phase (n=1225) was followed by open (n=2482) and stringent joint-analyses (n=1791). Those cohorts with modified Rankin Scale recorded at time points other than 3-month or incomplete data on previous functional status were excluded in the stringent analyses. Novel variants in PATJ (Pals1-associated tight junction) gene were associated with worse functional outcome at 3-month after stroke. The top variant was rs76221407 (G allele, ß=0.40, P=1.70×10-9). CONCLUSIONS: Our results identify a set of common variants in PATJ gene associated with 3-month functional outcome at genome-wide significance level. Future studies should examine the role of PATJ in stroke recovery and consider stringent phenotyping to enrich the information captured to unveil additional stroke outcome loci.


Asunto(s)
Isquemia Encefálica/genética , Polimorfismo de Nucleótido Simple , Accidente Cerebrovascular/genética , Proteínas de Uniones Estrechas/genética , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/fisiopatología , Isquemia Encefálica/rehabilitación , Evaluación de la Discapacidad , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Fenotipo , Recuperación de la Función , Factores de Riesgo , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Rehabilitación de Accidente Cerebrovascular , Resultado del Tratamiento
7.
Acta Neurol Scand ; 143(3): 303-312, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33107019

RESUMEN

OBJECTIVES: The cause of ischemic stroke remains unknown, cryptogenic, in 25% of young and middle-aged patients. We hypothesized that if atherosclerosis is prominent in cryptogenic stroke, it would have a similar proinflammatory protein signature as large artery atherosclerosis (LAA) stroke. MATERIALS & METHODS: Blood was collected in the acute phase and after 3 months from cryptogenic (n = 162) and LAA (n = 73) stroke patients aged 18-69 years and once from age-matched controls (n = 235). Cryptogenic stroke was divided into Framingham Risk Score (FRS) quartiles to compare low and high risk of atherosclerosis. Plasma concentrations of 25 proteins were analyzed using a Luminex multiplex assay. The discriminating properties were assessed with discriminant analysis and C-statistics. RESULTS: We identified proteins that separated cryptogenic and LAA stroke from controls (area under the curves, AUCs ≥ 0.85). For both subtypes, RANTES, IL-4, and IFN-γ contributed the most at both time points. These associations were independent of risk factors of atherosclerosis. We also identified proteins that separated cryptogenic strokes in the lowest quartile of FRS from those in the highest, and from LAA stroke (AUCs ≥ 0.76), and here eotaxin and MCP-1 contributed the most. CONCLUSIONS: The protein signature separating cases from controls was different from the signature separating cryptogenic stroke with low risk of atherosclerosis from those with high risk and from LAA stroke. This suggests that increased RANTES, IL-4, and IFN-γ in stroke may not be primarily related to atherosclerosis, whereas increased eotaxin and MCP-1 in cryptogenic stroke may be markers of occult atherosclerosis as the underlying cause.


Asunto(s)
Aterosclerosis/sangre , Aterosclerosis/complicaciones , Biomarcadores/sangre , Accidente Cerebrovascular Isquémico/sangre , Accidente Cerebrovascular Isquémico/etiología , Adulto , Anciano , Arterias/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo
8.
Stroke ; 50(7): 1734-1741, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31177973

RESUMEN

Background and Purpose- We evaluated deep learning algorithms' segmentation of acute ischemic lesions on heterogeneous multi-center clinical diffusion-weighted magnetic resonance imaging (MRI) data sets and explored the potential role of this tool for phenotyping acute ischemic stroke. Methods- Ischemic stroke data sets from the MRI-GENIE (MRI-Genetics Interface Exploration) repository consisting of 12 international genetic research centers were retrospectively analyzed using an automated deep learning segmentation algorithm consisting of an ensemble of 3-dimensional convolutional neural networks. Three ensembles were trained using data from the following: (1) 267 patients from an independent single-center cohort, (2) 267 patients from MRI-GENIE, and (3) mixture of (1) and (2). The algorithms' performances were compared against manual outlines from a separate 383 patient subset from MRI-GENIE. Univariable and multivariable logistic regression with respect to demographics, stroke subtypes, and vascular risk factors were performed to identify phenotypes associated with large acute diffusion-weighted MRI volumes and greater stroke severity in 2770 MRI-GENIE patients. Stroke topography was investigated. Results- The ensemble consisting of a mixture of MRI-GENIE and single-center convolutional neural networks performed best. Subset analysis comparing automated and manual lesion volumes in 383 patients found excellent correlation (ρ=0.92; P<0.0001). Median (interquartile range) diffusion-weighted MRI lesion volumes from 2770 patients were 3.7 cm3 (0.9-16.6 cm3). Patients with small artery occlusion stroke subtype had smaller lesion volumes ( P<0.0001) and different topography compared with other stroke subtypes. Conclusions- Automated accurate clinical diffusion-weighted MRI lesion segmentation using deep learning algorithms trained with multi-center and diverse data is feasible. Both lesion volume and topography can provide insight into stroke subtypes with sufficient sample size from big heterogeneous multi-center clinical imaging phenotype data sets.


Asunto(s)
Isquemia Encefálica/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Macrodatos , Isquemia Encefálica/epidemiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Redes Neurales de la Computación , Variaciones Dependientes del Observador , Fenotipo , Estudios Retrospectivos , Factores de Riesgo , Factores Socioeconómicos , Accidente Cerebrovascular/epidemiología
9.
Stroke ; 47(7): 1943-5, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27301948

RESUMEN

BACKGROUND AND PURPOSE: Brain-derived neurotrophic factor (BDNF) plays important roles in brain plasticity and repair, and it influences stroke outcomes in animal models. Circulating BDNF concentrations are lowered in patients with traumatic brain injury, and low BDNF predicts poor recovery after this injury. We sought to investigate whether circulating concentrations of BDNF are altered in the acute phase of ischemic stroke and whether they are associated with short- or long-term functional outcome. METHODS: Serum concentrations of BDNF were measured in the Sahlgrenska Academy Study on Ischemic Stroke. The main outcomes were modified Rankin Scale (mRS) good (mRS score of 0-2) versus poor (mRS score of 3-6) at 3 months and 2 years after stroke, and good (mRS score of 0-2) versus poor (mRS score of 3-5) at 7 years after stroke. RESULTS: Acute concentrations of BDNF were significantly lower in ischemic stroke cases (n=491) compared with controls (n=513). BDNF concentrations were not significantly associated with 3-month outcome. However, patients with BDNF in the lowest tertile had an increased risk of experiencing a poor outcome both at 2-year and 7-year follow-up, and these associations were independent of vascular risk factors and stroke severity (odds ratio, 2.6; confidence intervals, 1.4-4.9; P=0.002 and odds ratio, 2.1; confidence intervals, 1.1-3.9; P=0.028, respectively). CONCLUSIONS: Circulating concentrations of BDNF protein are lowered in the acute phase of ischemic stroke, and low levels are associated with poor long-term functional outcome. Further studies are necessary to confirm these associations and to determine the predictive value of BDNF in stroke outcomes.


Asunto(s)
Isquemia Encefálica/sangre , Factor Neurotrófico Derivado del Encéfalo/sangre , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Fibrilación Atrial/epidemiología , Biomarcadores/sangre , Daño Encefálico Crónico/sangre , Daño Encefálico Crónico/etiología , Isquemia Encefálica/terapia , Comorbilidad , Diabetes Mellitus/epidemiología , Femenino , Estudios de Seguimiento , Humanos , Hiperlipidemias/epidemiología , Hipertensión/epidemiología , Masculino , Persona de Mediana Edad , Modelos Cardiovasculares , Curva ROC , Recuperación de la Función , Factores de Riesgo , Factores Sexuales , Fumar/epidemiología , Resultado del Tratamiento , Adulto Joven
10.
Stroke ; 47(2): 307-16, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26732560

RESUMEN

BACKGROUND AND PURPOSE: Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a 2-stage meta-analysis of genome-wide association studies, focusing on stroke cases with an age of onset <60 years. METHODS: The discovery stage of our genome-wide association studies included 4505 cases and 21 968 controls of European, South-Asian, and African ancestry, drawn from 6 studies. In Stage 2, we selected the lead genetic variants at loci with association P<5×10(-6) and performed in silico association analyses in an independent sample of ≤1003 cases and 7745 controls. RESULTS: One stroke susceptibility locus at 10q25 reached genome-wide significance in the combined analysis of all samples from the discovery and follow-up stages (rs11196288; odds ratio =1.41; P=9.5×10(-9)). The associated locus is in an intergenic region between TCF7L2 and HABP2. In a further analysis in an independent sample, we found that 2 single nucleotide polymorphisms in high linkage disequilibrium with rs11196288 were significantly associated with total plasma factor VII-activating protease levels, a product of HABP2. CONCLUSIONS: HABP2, which encodes an extracellular serine protease involved in coagulation, fibrinolysis, and inflammatory pathways, may be a genetic susceptibility locus for early-onset stroke.


Asunto(s)
Isquemia Encefálica/genética , Serina Endopeptidasas/genética , Accidente Cerebrovascular/genética , Adulto , Edad de Inicio , Anciano , Pueblo Asiatico/genética , Población Negra/genética , Isquemia Encefálica/complicaciones , Cromosomas Humanos Par 10 , Simulación por Computador , ADN Intergénico/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Polimorfismo de Nucleótido Simple , Serina Endopeptidasas/metabolismo , Accidente Cerebrovascular/etiología , Población Blanca/genética
11.
Neurology ; 102(4): e209129, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38545929

RESUMEN

OBJECTIVES: To investigate whether circulating acute-phase brain-derived tau (BD-tau) is associated with functional outcome after ischemic stroke. METHODS: Plasma tau was measured by a novel assay that selectively quantifies BD-tau in the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS), which includes adult cases with ischemic stroke and controls younger than 70 years, and in an independent cohort of adult cases of all ages (SAHLSIS2). Associations with unfavorable 3-month functional outcome (modified Rankin scale score >2) were analyzed by logistic regression. Various stratified and sensitivity analyses were performed, for example, by age, stroke severity, recanalization therapy, and etiologic subtype. RESULTS: This study included 454 and 364 cases from the SAHLSIS and SAHLSIS2, with a median age of 58 and 68 years, respectively. Higher acute BD-tau concentrations were significantly associated with increased odds of unfavorable outcome after adjustment for age, sex, day of blood draw, and stroke severity (NIH stroke scale score) in both cohorts (OR per doubling of BD-tau: 2.9 [95% CI 2.2-3.7], P = 1 × 10-15 and 1.8 [1.5-2.2], P = 7 × 10-9, respectively). The association was consistent in the different stratified and sensitivity analyses. DISCUSSION: BD-tau is a promising blood-based biomarker of ischemic stroke outcomes, and future studies in larger cohorts are warranted.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Adulto , Humanos , Persona de Mediana Edad , Anciano , Isquemia Encefálica/complicaciones , Accidente Cerebrovascular Isquémico/complicaciones , Factores de Riesgo , Accidente Cerebrovascular/complicaciones , Encéfalo
12.
Nucleic Acids Res ; 39(6): 2018-31, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21076155

RESUMEN

Trypanosoma brucei mono-allelically expresses one of approximately 1500 variant surface glycoprotein (VSG) genes while multiplying in the mammalian bloodstream. The active VSG is transcribed by RNA polymerase I in one of approximately 15 telomeric VSG expression sites (ESs). T. brucei is unusual in controlling gene expression predominantly post-transcriptionally, and how ESs are mono-allelically controlled remains a mystery. Here we identify a novel transcription regulator, which resembles a nucleoplasmin-like protein (NLP) with an AT-hook motif. NLP is key for ES control in bloodstream form T. brucei, as NLP knockdown results in 45- to 65-fold derepression of the silent VSG221 ES. NLP is also involved in repression of transcription in the inactive VSG Basic Copy arrays, minichromosomes and procyclin loci. NLP is shown to be enriched on the 177- and 50-bp simple sequence repeats, the non-transcribed regions around rDNA and procyclin, and both active and silent ESs. Blocking NLP synthesis leads to downregulation of the active ES, indicating that NLP plays a role in regulating appropriate levels of transcription of ESs in both their active and silent state. Discovery of the unusual transcription regulator NLP provides new insight into the factors that are critical for ES control.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica , Proteínas Protozoarias/fisiología , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Secuencia de Aminoácidos , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/química , Silenciador del Gen , Genoma de Protozoos , Repeticiones de Minisatélite , Datos de Secuencia Molecular , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/química , Proteínas Nucleares/fisiología , Nucleoplasminas/química , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Transcripción Genética , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo
13.
BMJ Open ; 13(5): e072493, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37164469

RESUMEN

INTRODUCTION: Comprehensive studies mapping domain-specific trajectories of recovery after stroke and biomarkers reflecting these processes are scarce. We, therefore, initiated an exploratory prospective observational study of stroke cases with repeated evaluation, the FIND Stroke Recovery Study. We aim to capture trajectories of recovery from different impairments, including cognition, in combination with broad profiling of blood and imaging biomarkers of the recovery. METHODS AND ANALYSIS: We recruit individuals with first-ever stroke at the stroke unit at the Sahlgrenska University Hospital, Sweden, to FIND. The inclusion started early 2018 and we aim to enrol minimum 500 patients. Neurological and cognitive impairments across multiple domains are assessed using validated clinical assessment methods, advanced neuroimaging is performed and blood samples for biomarker measuring (protein, RNA and DNA) at inclusion and follow-up visits at 3 months, 6 months, 1 year, 2 years and 5 years poststroke. At baseline and at each follow-up visit, we also register clinical variables known to influence outcomes such as prestroke functioning, stroke severity, acute interventions, rehabilitation, other treatments, socioeconomic status, infections (including COVID-19) and other comorbidities. Recurrent stroke and other major vascular events are identified continuously in national registers. ETHICS AND DISSEMINATION: FIND composes a unique stroke cohort with detailed phenotyping, repetitive assessments of outcomes across multiple neurological and cognitive domains and patient-reported outcomes as well as blood and imaging biomarker profiling. Ethical approval for the FIND study has been obtained from the Regional Ethics Review Board in Gothenburg and the Swedish Ethics Review Board. The results of this exploratory study will provide novel data on the time course of recovery and biomarkers after stroke. The description of this protocol will inform the stroke research community of our ongoing study and facilitate comparisons with other data sets. TRIAL REGISTRATION NUMBER: The protocol is registered at http://www. CLINICALTRIALS: gov, Study ID: NCT05708807.


Asunto(s)
COVID-19 , Accidente Cerebrovascular , Humanos , Biomarcadores , Estudios de Cohortes , Estudios Longitudinales , Estudios Observacionales como Asunto , Accidente Cerebrovascular/terapia
14.
Neurology ; 100(8): e822-e833, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36443016

RESUMEN

BACKGROUND AND OBJECTIVES: While chronological age is one of the most influential determinants of poststroke outcomes, little is known of the impact of neuroimaging-derived biological "brain age." We hypothesized that radiomics analyses of T2-FLAIR images texture would provide brain age estimates and that advanced brain age of patients with stroke will be associated with cardiovascular risk factors and worse functional outcomes. METHODS: We extracted radiomics from T2-FLAIR images acquired during acute stroke clinical evaluation. Brain age was determined from brain parenchyma radiomics using an ElasticNet linear regression model. Subsequently, relative brain age (RBA), which expresses brain age in comparison with chronological age-matched peers, was estimated. Finally, we built a linear regression model of RBA using clinical cardiovascular characteristics as inputs and a logistic regression model of favorable functional outcomes taking RBA as input. RESULTS: We reviewed 4,163 patients from a large multisite ischemic stroke cohort (mean age = 62.8 years, 42.0% female patients). T2-FLAIR radiomics predicted chronological ages (mean absolute error = 6.9 years, r = 0.81). After adjustment for covariates, RBA was higher and therefore described older-appearing brains in patients with hypertension, diabetes mellitus, a history of smoking, and a history of a prior stroke. In multivariate analyses, age, RBA, NIHSS, and a history of prior stroke were all significantly associated with functional outcome (respective adjusted odds ratios: 0.58, 0.76, 0.48, 0.55; all p-values < 0.001). Moreover, the negative effect of RBA on outcome was especially pronounced in minor strokes. DISCUSSION: T2-FLAIR radiomics can be used to predict brain age and derive RBA. Older-appearing brains, characterized by a higher RBA, reflect cardiovascular risk factor accumulation and are linked to worse outcomes after stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/complicaciones , Accidente Cerebrovascular Isquémico/complicaciones , Imagen por Resonancia Magnética/métodos , Accidente Cerebrovascular/complicaciones
15.
Eukaryot Cell ; 10(7): 964-76, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21571922

RESUMEN

The unicellular eukaryote Trypanosoma brucei is unusual in having very little transcriptional control. The bulk of the T. brucei genome is constitutively transcribed by RNA polymerase II (Pol II) as extensive polycistronic transcription units. Exceptions to this rule include several RNA Pol I transcription units such as the VSG expression sites (ESs), which are mono-allelically expressed. TbISWI, a member of the SWI2/SNF2 related chromatin remodeling ATPases, plays a role in repression of Pol I-transcribed ESs in both bloodstream- and procyclic-form T. brucei. We show that TbISWI binds both active and silent ESs but is depleted from the ES promoters themselves. TbISWI knockdown results in an increase in VSG transcripts from the silent VSG ESs. In addition to its role in the repression of the silent ESs, TbISWI also contributes to the downregulation of the Pol I-transcribed procyclin loci, as well as nontranscribed VSG basic copy arrays and minichromosomes. We also show that TbISWI is enriched at a number of strand switch regions which form the boundaries between Pol II transcription units. These strand switch regions are the presumed sites of Pol II transcription initiation and termination and are enriched in modified histones and histone variants. Our results indicate that TbISWI is a versatile chromatin remodeler that regulates transcription at multiple Pol I loci and is particularly abundant at many Pol II transcription boundaries in T. brucei.


Asunto(s)
Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa I/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Trypanosoma brucei brucei/genética , Alelos , Ensamble y Desensamble de Cromatina , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN , Citometría de Flujo , Regulación Fúngica de la Expresión Génica , Histonas , ARN Polimerasa I/metabolismo , ARN Polimerasa II/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Activación Transcripcional , Trypanosoma brucei brucei/enzimología
16.
Sci Rep ; 12(1): 20080, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36418382

RESUMEN

The inter-individual variation in stroke outcomes is large and protein studies could point to potential underlying biological mechanisms. We measured plasma levels of 91 neurobiological proteins in 209 cases included in the Sahlgrenska Academy Study on Ischemic Stroke using a Proximity Extension Assay, and blood was sampled in the acute phase and at 3-month and 7-year follow-ups. Levels were also determined once in 209 controls. Acute stroke severity and neurological outcome were evaluated by the National Institutes of Health Stroke Scale. In linear regression models corrected for age, sex, and sampling day, acute phase levels of 37 proteins were associated with acute stroke severity, and 47 with 3-month and/or 7-year outcome at false discovery rate < 0.05. Three-month levels of 8 proteins were associated with 7-year outcome, of which the associations for BCAN and Nr-CAM were independent also of acute stroke severity. Most proteins followed a trajectory with lower levels in the acute phase compared to the 3-month follow-up and the control sampling point. Conclusively, we identified multiple candidate plasma biomarkers of stroke severity and neurological outcome meriting further investigation. This study adds novel information, as most of the reported proteins have not been previously investigated in a stroke cohort.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Estados Unidos , Humanos , Plasma , Biomarcadores , Neurobiología
17.
Neurology ; 99(13): e1364-e1379, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-35803717

RESUMEN

BACKGROUND AND OBJECTIVES: To examine whether high white matter hyperintensity (WMH) burden is associated with greater stroke severity and worse functional outcomes in lesion pattern-specific ways. METHODS: MR neuroimaging and NIH Stroke Scale data at index stroke and the modified Rankin Scale (mRS) score at 3-6 months after stroke were obtained from the MRI-Genetics Interface Exploration study of patients with acute ischemic stroke (AIS). Individual WMH volume was automatically derived from fluid-attenuated inversion recovery images. Stroke lesions were automatically segmented from diffusion-weighted imaging (DWI) images, parcellated into atlas-defined brain regions and further condensed to 10 lesion patterns via machine learning-based dimensionality reduction. Stroke lesion effects on AIS severity and unfavorable outcomes (mRS score >2) were modeled within purpose-built Bayesian linear and logistic regression frameworks. Interaction effects between stroke lesions and a high vs low WMH burden were integrated via hierarchical model structures. Models were adjusted for age, age2, sex, total DWI lesion and WMH volumes, and comorbidities. Data were split into derivation and validation cohorts. RESULTS: A total of 928 patients with AIS contributed to acute stroke severity analyses (age: 64.8 [14.5] years, 40% women) and 698 patients to long-term functional outcome analyses (age: 65.9 [14.7] years, 41% women). Stroke severity was mainly explained by lesions focused on bilateral subcortical and left hemispherically pronounced cortical regions across patients with both a high and low WMH burden. Lesions centered on left-hemispheric insular, opercular, and inferior frontal regions and lesions affecting right-hemispheric temporoparietal regions had more pronounced effects on stroke severity in case of high compared with low WMH burden. Unfavorable outcomes were predominantly explained by lesions in bilateral subcortical regions. In difference to the lesion location-specific WMH effects on stroke severity, higher WMH burden increased the odds of unfavorable outcomes independent of lesion location. DISCUSSION: Higher WMH burden may be associated with an increased stroke severity in case of stroke lesions involving left-hemispheric insular, opercular, and inferior frontal regions (potentially linked to language functions) and right-hemispheric temporoparietal regions (potentially linked to attention). Our findings suggest that patients with specific constellations of WMH burden and lesion locations may have greater benefits from acute recanalization treatments. Future clinical studies are warranted to systematically assess this assumption and guide more tailored treatment decisions.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Leucoaraiosis , Accidente Cerebrovascular , Sustancia Blanca , Anciano , Teorema de Bayes , Femenino , Humanos , Leucoaraiosis/patología , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Sustancia Blanca/patología
18.
Neurology ; 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36240095

RESUMEN

BACKGROUND AND OBJECTIVES: Current genome-wide association studies of ischemic stroke have focused primarily on late onset disease. As a complement to these studies, we sought to identifythe contribution of common genetic variants to risk of early onset ischemic stroke. METHODS: We performed a meta-analysis of genome-wide association studies of early onset stroke (EOS), ages 18-59, using individual level data or summary statistics in 16,730 cases and 599,237 non-stroke controls obtained across 48 different studies. We further compared effect sizes at associated loci between EOS and late onset stroke (LOS) and compared polygenic risk scores for venous thromboembolism between EOS and LOS. RESULTS: We observed genome-wide significant associations of EOS with two variants in ABO, a known stroke locus. These variants tag blood subgroups O1 and A1, and the effect sizes of both variants were significantly larger in EOS compared to LOS. The odds ratio (OR) for rs529565, tagging O1, 0.88 (95% CI: 0.85-0.91) in EOS vs 0.96 (95% CI: 0.92-1.00) in LOS, and the OR for rs635634, tagging A1, was 1.16 (1.11-1.21) for EOS vs 1.05 (0.99-1.11) in LOS; p-values for interaction = 0.001 and 0.005, respectively. Using polygenic risk scores, we observed that greater genetic risk for venous thromboembolism, another prothrombotic condition, was more strongly associated with EOS compared to LOS (p=0.008). DISCUSSION: The ABO locus, genetically predicted blood group A, and higher genetic propensity for venous thrombosis are more strongly associated with EOS than with LOS, supporting a stronger role of prothrombotic factors in EOS.

19.
Front Neurosci ; 16: 994458, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090258

RESUMEN

Background purpose: A substantial number of patients with acute ischemic stroke (AIS) experience multiple acute lesions (MAL). We here aimed to scrutinize MAL in a large radiologically deep-phenotyped cohort. Materials and methods: Analyses relied upon imaging and clinical data from the international MRI-GENIE study. Imaging data comprised both Fluid-attenuated inversion recovery (FLAIR) for white matter hyperintensity (WMH) burden estimation and diffusion-weighted imaging (DWI) sequences for the assessment of acute stroke lesions. The initial step featured the systematic evaluation of occurrences of MAL within one and several vascular supply territories. Associations between MAL and important imaging and clinical characteristics were subsequently determined. The interaction effect between single and multiple lesion status and lesion volume was estimated by means of Bayesian hierarchical regression modeling for both stroke severity and functional outcome. Results: We analyzed 2,466 patients (age = 63.4 ± 14.8, 39% women), 49.7% of which presented with a single lesion. Another 37.4% experienced MAL in a single vascular territory, while 12.9% featured lesions in multiple vascular territories. Within most territories, MAL occurred as frequently as single lesions (ratio ∼1:1). Only the brainstem region comprised fewer patients with MAL (ratio 1:4). Patients with MAL presented with a significantly higher lesion volume and acute NIHSS (7.7 vs. 1.7 ml and 4 vs. 3, p FDR < 0.001). In contrast, patients with a single lesion were characterized by a significantly higher WMH burden (6.1 vs. 5.3 ml, p FDR = 0.048). Functional outcome did not differ significantly between patients with single versus multiple lesions. Bayesian analyses suggested that the association between lesion volume and stroke severity between single and multiple lesions was the same in case of anterior circulation stroke. In case of posterior circulation stroke, lesion volume was linked to a higher NIHSS only among those with MAL. Conclusion: Multiple lesions, especially those within one vascular territory, occurred more frequently than previously reported. Overall, multiple lesions were distinctly linked to a higher acute stroke severity, a higher total DWI lesion volume and a lower WMH lesion volume. In posterior circulation stroke, lesion volume was linked to a higher stroke severity in multiple lesions only.

20.
Brain Commun ; 4(2): fcac020, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35282166

RESUMEN

Stroke represents a considerable burden of disease for both men and women. However, a growing body of literature suggests clinically relevant sex differences in the underlying causes, presentations and outcomes of acute ischaemic stroke. In a recent study, we reported sex divergences in lesion topographies: specific to women, acute stroke severity was linked to lesions in the left-hemispheric posterior circulation. We here determined whether these sex-specific brain manifestations also affect long-term outcomes. We relied on 822 acute ischaemic patients [age: 64.7 (15.0) years, 39% women] originating from the multi-centre MRI-GENIE study to model unfavourable outcomes (modified Rankin Scale >2) based on acute neuroimaging data in a Bayesian hierarchical framework. Lesions encompassing bilateral subcortical nuclei and left-lateralized regions in proximity to the insula explained outcomes across men and women (area under the curve = 0.81). A pattern of left-hemispheric posterior circulation brain regions, combining left hippocampus, precuneus, fusiform and lingual gyrus, occipital pole and latero-occipital cortex, showed a substantially higher relevance in explaining functional outcomes in women compared to men [mean difference of Bayesian posterior distributions (men - women) = -0.295 (90% highest posterior density interval = -0.556 to -0.068)]. Once validated in prospective studies, our findings may motivate a sex-specific approach to clinical stroke management and hold the promise of enhancing outcomes on a population level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA