Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(2): 348-358.e15, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31883796

RESUMEN

Most bacterial and all archaeal cells are encapsulated by a paracrystalline, protective, and cell-shape-determining proteinaceous surface layer (S-layer). On Gram-negative bacteria, S-layers are anchored to cells via lipopolysaccharide. Here, we report an electron cryomicroscopy structure of the Caulobacter crescentus S-layer bound to the O-antigen of lipopolysaccharide. Using native mass spectrometry and molecular dynamics simulations, we deduce the length of the O-antigen on cells and show how lipopolysaccharide binding and S-layer assembly is regulated by calcium. Finally, we present a near-atomic resolution in situ structure of the complete S-layer using cellular electron cryotomography, showing S-layer arrangement at the tip of the O-antigen. A complete atomic structure of the S-layer shows the power of cellular tomography for in situ structural biology and sheds light on a very abundant class of self-assembling molecules with important roles in prokaryotic physiology with marked potential for synthetic biology and surface-display applications.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/ultraestructura , Caulobacter crescentus/metabolismo , Glicoproteínas de Membrana/ultraestructura , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Caulobacter crescentus/ultraestructura , Microscopía por Crioelectrón/métodos , Lipopolisacáridos/metabolismo , Glicoproteínas de Membrana/metabolismo , Tomografía/métodos
2.
Nature ; 630(8015): 230-236, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811725

RESUMEN

Nitrosopumilus maritimus is an ammonia-oxidizing archaeon that is crucial to the global nitrogen cycle1,2. A critical step for nitrogen oxidation is the entrapment of ammonium ions from a dilute marine environment at the cell surface and their subsequent channelling to the cell membrane of N. maritimus. Here we elucidate the structure of the molecular machinery responsible for this process, comprising the surface layer (S-layer), using electron cryotomography and subtomogram averaging from cells. We supplemented our in situ structure of the ammonium-binding S-layer array with a single-particle electron cryomicroscopy structure, revealing detailed features of this immunoglobulin-rich and glycan-decorated S-layer. Biochemical analyses showed strong ammonium binding by the cell surface, which was lost after S-layer disassembly. Sensitive bioinformatic analyses identified similar S-layers in many ammonia-oxidizing archaea, with conserved sequence and structural characteristics. Moreover, molecular simulations and structure determination of ammonium-enriched specimens enabled us to examine the cation-binding properties of the S-layer, revealing how it concentrates ammonium ions on its cell-facing side, effectively acting as a multichannel sieve on the cell membrane. This in situ structural study illuminates the biogeochemically essential process of ammonium binding and channelling, common to many marine microorganisms that are fundamental to the nitrogen cycle.


Asunto(s)
Amoníaco , Organismos Acuáticos , Archaea , Membrana Celular , Amoníaco/química , Amoníaco/metabolismo , Organismos Acuáticos/química , Organismos Acuáticos/metabolismo , Organismos Acuáticos/ultraestructura , Archaea/química , Archaea/metabolismo , Archaea/ultraestructura , Cationes/química , Cationes/metabolismo , Microscopía por Crioelectrón , Modelos Moleculares , Oxidación-Reducción , Polisacáridos/metabolismo , Polisacáridos/química
3.
Nature ; 619(7971): 819-827, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438530

RESUMEN

Understanding protective immunity to COVID-19 facilitates preparedness for future pandemics and combats new SARS-CoV-2 variants emerging in the human population. Neutralizing antibodies have been widely studied; however, on the basis of large-scale exome sequencing of protected versus severely ill patients with COVID-19, local cell-autonomous defence is also crucial1-4. Here we identify phospholipid scramblase 1 (PLSCR1) as a potent cell-autonomous restriction factor against live SARS-CoV-2 infection in parallel genome-wide CRISPR-Cas9 screens of human lung epithelia and hepatocytes before and after stimulation with interferon-γ (IFNγ). IFNγ-induced PLSCR1 not only restricted SARS-CoV-2 USA-WA1/2020, but was also effective against the Delta B.1.617.2 and Omicron BA.1 lineages. Its robust activity extended to other highly pathogenic coronaviruses, was functionally conserved in bats and mice, and interfered with the uptake of SARS-CoV-2 in both the endocytic and the TMPRSS2-dependent fusion routes. Whole-cell 4Pi single-molecule switching nanoscopy together with bipartite nano-reporter assays found that PLSCR1 directly targeted SARS-CoV-2-containing vesicles to prevent spike-mediated fusion and viral escape. A PLSCR1 C-terminal ß-barrel domain-but not lipid scramblase activity-was essential for this fusogenic blockade. Our mechanistic studies, together with reports that COVID-associated PLSCR1 mutations are found in some susceptible people3,4, identify an anti-coronavirus protein that interferes at a late entry step before viral RNA is released into the host-cell cytosol.


Asunto(s)
COVID-19 , Proteínas de Transferencia de Fosfolípidos , SARS-CoV-2 , Animales , Humanos , Ratones , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Quirópteros , COVID-19/inmunología , COVID-19/metabolismo , COVID-19/prevención & control , COVID-19/virología , Secuenciación del Exoma , Hepatocitos/inmunología , Hepatocitos/metabolismo , Interferón gamma/inmunología , Pulmón/inmunología , Pulmón/metabolismo , Fusión de Membrana , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/inmunología , Proteínas de Transferencia de Fosfolípidos/metabolismo , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Internalización del Virus
4.
Nature ; 604(7904): 195-201, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35355017

RESUMEN

Hyaluronan is an acidic heteropolysaccharide comprising alternating N-acetylglucosamine and glucuronic acid sugars that is ubiquitously expressed in the vertebrate extracellular matrix1. The high-molecular-mass polymer modulates essential physiological processes in health and disease, including cell differentiation, tissue homeostasis and angiogenesis2. Hyaluronan is synthesized by a membrane-embedded processive glycosyltransferase, hyaluronan synthase (HAS), which catalyses the synthesis and membrane translocation of hyaluronan from uridine diphosphate-activated precursors3,4. Here we describe five cryo-electron microscopy structures of a viral HAS homologue at different states during substrate binding and initiation of polymer synthesis. Combined with biochemical analyses and molecular dynamics simulations, our data reveal how HAS selects its substrates, hydrolyses the first substrate to prime the synthesis reaction, opens a hyaluronan-conducting transmembrane channel, ensures alternating substrate polymerization and coordinates hyaluronan inside its transmembrane pore. Our research suggests a detailed model for the formation of an acidic extracellular heteropolysaccharide and provides insights into the biosynthesis of one of the most abundant and essential glycosaminoglycans in the human body.


Asunto(s)
Hialuronano Sintasas , Ácido Hialurónico , Phycodnaviridae , Microscopía por Crioelectrón , Hialuronano Sintasas/metabolismo , Phycodnaviridae/enzimología , Polímeros
5.
Nature ; 604(7905): 371-376, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35388216

RESUMEN

The outer membrane of Gram-negative bacteria has an external leaflet that is largely composed of lipopolysaccharide, which provides a selective permeation barrier, particularly against antimicrobials1. The final and crucial step in the biosynthesis of lipopolysaccharide is the addition of a species-dependent O-antigen to the lipid A core oligosaccharide, which is catalysed by the O-antigen ligase WaaL2. Here we present structures of WaaL from Cupriavidus metallidurans, both in the apo state and in complex with its lipid carrier undecaprenyl pyrophosphate, determined by single-particle cryo-electron microscopy. The structures reveal that WaaL comprises 12 transmembrane helices and a predominantly α-helical periplasmic region, which we show contains many of the conserved residues that are required for catalysis. We observe a conserved fold within the GT-C family of glycosyltransferases and hypothesize that they have a common mechanism for shuttling the undecaprenyl-based carrier to and from the active site. The structures, combined with genetic, biochemical, bioinformatics and molecular dynamics simulation experiments, offer molecular details on how the ligands come in apposition, and allows us to propose a mechanistic model for catalysis. Together, our work provides a structural basis for lipopolysaccharide maturation in a member of the GT-C superfamily of glycosyltransferases.


Asunto(s)
Ligasas , Lipopolisacáridos , Antígenos O , Proteínas Bacterianas/química , Ligasas de Carbono-Oxígeno/química , Ligasas de Carbono-Oxígeno/genética , Microscopía por Crioelectrón , Glicosiltransferasas , Bacterias Gramnegativas , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(24): e2302580120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276423

RESUMEN

AmiA and AmiB are peptidoglycan-hydrolyzing enzymes from Escherichia coli that are required to break the peptidoglycan layer during bacterial cell division and maintain integrity of the cell envelope. In vivo, the activity of AmiA and AmiB is tightly controlled through their interactions with the membrane-bound FtsEX-EnvC complex. Activation of AmiA and AmiB requires access to a groove in the amidase-activating LytM domain of EnvC which is gated by ATP-driven conformational changes in FtsEX-EnvC complex. Here, we present a high-resolution structure of the isolated AmiA protein, confirming that it is autoinhibited in the same manner as AmiB and AmiC, and a complex of the AmiB enzymatic domain bound to the activating EnvC LytM domain. In isolation, the active site of AmiA is blocked by an autoinhibitory helix that binds directly to the catalytic zinc and fills the volume expected to accommodate peptidoglycan binding. In the complex, binding of the EnvC LytM domain induces a conformational change that displaces the amidase autoinhibitory helix and reorganizes the active site for activity. Our structures, together with complementary mutagenesis work, defines the conformational changes required to activate AmiA and/or AmiB through their interaction with their cognate activator EnvC.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Escherichia coli/metabolismo , Amidohidrolasas/metabolismo , Proteínas Bacterianas/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(5): e2212755120, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36693100

RESUMEN

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), a disease that claims ~1.6 million lives annually. The current treatment regime is long and expensive, and missed doses contribute to drug resistance. Therefore, development of new anti-TB drugs remains one of the highest public health priorities. Mtb has evolved a complex cell envelope that represents a formidable barrier to antibiotics. The Mtb cell envelop consists of four distinct layers enriched for Mtb specific lipids and glycans. Although the outer membrane, comprised of mycolic acid esters, has been extensively studied, less is known about the plasma membrane, which also plays a critical role in impacting antibiotic efficacy. The Mtb plasma membrane has a unique lipid composition, with mannosylated phosphatidylinositol lipids (phosphatidyl-myoinositol mannosides, PIMs) comprising more than 50% of the lipids. However, the role of PIMs in the structure and function of the membrane remains elusive. Here, we used multiscale molecular dynamics (MD) simulations to understand the structure-function relationship of the PIM lipid family and decipher how they self-organize to shape the biophysical properties of mycobacterial plasma membranes. We assess both symmetric and asymmetric assemblies of the Mtb plasma membrane and compare this with residue distributions of Mtb integral membrane protein structures. To further validate the model, we tested known anti-TB drugs and demonstrated that our models agree with experimental results. Thus, our work sheds new light on the organization of the mycobacterial plasma membrane. This paves the way for future studies on antibiotic development and understanding Mtb membrane protein function.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Fosfatidilinositoles/metabolismo , Mycobacterium tuberculosis/metabolismo , Membrana Celular/metabolismo , Tuberculosis/microbiología , Antituberculosos/metabolismo
8.
J Am Chem Soc ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38604609

RESUMEN

Lipopolysaccharide (LPS) is vital for maintaining the outer membrane barrier in Gram-negative bacteria. LPS is also frequently obtained in complex with the inner membrane proteins after detergent purification. The question of whether or not LPS binding to inner membrane proteins not involved in outer membrane biogenesis reflects native lipid environments remains unclear. Here, we leverage the control of the hydrophilic-lipophilic balance and packing parameter concepts to chemically tune detergents that can be used to qualitatively differentiate the degree to which proteins copurify with phospholipids (PLs) and/or LPS. Given the scalable properties of these detergents, we demonstrate a detergent fine-tuning that enables the facile investigation of intact proteins and their complexes with lipids by native mass spectrometry (nMS). We conclude that LPS, a lipid that is believed to be important for outer membranes, can also affect the activity of membrane proteins that are currently not assigned to be involved in outer membrane biogenesis. Our results deliver a scalable detergent chemistry for a streamlined biophysical characterization of protein-lipid interactions, provide a rationale for the high affinity of LPS-protein binding, and identify noncanonical associations between LPS and inner membrane proteins with relevance for membrane biology and antibiotic research.

9.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34413188

RESUMEN

TMEM16A Ca2+-activated chloride channels are involved in multiple cellular functions and are proposed targets for diseases such as hypertension, stroke, and cystic fibrosis. This therapeutic endeavor, however, suffers from paucity of selective and potent modulators. Here, exploiting a synthetic small molecule with a biphasic effect on the TMEM16A channel, anthracene-9-carboxylic acid (A9C), we shed light on sites of the channel amenable for pharmacological intervention. Mutant channels with the intracellular gate constitutively open were generated. These channels were entirely insensitive to extracellular A9C when intracellular Ca2+ was omitted. However, when physiological Ca2+ levels were reestablished, the mutants regained sensitivity to A9C. Thus, intracellular Ca2+ is mandatory for the channel response to an extracellular modulator. The underlying mechanism is a conformational change in the outer pore that enables A9C to enter the pore to reach its binding site. The explanation of this structural rearrangement highlights a critical site for pharmacological intervention and reveals an aspect of Ca2+ gating in the TMEM16A channel.


Asunto(s)
Anoctamina-1/metabolismo , Antracenos/farmacología , Calcio/farmacología , Cloruros/farmacología , Animales , Anoctamina-1/genética , Estimulación Eléctrica , Fenómenos Electrofisiológicos , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Ratones , Simulación de Dinámica Molecular , Farmacología en Red , Técnicas de Placa-Clamp , Mutación Puntual
10.
Microbiology (Reading) ; 169(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36790402

RESUMEN

The twin arginine transport (Tat) pathway exports folded proteins across the cytoplasmic membranes of prokaryotes and the thylakoid membranes of chloroplasts. In Escherichia coli and other Gram-negative bacteria, the Tat machinery comprises TatA, TatB and TatC components. A Tat receptor complex, formed from all three proteins, binds Tat substrates, which triggers receptor organization and recruitment of further TatA molecules to form the active Tat translocon. The polytopic membrane protein TatC forms the core of the Tat receptor and harbours two binding sites for the sequence-related TatA and TatB proteins. A 'polar' cluster binding site, formed by TatC transmembrane helices (TMH) 5 and 6 is occupied by TatB in the resting receptor and exchanges for TatA during receptor activation. The second binding site, lying further along TMH6, is occupied by TatA in the resting state, but its functional relevance is unclear. Here we have probed the role of this second binding site through a programme of random and targeted mutagenesis. Characterization of three stably produced TatC variants, P221R, M222R and L225P, each of which is inactive for protein transport, demonstrated that the substitutions did not affect assembly of the Tat receptor. Moreover, the substitutions that we analysed did not abolish TatA or TatB binding to either binding site. Using targeted mutagenesis we introduced bulky substitutions into the TatA binding site. Molecular dynamics simulations and crosslinking analysis indicated that TatA binding at this site was substantially reduced by these amino acid changes, but TatC retained function. While it is not clear whether TatA binding at the TMH6 site is essential for Tat activity, the isolation of inactivating substitutions indicates that this region of the protein has a critical function.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Arginina/metabolismo , Proteínas Portadoras/metabolismo , Sitios de Unión , Transporte de Proteínas/fisiología
11.
Nat Chem Biol ; 17(2): 187-195, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33199913

RESUMEN

Lipopolysaccharide (LPS) transport to the outer membrane (OM) is a crucial step in the biogenesis of microbial surface defenses. Although many features of the translocation mechanism have been elucidated, molecular details of LPS insertion via the LPS transport (Lpt) OM protein LptDE remain elusive. Here, we integrate native MS with hydrogen-deuterium exchange MS and molecular dynamics simulations to investigate the influence of substrate and peptide binding on the conformational dynamics of LptDE. Our data reveal that LPS induces opening of the LptD ß-taco domain, coupled with conformational changes on ß-strands adjacent to the putative lateral exit gate. Conversely, an antimicrobial peptide, thanatin, stabilizes the ß-taco, thereby preventing LPS transport. Our results illustrate that LPS insertion into the OM relies on concerted opening movements of both the ß-barrel and ß-taco domains of LptD, and suggest a means for developing antimicrobial therapeutics targeting this essential process in Gram-negative ESKAPE pathogens.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Lipopolisacáridos/metabolismo , Translocación Genética/genética , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Conformación de Carbohidratos , Farmacorresistencia Bacteriana/genética , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Espectrometría de Masas , Modelos Moleculares , Simulación de Dinámica Molecular
12.
Nature ; 541(7637): 421-424, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28077870

RESUMEN

Oligomerization of membrane proteins in response to lipid binding has a critical role in many cell-signalling pathways but is often difficult to define or predict. Here we report the development of a mass spectrometry platform to determine simultaneously the presence of interfacial lipids and oligomeric stability and to uncover how lipids act as key regulators of membrane-protein association. Evaluation of oligomeric strength for a dataset of 125 α-helical oligomeric membrane proteins reveals an absence of interfacial lipids in the mass spectra of 12 membrane proteins with high oligomeric stability. For the bacterial homologue of the eukaryotic biogenic transporters (LeuT, one of the proteins with the lowest oligomeric stability), we found a precise cohort of lipids within the dimer interface. Delipidation, mutation of lipid-binding sites or expression in cardiolipin-deficient Escherichia coli abrogated dimer formation. Molecular dynamics simulation revealed that cardiolipin acts as a bidentate ligand, bridging across subunits. Subsequently, we show that for the Vibrio splendidus sugar transporter SemiSWEET, another protein with low oligomeric stability, cardiolipin shifts the equilibrium from monomer to functional dimer. We hypothesized that lipids are essential for dimerization of the Na+/H+ antiporter NhaA from E. coli, which has the lowest oligomeric strength, but not for the substantially more stable homologous Thermus thermophilus protein NapA. We found that lipid binding is obligatory for dimerization of NhaA, whereas NapA has adapted to form an interface that is stable without lipids. Overall, by correlating interfacial strength with the presence of interfacial lipids, we provide a rationale for understanding the role of lipids in both transient and stable interactions within a range of α-helical membrane proteins, including G-protein-coupled receptors.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Lípidos/química , Lípidos/farmacología , Espectrometría de Masas/métodos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Multimerización de Proteína/efectos de los fármacos , Sitios de Unión/genética , Cardiolipinas/química , Cardiolipinas/metabolismo , Cardiolipinas/farmacología , Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Moritella/química , Estabilidad Proteica/efectos de los fármacos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo , Termodinámica , Thermus thermophilus/química
13.
Proc Natl Acad Sci U S A ; 117(45): 28355-28365, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33097670

RESUMEN

FtsEX is a bacterial ABC transporter that regulates the activity of periplasmic peptidoglycan amidases via its interaction with the murein hydrolase activator, EnvC. In Escherichia coli, FtsEX is required to separate daughter cells after cell division and for viability in low-osmolarity media. Both the ATPase activity of FtsEX and its periplasmic interaction with EnvC are required for amidase activation, but the process itself is poorly understood. Here we present the 2.1 Å structure of the FtsX periplasmic domain in complex with its periplasmic partner, EnvC. The EnvC-FtsX periplasmic domain complex has a 1-to-2 stoichiometry with two distinct FtsX-binding sites located within an antiparallel coiled coil domain of EnvC. Residues involved in amidase activation map to a previously identified groove in the EnvC LytM domain that is here found to be occluded by a "restraining arm" suggesting a self-inhibition mechanism. Mutational analysis, combined with bacterial two-hybrid screens and in vivo functional assays, verifies the FtsEX residues required for EnvC binding and experimentally test a proposed mechanism for amidase activation. We also define a predicted link between FtsEX and integrity of the outer membrane. Both the ATPase activity of FtsEX and its periplasmic interaction with EnvC are required for resistance to membrane-attacking antibiotics and detergents to which E. coli would usually be considered intrinsically resistant. These structural and functional data provide compelling mechanistic insight into FtsEX-mediated regulation of EnvC and its downstream control of periplasmic peptidoglycan amidases.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas de Ciclo Celular/química , División Celular/fisiología , Endopeptidasas/química , Periplasma/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Cristalografía por Rayos X , Análisis Mutacional de ADN , Endopeptidasas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Modelos Moleculares , Mutación , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Periplasma/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas
14.
Biophys J ; 121(11): 2078-2083, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35505611

RESUMEN

Lipoprotein signal peptidase (LspA) is an aspartyl protease that cleaves the transmembrane helix signal peptide of lipoproteins as part of the lipoprotein-processing pathway. Members of this pathway are excellent targets for the development of antibiotic therapeutics because they are essential in Gram-negative bacteria, are important for virulence in Gram-positive bacteria, and may not develop antibiotic resistance. Here, we report the conformational dynamics of LspA in the apo state and bound to the antibiotic globomycin determined using molecular dynamics simulations and electron paramagnetic resonance. The periplasmic helix fluctuates on the nanosecond timescale and samples unique conformations in the different states. In the apo state, the dominant conformation is the most closed and occludes the charged active site from the lipid bilayer. With antibiotic bound there are multiple binding modes with the dominant conformation of the periplasmic helix in a more open conformation. The different conformations observed in both bound and apo states indicate a flexible and adaptable active site, which explains how LspA accommodates and processes such a variety of substrates.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Antibacterianos/química , Ácido Aspártico Endopeptidasas/metabolismo , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Lipoproteínas , Simulación de Dinámica Molecular , Conformación Proteica
15.
J Physiol ; 600(20): 4503-4519, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36047384

RESUMEN

ATP-sensitive potassium (KATP ) channels couple the intracellular ATP concentration to insulin secretion. KATP channel activity is inhibited by ATP binding to the Kir6.2 tetramer and activated by phosphatidylinositol 4,5-bisphosphate (PIP2 ). Here, we use molecular dynamics simulation, electrophysiology and fluorescence spectroscopy to show that ATP and PIP2 occupy different binding pockets that share a single amino acid residue, K39. When both ligands are present, simulations suggest that K39 shows a greater preference to co-ordinate with PIP2 than with ATP. They also predict that a neonatal diabetes mutation at K39 (K39R) increases the number of hydrogen bonds formed between K39 and PIP2 , potentially accounting for the reduced ATP inhibition observed in electrophysiological experiments. Our work suggests that PIP2 and ATP interact allosterically to regulate KATP channel activity. KEY POINTS: The KATP channel is activated by the binding of phosphatidylinositol 4,5-bisphosphate (PIP2 ) lipids and inactivated by the binding of ATP. K39 has the potential to bind to both PIP2 and ATP. A mutation to this residue (K39R) results in neonatal diabetes. This study uses patch-clamp fluorometry, electrophysiology and molecular dynamics simulation. We show that PIP2 competes with ATP for K39, and this reduces channel inhibition by ATP. We show that K39R increases channel affinity to PIP2 by increasing the number of hydrogen bonds with PIP2 , when compared with the wild-type K39. This therefore decreases KATP channel inhibition by ATP.


Asunto(s)
Canales de Potasio de Rectificación Interna , Adenosina Trifosfato/metabolismo , Aminoácidos , Humanos , Recién Nacido , Fosfatidilinositol 4,5-Difosfato/fisiología , Fosfatidilinositoles , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/fisiología
16.
J Biol Chem ; 296: 100307, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33476646

RESUMEN

The Mycobacterium tuberculosis (Mtb) LpqY-SugABC ATP-binding cassette transporter is a recycling system that imports trehalose released during remodeling of the Mtb cell-envelope. As this process is essential for the virulence of the Mtb pathogen, it may represent an important target for tuberculosis drug and diagnostic development, but the transporter specificity and molecular determinants of substrate recognition are unknown. To address this, we have determined the structural and biochemical basis of how mycobacteria transport trehalose using a combination of crystallography, saturation transfer difference NMR, molecular dynamics, site-directed mutagenesis, biochemical/biophysical assays, and the synthesis of trehalose analogs. This analysis pinpoints key residues of the LpqY substrate binding lipoprotein that dictate substrate-specific recognition and has revealed which disaccharide modifications are tolerated. These findings provide critical insights into how the essential Mtb LpqY-SugABC transporter reuses trehalose and modified analogs and specifies a framework that can be exploited for the design of new antitubercular agents and/or diagnostic tools.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas Bacterianas/química , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Trehalosa/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Transporte Biológico , Pared Celular/genética , Pared Celular/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Ligandos , Simulación de Dinámica Molecular , Mutación , Mycobacterium tuberculosis/genética , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica , Trehalosa/análogos & derivados , Virulencia
17.
Bioinformatics ; 37(24): 4876-4878, 2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34145888

RESUMEN

MOTIVATION: Native mass spectrometry is now a well-established method for the investigation of protein complexes, specifically their subunit stoichiometry and ligand binding properties. Recent advances allowing the analysis of complex mixtures lead to an increasing diversity and complexity in the spectra obtained. These spectra can be time-consuming to tackle through manual assignment and challenging for automated approaches. RESULTS: Native Mass Spectrometry Visual Analyser is a web-based tool to augment the manual process of peak assignment. In addition to matching masses to the stoichiometry of its component subunits, it allows raw data processing, assignment and annotation and permits mass spectra to be shared with their respective interpretation. AVAILABILITY AND IMPLEMENTATION: NaViA is open-source and can be accessed online under https://navia.ms. The source code and documentation can be accessed at https://github.com/d-que/navia, under the BSD 2-Clause licence. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Espectrometría de Masas
18.
Nature ; 531(7592): 64-9, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26901871

RESUMEN

All Gram-negative bacteria, mitochondria and chloroplasts have outer membrane proteins (OMPs) that perform many fundamental biological processes. The OMPs in Gram-negative bacteria are inserted and folded into the outer membrane by the ß-barrel assembly machinery (BAM). The mechanism involved is poorly understood, owing to the absence of a structure of the entire BAM complex. Here we report two crystal structures of the Escherichia coli BAM complex in two distinct states: an inward-open state and a lateral-open state. Our structures reveal that the five polypeptide transport-associated domains of BamA form a ring architecture with four associated lipoproteins, BamB-BamE, in the periplasm. Our structural, functional studies and molecular dynamics simulations indicate that these subunits rotate with respect to the integral membrane ß-barrel of BamA to induce movement of the ß-strands of the barrel and promote insertion of the nascent OMP.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Cristalografía por Rayos X , Lipoproteínas/química , Lipoproteínas/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Movimiento , Periplasma/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Rotación
19.
Proc Natl Acad Sci U S A ; 116(28): 13989-13995, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235590

RESUMEN

Ion channel proteins control ionic flux across biological membranes through conformational changes in their transmembrane pores. An exponentially increasing number of channel structures captured in different conformational states are now being determined; however, these newly resolved structures are commonly classified as either open or closed based solely on the physical dimensions of their pore, and it is now known that more accurate annotation of their conductive state requires additional assessment of the effect of pore hydrophobicity. A narrow hydrophobic gate region may disfavor liquid-phase water, leading to local dewetting, which will form an energetic barrier to water and ion permeation without steric occlusion of the pore. Here we quantify the combined influence of radius and hydrophobicity on pore dewetting by applying molecular dynamics simulations and machine learning to nearly 200 ion channel structures. This allows us to propose a simple simulation-free heuristic model that rapidly and accurately predicts the presence of hydrophobic gates. This not only enables the functional annotation of new channel structures as soon as they are determined, but also may facilitate the design of novel nanopores controlled by hydrophobic gates.


Asunto(s)
Canales Iónicos/química , Conformación Proteica , Proteoma/química , Agua/química , Membrana Celular/química , Membrana Celular/ultraestructura , Interacciones Hidrofóbicas e Hidrofílicas , Activación del Canal Iónico/genética , Canales Iónicos/genética , Aprendizaje Automático , Simulación de Dinámica Molecular , Nanoporos/ultraestructura , Proteoma/genética
20.
Mol Microbiol ; 113(5): 861-871, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31971282

RESUMEN

The twin-arginine protein transport (Tat pathway) is found in prokaryotes and plant organelles and transports folded proteins across membranes. Targeting of substrates to the Tat system is mediated by the presence of an N-terminal signal sequence containing a highly conserved twin-arginine motif. The Tat machinery comprises membrane proteins from the TatA and TatC families. Assembly of the Tat translocon is dynamic and is triggered by the interaction of a Tat substrate with the Tat receptor complex. This review will summarise recent advances in our understanding of Tat transport, focusing in particular on the roles played by Tat signal peptides in protein targeting and translocation.


Asunto(s)
Secuencias de Aminoácidos , Señales de Clasificación de Proteína , Transporte de Proteínas , Sistema de Translocación de Arginina Gemela/fisiología , Proteínas Bacterianas/fisiología , Membrana Celular , Proteínas de Escherichia coli/fisiología , Proteínas de Transporte de Membrana/fisiología , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA