Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Langmuir ; 39(13): 4631-4641, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36958053

RESUMEN

Natural gas containing trace amounts of water is frequently liquefied at conditions where aqueous solids are thermodynamically stable. However, no data are available to describe the kinetics of aqueous solid formation at these conditions. Here, we present experimental measurements of both solid formation kinetics and solid-fluid equilibrium for trace concentrations of (12 ± 0.7) ppm water in methane using a stirred, high-pressure apparatus and visual microscopy. Along isochoric pathways with cooling rates around 1 K·min-1, micron-scale aqueous solids were observed to form at subcoolings of (0.3-8.6) K, relative to an average equilibrium melting temperature of (253 ± 1.9) K at (8.9 ± 0.08) MPa; these data are consistent with predicted methane hydrate dissociation conditions within the uncertainty of both the experiment and model. The 36 measured formation events were used to construct a cumulative formation probability distribution, which was then fitted with a model from Classical Nucleation Theory, enabling the extraction of kinetic and thermodynamic nucleation parameters. While the resulting nucleation parameter values were comparable to those published for methane hydrate formation in bulk-water systems, the observed growth kinetics were distinctly different with only a small percentage of the water in the system converting into micron-scale solids over the experimental time scale. These results may help explain how cryogenic heat exchangers in liquefied natural gas facilities can operate for long periods without blockages forming despite being at very high subcoolings for aqueous solids.

2.
Anal Chem ; 94(41): 14169-14176, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36190408

RESUMEN

Surface active agents (surfactants) have found a variety of critical technological applications, from helping infant lungs breathe to fugitive dust control at industrial sites. Surfactant molecules adsorb to an interface and facilitate a decrease in the surface free energy (interfacial tension) between two immiscible phases. However, a limited number of methods (e.g., holography and fluorescence microscopy) achieved visualization of surfactant molecule distribution in multiphase systems qualitatively. To probe the efficacy and/or adsorption density of surfactants at such interfaces quantitatively, we demonstrate here a direct observation of surfactant adsorption by surface-enhanced Raman scattering (SERS). This work details the development of a research platform to study surfactant adsorption using Raman imaging. The imaging and analysis were successfully benchmarked against conventional interfacial tension measurements and thermodynamic theory employed to estimate surfactant adsorption at equilibrium. This in situ Raman-based experimental method provides a platform to interrogate structure-function relationships that inform the design process for new surfactant species.


Asunto(s)
Cetilpiridinio , Espectrometría Raman , Adsorción , Polvo , Humanos , Tensión Superficial , Tensoactivos
3.
Phys Chem Chem Phys ; 21(39): 21685-21688, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31552970

RESUMEN

Hydrate formation was studied using water droplets acoustically levitated in high-pressure natural gas. Despite the absence of solid interfaces, the droplets' area-normalised nucleation rate was about four times faster than in steel autoclave measurements with interfacial areas roughly 200 times larger. Multiple stages of stochastic, template-free hydrate growth were observed.

4.
Chemphyschem ; 19(6): 784-792, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29267986

RESUMEN

Accurate measurements of carbon monoxide's electrical properties were carried out at high pressure for the first time enabling stringent comparisons with theoretical values calculated ab initio. Dielectric permittivity measurements were conducted utilising a microwave re-entrant cavity resonator over the temperature range from (255 to 313) K and at pressures up to 8 MPa with a relative combined expanded uncertainty (k=2) less than or equal to 52 ppm. The new data enable carbon monoxide's molar polarizability to be correlated within 0.5 %, significantly improving upon existing literature data, which have a relative scatter of about 10 %. The measured molecular polarizability and electric dipole moment of carbon monoxide were determined to be 2.176×10-40  C2 m2 J-1 and 0.107 D. Literature values from ab initio calculations for these properties are within 0.28 % and 3.9 %, respectively, of the measured quantities. Moreover, our measurement of the electric dipole moment at finite temperature agrees within 2.2 % with the value derived from accurate spectroscopic measurements for the ground rovibrational state. The second dielectric virial coefficient of carbon monoxide was determined experimentally for the first time to be bϵ =(1.015±0.044) cm3 mol-1 , which compares reasonably with ab initio estimates.

5.
Langmuir ; 34(10): 3186-3196, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29485877

RESUMEN

Gas hydrate formation is a stochastic phenomenon of considerable significance for any risk-based approach to flow assurance in the oil and gas industry. In principle, well-established results from nucleation theory offer the prospect of predictive models for hydrate formation probability in industrial production systems. In practice, however, heuristics are relied on when estimating formation risk for a given flowline subcooling or when quantifying kinetic hydrate inhibitor (KHI) performance. Here, we present statistically significant measurements of formation probability distributions for natural gas hydrate systems under shear, which are quantitatively compared with theoretical predictions. Distributions with over 100 points were generated using low-mass, Peltier-cooled pressure cells, cycled in temperature between 40 and -5 °C at up to 2 K·min-1 and analyzed with robust algorithms that automatically identify hydrate formation and initial growth rates from dynamic pressure data. The application of shear had a significant influence on the measured distributions: at 700 rpm mass-transfer limitations were minimal, as demonstrated by the kinetic growth rates observed. The formation probability distributions measured at this shear rate had mean subcoolings consistent with theoretical predictions and steel-hydrate-water contact angles of 14-26°. However, the experimental distributions were substantially wider than predicted, suggesting that phenomena acting on macroscopic length scales are responsible for much of the observed stochastic formation. Performance tests of a KHI provided new insights into how such chemicals can reduce the risk of hydrate blockage in flowlines. Our data demonstrate that the KHI not only reduces the probability of formation (by both shifting and sharpening the distribution) but also reduces hydrate growth rates by a factor of 2.

6.
Adv Sci (Weinh) ; 9(9): e2105477, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35072350

RESUMEN

Functionalized porous materials could play a key role in improving the efficiency of gas separation processes as required by applications such as carbon capture and storage (CCS) and across the hydrogen value chain. Due to the large number of different functionalizations, new experimental approaches are needed to determine if an adsorbent is suitable for a specific separation task. Here, it is shown for the first time that Raman spectroscopy is an efficient tool to characterize the adsorption capacity and selectivity of translucent functionalized porous materials at high pressures, whereby translucence is the precondition to study mass transport inside of a material. As a proof of function, the performance of three silica ionogels to separate an equimolar (hydrogen + carbon dioxide) gas mixture is determined by both accurate gravimetric sorption measurements and Raman spectroscopy, with the observed consistency establishing the latter as a novel measurement technique for the determination of adsorption capacity. These results encourage the use of the spectroscopic approach as a rapid screening method for translucent porous materials, particularly since only very small amounts of sample are required.

7.
Phys Rev Lett ; 106(18): 180401, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21635069

RESUMEN

We determine the sensitivity of a modern Michelson-Morley resonant-cavity experiment to higher-order nonbirefringent and nondispersive coefficients of the Lorentz-violating standard-model extension. Data from a recent year-long run of the experiment are used to place the first experimental bounds on coefficients associated with nonrenormalizable Lorentz-violating operators.

8.
Artículo en Inglés | MEDLINE | ID: mdl-16529102

RESUMEN

Low-temperature, high-precision sapphire resonators exhibit a turning point in mode frequency-temperature dependence at around 10 K. This, along with sapphire's extremely low dielectric losses at microwave frequencies, results in oscillator fractional frequency stabilities on the order of 10(-15). At higher temperatures the lack of a turning point makes single-mode oscillators very sensitive to temperature fluctuations. By exciting two quasi-orthogonal whispering gallery (WG) modes in a single sapphire resonator, a turning point in the frequency-temperature dependence can be found in the beat frequency between the two modes. A temperature control technique based on mode frequency temperature dependence has been used to maintain the sapphire at this turning point and the fractional frequency instability of the beat frequency has been measured to be at a level of 4.3 X 10(-14) over 1 s, dropping to 3.5 X 10(-14) over 4 s integration time.

9.
Artículo en Inglés | MEDLINE | ID: mdl-17186921

RESUMEN

Cryogenic sapphire oscillators (CSO) developed at the University of Western Australia (UWA) have now been in operation around the world continuously for many years. Such oscillators, due to their excellent spectral purity are essential for interrogating atomic frequency standards at the limit of quantum projection noise; otherwise aliasing effects will dominate the frequency stability due to the periodic sampling between successive interrogations of the atomic transition. Other applications, which have attracted attention in recent years, include tests on fundamental principles of physics, such as tests of Lorentz invariance. This paper reports on the long-term operation and performance of such oscillators. We compare the long-term drift of some different CSOs. The drift rates turn out to be linear over many years and in the same direction. However, the magnitude seems to vary by more than one order of magnitude between the oscillators, ranging from 10(14) per day to a few parts in 10(13) per day.


Asunto(s)
Óxido de Aluminio , Frío , Electroquímica/instrumentación , Electrónica/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo
10.
J Magn Reson ; 269: 179-185, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27343484

RESUMEN

We demonstrate the use of Tikhonov regularisation as a data inversion technique to determine the velocity distributions of flowing liquid streams. Regularisation is applied to the signal produced by a nuclear magnetic resonance (NMR) flow measurement system consisting of a pre-polarising permanent magnet located upstream of an Earth's magnetic field NMR detection coil. A simple free induction decay (FID) NMR signal is measured for the flowing stream in what is effectively a 'time-of-flight' measurement. The FID signal is then modelled as a function of fluid velocity and acquisition time, enabling determination of the velocity probability distributions via regularisation. The mean values of these velocity distributions were successfully validated against in-line rotameters. The ability to quantify multi-modal velocity distributions was also demonstrated using a two-pipe system.

11.
Artículo en Inglés | MEDLINE | ID: mdl-16382616

RESUMEN

Method of Lines and Finite Element Analysis investigations have been performed to optimize parameters in a TE011 mode cavity resonator suitable for a spaceborne hydrogen maser. We report on designs that were explored to find a global maximum in the important design parameters for the microwave cavity used in a hydrogen maser. The criteria sought in this exercise were both the minimization of the total volume of the cavity and the maximization of the product of the z-component of the magnetic energy filling factor and the cavity TE011 mode Q-factor (Q.eta). Different configurations were studied. They were a sapphire tube in a copper cylinder, a sapphire tube in a copper cylinder with Bragg reflectors, and spherical copper cavities both empty and sapphire-lined on the inside cavity surface. At 320 K, the simulations resulted in an optimum product Q.eta = 4.9 x 10(4), with an inner cavity radius of 80 mm and unity aspect ratio. This represents a 54% improvement over an earlier design. The expected increase in the product Q . eta) with the inclusion of Bragg reflectors to the sapphire tube was not achieved. Moreover, the z-component of the magnetic energy filling factor was greatly reduced due to an increase in the radial magnetic field. The sapphire-lined spherical cavity showed no better performance than an equivalent-sized empty copper spherical cavity. For the empty cavity the simulations resulted in the product Q.eta = 4.4 x 10(4). The empty spherical cavity resonator is not suitable for the spaceborne hydrogen maser as the total volume in this case is 33% larger than that of the optimized sapphire tube resonator.

12.
Nat Commun ; 6: 8174, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26323989

RESUMEN

Lorentz symmetry is a foundational property of modern physics, underlying the standard model of particles and general relativity. It is anticipated that these two theories are low-energy approximations of a single theory that is unified and consistent at the Planck scale. Many unifying proposals allow Lorentz symmetry to be broken, with observable effects appearing at Planck-suppressed levels; thus, precision tests of Lorentz invariance are needed to assess and guide theoretical efforts. Here we use ultrastable oscillator frequency sources to perform a modern Michelson-Morley experiment and make the most precise direct terrestrial test to date of Lorentz symmetry for the photon, constraining Lorentz violating orientation-dependent relative frequency changes Δν/ν to 9.2±10.7 × 10(-19) (95% confidence interval). This order of magnitude improvement over previous Michelson-Morley experiments allows us to set comprehensive simultaneous bounds on nine boost and rotation anisotropies of the speed of light, finding no significant violations of Lorentz symmetry.

13.
J Magn Reson ; 245: 110-5, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25033240

RESUMEN

In this paper we demonstrate the use of Earth's field NMR (EF NMR) combined with a pre-polarising permanent magnet for measuring fast fluid velocities. This time of flight measurement protocol has a considerable history in the literature; here we demonstrate that it is quantitative when employing the Earth's magnetic field for signal detection. NMR signal intensities are measured as a function of flow rate (0-1m/s) and separation distance between the permanent magnet and the EF NMR signal detection. These data are quantitatively described by a flow model, ultimately featuring no free parameters, that accounts for NMR signal modulation due to residence time inside the pre-polarising magnet, between the pre-polarising magnet and the detection RF coil and inside the detection coil respectively. The methodology is subsequently demonstrated with a metallic pipe in the pre-polarising region.

14.
Phys Rev Lett ; 95(4): 040404, 2005 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-16090785

RESUMEN

We present the first results from a rotating Michelson-Morley experiment that uses two orthogonally orientated cryogenic sapphire resonator oscillators operating in whispering gallery modes near 10 GHz. The experiment is used to test for violations of Lorentz invariance in the framework of the photon sector of the standard model extension (SME), as well as the isotropy term of the Robertson-Mansouri-Sexl (RMS) framework. In the SME we set a new bound on the previously unmeasured kappa(ZZ)(e-) component of 2.1(5.7) x 10(-14), and set more stringent bounds by up to a factor of 7 on seven other components. In the RMS a more stringent bound of -0.9(2.0) x 10(-10) on the isotropy parameter, P(MM) = delta-beta + 1 / 2 is set, which is more than a factor of 7 improvement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA