Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gastroenterology ; 149(2): 481-92.e7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25917787

RESUMEN

BACKGROUND & AIMS: Sustained activation of the cytosolic calcium concentration induces injury to pancreatic acinar cells and necrosis. The calcium release-activated calcium modulator ORAI1 is the most abundant Ca(2+) entry channel in pancreatic acinar cells; it sustains calcium overload in mice exposed to toxins that induce pancreatitis. We investigated the roles of ORAI1 in pancreatic acinar cell injury and the development of acute pancreatitis in mice. METHODS: Mouse and human acinar cells, as well as HEK 293 cells transfected to express human ORAI1 with human stromal interaction molecule 1, were hyperstimulated or incubated with human bile acid, thapsigargin, or cyclopiazonic acid to induce calcium entry. GSK-7975A or CM_128 were added to some cells, which were analyzed by confocal and video microscopy and patch clamp recordings. Acute pancreatitis was induced in C57BL/6J mice by ductal injection of taurolithocholic acid 3-sulfate or intravenous' administration of cerulein or ethanol and palmitoleic acid. Some mice then were given GSK-7975A or CM_128, which inhibit ORAI1, at different time points to assess local and systemic effects. RESULTS: GSK-7975A and CM_128 each separately inhibited toxin-induced activation of ORAI1 and/or activation of Ca(2+) currents after Ca(2+) release, in a concentration-dependent manner, in mouse and human pancreatic acinar cells (inhibition >90% of the levels observed in control cells). The ORAI1 inhibitors also prevented activation of the necrotic cell death pathway in mouse and human pancreatic acinar cells. GSK-7975A and CM_128 each inhibited all local and systemic features of acute pancreatitis in all 3 models, in dose- and time-dependent manners. The agents were significantly more effective, in a range of parameters, when given at 1 vs 6 hours after induction of pancreatitis. CONCLUSIONS: Cytosolic calcium overload, mediated via ORAI1, contributes to the pathogenesis of acute pancreatitis. ORAI1 inhibitors might be developed for the treatment of patients with pancreatitis.


Asunto(s)
Células Acinares/efectos de los fármacos , Benzamidas/farmacología , Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Calcio/metabolismo , Pancreatitis/tratamiento farmacológico , Pirazoles/farmacología , Células Acinares/citología , Enfermedad Aguda , Animales , Ácidos y Sales Biliares/toxicidad , Calcio/toxicidad , Células Cultivadas , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Indoles/toxicidad , Ratones , Ratones Endogámicos C57BL , Proteína ORAI1 , Pancreatitis/inducido químicamente , Pancreatitis/metabolismo , Tapsigargina/toxicidad , Factores de Tiempo , Resultado del Tratamiento
2.
Function (Oxf) ; 5(4)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38984998

RESUMEN

Acute pancreatitis (AP) is a life-threatening inflammatory disease with no specific therapy. Excessive cytoplasmic Ca2+ elevation and intracellular ATP depletion are responsible for the initiation of AP. Inhibition of Ca2+ release-activated Ca2+ (CRAC) channels has been proposed as a potential treatment, and currently, a novel selective CRAC channel inhibitor CM4620 (Auxora, CalciMedica) is in Phase 2b human trials. While CM4620 is on track to become the first effective treatment for AP, it does not produce complete protection in animal models. Recently, an alternative approach has suggested reducing ATP depletion with a natural carbohydrate galactose. Here, we have investigated the possibility of using the smallest effective concentration of CM4620 in combination with galactose. Protective effects of CM4620, in the range of 1-100 n m, have been studied against necrosis induced by bile acids, palmitoleic acid, or l-asparaginase. CM4620 markedly protected against necrosis induced by bile acids or asparaginase starting from 50 n m and palmitoleic acid starting from 1 n m. Combining CM4620 and galactose (1 m m) significantly reduced the extent of necrosis to near-control levels. In the palmitoleic acid-alcohol-induced experimental mouse model of AP, CM4620 at a concentration of 0.1 mg/kg alone significantly reduced edema, necrosis, inflammation, and the total histopathological score. A combination of 0.1 mg/kg CM4620 with galactose (100 m m) significantly reduced further necrosis, inflammation, and histopathological score. Our data show that CM4620 can be used at much lower concentrations than reported previously, reducing potential side effects. The novel combination of CM4620 with galactose synergistically targets complementary pathological mechanisms of AP.


Asunto(s)
Galactosa , Pancreatitis , Galactosa/farmacología , Animales , Pancreatitis/tratamiento farmacológico , Pancreatitis/patología , Ratones , Bloqueadores de los Canales de Calcio/farmacología , Cinacalcet/farmacología , Cinacalcet/uso terapéutico , Humanos , Masculino , Ácidos y Sales Biliares/metabolismo , Modelos Animales de Enfermedad , Necrosis/tratamiento farmacológico , Enfermedad Aguda , Ácidos Grasos Monoinsaturados
3.
J Neurotrauma ; 36(7): 996-1007, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30351197

RESUMEN

Store-operated Ca2+ entry (SOCE) mediated by calcium release-activated calcium (CRAC) channels contributes to calcium signaling. The resulting intracellular calcium increases activate calcineurin, which in turn activates immune transcription factor nuclear factor of activated T cells (NFAT). Microglia contain CRAC channels, but little is known whether these channels play a role in acute brain insults. We studied a novel CRAC channel inhibitor to explore the therapeutic potential of this compound in microglia-mediated injury. Cultured microglial BV2 cells were activated by Toll-like receptor agonists or IFNγ. Some cultures were treated with a novel CRAC channel inhibitor (CM-EX-137). Western blots revealed the presence of CRAC channel proteins STIM1 and Orai1 in BV2 cells. CM-EX-137 decreased nitric oxide (NO) release and inducible nitric oxide synthase (iNOS) expression in activated microglia and reduced agonist-induced intracellular calcium accumulation in microglia, while suppressing inflammatory transcription factors nuclear factor kappa B (NF-κB) and nuclear factor of activated T cells (NFAT). Male C57/BL6 mice exposed to experimental brain trauma and treated with CM-EX-137 had decreased lesion size, brain hemorrhage, and improved neurological deficits with decreased microglial activation, iNOS and Orai1 and STIM1 levels. We suggest a novel anti-inflammatory approach for managing acute brain injury. Our observations also shed light on new calcium signaling pathways not described previously in brain injury models.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Calcio/metabolismo , Microglía/efectos de los fármacos , Animales , Encéfalo/metabolismo , Señalización del Calcio/fisiología , Línea Celular , Inflamación/metabolismo , Interferón gamma/farmacología , Masculino , Ratones , Microglía/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA