Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 23(19): 11345-11354, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-33960990

RESUMEN

We explore the cryogenic kinetics of N2 adsorption to Ta4+ and the infrared signatures of [Ta4(N2)m]+ complexes, m = 1-5. This is accomplished by N2 exposure of isolated ions within a cryogenic ion trap. We find stepwise addition of numerous N2 molecules to the Ta4+ cluster. Interestingly, the infrared signatures of the [Ta4(N2)1]+ and [Ta4(N2)2]+ products are special: there are no NN stretching bands. This is consistent with cleavage of the first two adsorbed dinitrogen molecules. DFT calculations reveal intermediates and barriers along reaction paths of N2 cleavage in support of these experimental findings. We indicate the identified multidimensional path of N2 cleavage as an across edge-above surface (AEAS) mechanism: initially end-on coordinated N2 bends towards a neighboring Ta-atom which yields a second intermediate, with a µ2 bonded N2 across an edge of the Ta4+ tetrahedron core. Further rearrangement above a Ta-Ta-Ta surface of the Ta4+ tetrahedron results in a µ3 bonded N2 ligand. This intermediate relaxes swiftly by ultimate NN cleavage unfolding into the final dinitrido motif. Submerged activation barriers below the entrance channel confirm spontaneous cleavage of the first two dinitrogen molecules (-59 and -33 kJ mol-1, respectively), while cleavage of the third N2 ligand is kinetically hindered (+55 kJ mol-1). We recognize that substoichiometric N2 exposure allows for spontaneous activation by Ta4+, while higher N2 exposure causes self-poisoning.

2.
J Phys Chem A ; 122(17): 4357-4365, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29630381

RESUMEN

We performed a comprehensive gas-phase experimental and quantum-chemical study of the binding properties of molecular oxygen to iron and manganese porphyrin anions. Temperature-dependent ion-molecule reaction kinetics as probed in a Fourier-transform ion-cyclotron resonance mass spectrometer reveal that molecular oxygen is bound by, respectively, 40.8 ± 1.4 and 67.4 ± 2.2 kJ mol-1 to the FeII or MnII centers of isolated tetra(4-sulfonatophenyl)metalloporphyrin tetraanions. In contrast, FeIII and MnIII trianion homologues were found to be much less reactive-indicating an upper bound to their dioxygen binding energies of 34 kJ mol-1. We modeled the corresponding O2 adsorbates at the density functional theory and CASPT2 levels. These quantum-chemical calculations verified the stronger O2 binding on the FeII or MnII centers and suggested that O2 binds as a superoxide anion.

3.
J Phys Chem Lett ; 9(4): 914-918, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29406747

RESUMEN

We present the cryo IR-PD spectra of the coadsorbed [Ru8(H2)1(N2)4]+ and [Ru8(N2)4(H2)1]+ species differing in the adsorption sequence of H2 and N2, which we record via application of tandem cryo ion trapping. We observe strong evidence for dissociative H2 adsorption, and the spectra reveal differences in the Ru-H stretching region, which we assign to distal and proximal hydrogen atom locations on the Ru8+ cluster, their migration likely hindered by preloaded nitrogen molecules and unaffected by subsequent N2 adsorption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA