Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 573(7773): 256-260, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31477908

RESUMEN

Mediterranean climates are characterized by strong seasonal contrasts between dry summers and wet winters. Changes in winter rainfall are critical for regional socioeconomic development, but are difficult to simulate accurately1 and reconstruct on Quaternary timescales. This is partly because regional hydroclimate records that cover multiple glacial-interglacial cycles2,3 with different orbital geometries, global ice volume and atmospheric greenhouse gas concentrations are scarce. Moreover, the underlying mechanisms of change and their persistence remain unexplored. Here we show that, over the past 1.36 million years, wet winters in the northcentral Mediterranean tend to occur with high contrasts in local, seasonal insolation and a vigorous African summer monsoon. Our proxy time series from Lake Ohrid on the Balkan Peninsula, together with a 784,000-year transient climate model hindcast, suggest that increased sea surface temperatures amplify local cyclone development and refuel North Atlantic low-pressure systems that enter the Mediterranean during phases of low continental ice volume and high concentrations of atmospheric greenhouse gases. A comparison with modern reanalysis data shows that current drivers of the amount of rainfall in the Mediterranean share some similarities to those that drive the reconstructed increases in precipitation. Our data cover multiple insolation maxima and are therefore an important benchmark for testing climate model performance.


Asunto(s)
Clima , Lluvia , Estaciones del Año , África , Región Mediterránea , Modelos Teóricos
2.
Mol Phylogenet Evol ; 185: 107813, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37187366

RESUMEN

Extinction rates are increasing unabatedly but resources available for conservation action are limited. Therefore, some conservationists are pushing for ecology- and evolution-based conservation choices, prioritizing taxa with phylogenetic and trait-based originality. Extinction of original taxa may result in a disproportionate loss of evolutionary innovations and potentially prevent transformative changes in living systems. Here, we generated historical DNA data from an almost 120-year-old syntype of the enigmatic sessile snail Helicostoa sinensis from the Three Gorges region of the Yangtze River (PR China), using a next-generation sequencing protocol developed for ancient DNA. In a broader phylogenetic context, we assessed the phylogenetic and trait-based originality of this enigmatic taxon to solve the century-old puzzle of sessility in freshwater gastropods. Our multi-locus data confirm the phylogenetic and trait-based originality of H. sinensis. It is an ultra-rare, subfamily-level taxon (Helicostoinae stat. nov.) within the family Bithyniidae, which exhibits the evolutionary innovation of sessility. While we conservatively classify H. sinensis as "Critically Endangered", there is mounting evidence of the biological annihilation of this endemic species. Although rapidly rising extinction rates in invertebrates are increasingly recognized, the potential loss of originality in these "little things that run the world" has received little attention. We therefore call for comprehensive surveys of originality in invertebrates, particularly from extreme environments such as rapids of large rivers, as a basis for urgently needed ecology- and evolution-based conservation decisions.


Asunto(s)
Agua Dulce , Ríos , Animales , Filogenia , ADN/genética , Caracoles/genética
3.
Proc Biol Sci ; 289(1968): 20212057, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35105242

RESUMEN

Unravelling the drivers of species diversification through geological time is of crucial importance for our understanding of long-term evolutionary processes. Numerous studies have proposed different sets of biotic and abiotic controls of speciation and extinction rates, but typically they were inferred for a single, long geological time frame. However, whether the impact of biotic and abiotic controls on diversification changes over time is poorly understood. Here, we use a large fossil dataset, a multivariate birth-death model and a comprehensive set of biotic and abiotic predictors, including a new index to quantify tectonic complexity, to estimate the drivers of diversification for European freshwater gastropods over the past 100 Myr. The effects of these factors on origination and extinction are estimated across the entire time frame as well as within sequential time windows of 20 Myr each. Our results find support for temporal heterogeneity in the factors associated with changes in diversification rates. While the factors impacting speciation and extinction rates vary considerably over time, diversity-dependence and topography are consistently important. Our study highlights that a high level of heterogeneity in diversification rates is best captured by incorporating time-varying effects of biotic and abiotic factors.


Asunto(s)
Gastrópodos , Animales , Biodiversidad , Extinción Biológica , Fósiles , Agua Dulce , Especiación Genética , Filogenia
4.
Mol Phylogenet Evol ; 155: 107004, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33157207

RESUMEN

The complex geological and climatic processes that have shaped the Indo-Australian Archipelago since the Cenozoic likely also gave rise to its species-rich biota. Strictly freshwater organisms might be particularly suitable for understanding the influence of these abiotic factors on their biogeography in such a insular setting as their distribution may reflect past abiotic events at large and small geographical scales. We here investigate the historical biogeography of the Miratestinae, a subfamily of Planorbidae. These freshwater gastropods are widely distributed in the eastern IAA from Australia, New Guinea, the Moluccas, and Sulawesi to the Philippines. The first comprehensive molecular phylogeny of the Miratestinae was inferred based on two mitochondrial and two nuclear genetic markers using maximum likelihood and Bayesian inference. Four species delimitation methods were applied to identify molecular operational taxonomic units (MOTUs). Divergence times were inferred using an uncorrelated lognormal relaxed-clock model by applying a taxon- and marker-specific substitution rate. Ancestral geographic ranges were estimated based on the dated phylogeny using BioGeoBEARS. The species delimitation revealed a total of 23 MOTUs, 16 of which might represent species new to science. The BioGeoBEARS analyses suggest an Australian origin for the Miratestinae at c. 22 Ma and identified jump dispersal to be the main process of colonization. The first colonization events from Australia to the IAA occurred in the Middle-Late Miocene (12-13 Ma), whereas intra-island diversification took mainly place since the Late Miocene-Pliocene. Colonization and diversification events remarkably coincide with major geologic events that shaped the geography of the region. The increasing availability of landmasses along the Sahul Shelf likely promoted stepping-stone dispersal to New Guinea, Sulawesi and the Philippines as early as the islands emerged. Major geological and climatic events such as the amalgamation of the island Sulawesi, the regional aridification in Australia or the uplift of massive mountain ranges in New Guinea likely played a considerable role for intra-island diversification.


Asunto(s)
Agua Dulce , Filogeografía , Caracoles/clasificación , Animales , Australia , Teorema de Bayes , Indonesia , Nueva Guinea , Filipinas , Filogenia , Caracoles/genética , Especificidad de la Especie , Factores de Tiempo
5.
Syst Biol ; 69(5): 944-961, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32061133

RESUMEN

The Viviparidae, commonly known as River Snails, is a dominant group of freshwater snails with a nearly worldwide distribution that reaches its highest taxonomic and morphological diversity in Southeast Asia. The rich fossil record is indicative of a probable Middle Jurassic origin on the Laurasian supercontinent where the group started to diversify during the Cretaceous. However, it remains uncertain when and how the biodiversity hotspot in Southeast Asia was formed. Here, we used a comprehensive genetic data set containing both mitochondrial and nuclear markers and comprising species representing 24 out of 28 genera from throughout the range of the family. To reconstruct the spatiotemporal evolution of viviparids on a global scale, we reconstructed a fossil-calibrated phylogeny. We further assessed the roles of cladogenetic and anagenetic events in range evolution. Finally, we reconstructed the evolution of shell features by estimating ancestral character states to assess whether the appearance of sculptured shell morphologies was driven by major habitat shifts. The molecular phylogeny supports the monophyly of the three subfamilies, the Bellamyinae, Lioplacinae, and Viviparinae, but challenges the currently accepted genus-level classification in several cases. The almost global distribution of River Snails has been influenced both by comparatively ancient vicariance and more recent founder events. In Southeast Asia, Miocene dispersal was a main factor in shaping the modern species distributions. A recurrent theme across different viviparid taxa is that many species living in lentic waters exhibit sculptured shells, whereas only one strongly sculptured species is known from lotic environments. We show that such shell sculpture is habitat-dependent and indeed evolved several times independently in lentic River Snails. Considerably high transition rates between shell types in lentic habitats probably caused the co-occurrence of morphologically distinct shell types in several lakes. In contrast, directional evolution toward smooth shells in lotic habitats, as identified in the present analyses, explains why sculptured shells are rarely found in these habitats. However, the specific factors that promoted changes in shell morphology require further work. [biogeographical analyses; fossil-calibrated phylogeny; fossil-constrained analyses; Southeast Asia; stochastic character mapping.].


Asunto(s)
Distribución Animal , Biodiversidad , Ecosistema , Caracoles/anatomía & histología , Caracoles/clasificación , Exoesqueleto/anatomía & histología , Animales , Evolución Biológica
6.
Mol Phylogenet Evol ; 148: 106816, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32289448

RESUMEN

Invertebrates are exceptionally diverse, but many are in decline because of anthropogenic changes to their habitat. This situation is particularly problematic for taxa that are not well monitored or taxonomically poorly understood, because the lack of knowledge hampers conservation. Despite their important functional role in freshwater ecosystems, African bivalves of the family Unionidae remain poorly studied compared to their highly threatened relatives in Europe, the U.S.A. and Canada. To resolve relationships and to study diversification dynamics in space and time, we performed time-calibrated phylogenetic studies and biogeographical modeling on the unionids from the East African Rift System and surroundings, including representatives of all currently recognized Afrotropical genera except for Brazzaea (and Unio from southern Africa). Our analyses indicate that all sampled Afrotropical unionids belong to the tribe Coelaturini (subfamily Parreysiinae), as does the genus Moncetia from Lake Tanganyika, which is currently attributed to the family Iridinidae. Colonization of Africa from Eurasia by Parreysiinae occurred ~17 Ma ago, and the subsequent diversification of Coelaturini in Africa continued at a steady pace, although net diversification decreased over time as more niches and ecoregions became occupied. Clades in Coelaturini largely reflect drainage basins, with the oldest lineages and highest regional diversity occurring in Lake Tanganyika, followed by the Congo Basin watershed in general. The species assemblage of Lake Tanganyika reflects multiple independent events of colonization and intralacustrine diversification since the Late Miocene or Early Pliocene. The clades of other regions, including that containing the species from Lake Malawi, are comparatively young. Biogeographical analyses indicate that the colonization history was mainly driven by cladogenesis in sympatry, whereas few anagenetic events contributed to the modern distribution of Coelaturini. Ancestral range estimations demonstrate that Coelaturini originated in the Victoria and/or Tanganyika ecoregions, and that the Congo Basin played an essential role in the colonization of Africa by Coelaturini.


Asunto(s)
Biodiversidad , Ecosistema , Agua Dulce , Unionidae/fisiología , África Oriental , Animales , Teorema de Bayes , Calibración , Fósiles , Lagos , Filogenia , Filogeografía , Especificidad de la Especie
7.
J Evol Biol ; 31(12): 1969-1975, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30113099

RESUMEN

Due to the ubiquity and high dispersal capacity of unicellular eukaryotes, their often extraordinary diversity found in isolated and long-lived ecosystems such as ancient lakes is typically attributed to multiple colonization events rather than to in situ speciation. However, respective evolutionary studies are very scarce and the often high number of species flocks in ancient lakes across multicellular taxa raises the question whether unicellular species, such as diatoms, may radiate as well. Here, we use an integrative approach that includes molecular data from benthic diatom species of the genus Aneumastus endemic to ancient Lake Ohrid, fossil data obtained from the sediment record of a recent deep-drilling project and biogeographical information to test if this group, indeed, constitutes a species flock. Molecular-clock and phylogenetic analyses indicate a young monophyletic group of several endemic species. Molecular, fossil and biogeographical data strongly suggest a rapid intralacustrine diversification, which was possibly triggered by the emergence of novel habitats. This finding is the first evidence for a species flock in diatoms and suggests that in situ speciation is also a relevant evolutionary process for unicellular eukaryotes in isolated ecosystems.


Asunto(s)
Diatomeas/genética , Diatomeas/fisiología , Evolución Molecular , Agua Dulce , Variación Genética , Filogenia , Fósiles , Factores de Tiempo
8.
BMC Evol Biol ; 16(1): 273, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27978815

RESUMEN

BACKGROUND: Ancient Lake Ohrid, located on the Albania-Macedonia border, is the most biodiverse freshwater lake in Europe. However, the processes that gave rise to its extraordinary endemic biodiversity, particularly in the species-rich gastropods, are still poorly understood. A suitable model taxon to study speciation processes in Lake Ohrid is the pulmonate snail genus Acroloxus, which comprises two morphologically distinct and ecologically (vertically) separated endemic species. Using a multilocus phylogenetic framework of Acroloxus limpets from the Euro-Mediterranean subregion, together with molecular-clock and phylogeographic analyses of Ohrid taxa, we aimed to infer their geographic origin and the timing of colonization as well as the role of geography and ecology in intra-lacustrine diversification. RESULTS: In contrast to most other endemic invertebrate groups in Lake Ohrid, the phylogenetic relationships of the endemic Ohrid Acroloxus species indicate that the Balkan region probably did not serve as their ancestral area. The inferred monophyly and estimated divergence times further suggest that these freshwater limpets colonized the lake only once and that the onset of intra-lacustrine diversification coincides with the time when the lake reached deep-water conditions ca 1.3 Mya. However, the difference in vertical distribution of these two ecologically distinct species is not reflected in the phylogeographic pattern observed. Instead, western and eastern populations are genetically more distinct, suggesting a horizontal structure. CONCLUSIONS: We conclude that both geography and ecology have played a role in the intra-lacustrine speciation process. Given the distinct morphology (sculptured vs. smooth shell) and ecology (littoral vs. sublittoral), and the timing of intra-lacustrine diversification inferred, we propose that the onset of deep-water conditions initially triggered ecological speciation. Subsequent geographic processes then gave rise to the phylogeographic patterns observed today. However, the generally weak genetic differentiation observed suggests incipient speciation, which might be explained by the comparatively young age of the lake system and thus the relatively recent onset of intra-lacustrine diversification.


Asunto(s)
Biodiversidad , Ecosistema , Filogeografía , Caracoles , Animales , ADN Mitocondrial , Europa (Continente) , Especiación Genética , Lagos , Modelos Biológicos , Filogenia , Análisis de Secuencia de ADN , Caracoles/genética
9.
Proc Natl Acad Sci U S A ; 110(23): 9391-6, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23696661

RESUMEN

The Hawaiian Islands provide the venue of one of nature's grand experiments in evolution. Here, we present morphological, behavioral, genetic, and geologic data from a young subterranean insect lineage in lava tube caves on Hawai'i Island. The Oliarus polyphemus species complex has the potential to become a model for studying rapid speciation by stochastic events. All species in this lineage live in extremely similar environments but show strong differentiation in behavioral and morphometric characters, which are random with respect to cave age and geographic distribution. Our observation that phenotypic variability within populations decreases with increasing cave age challenges traditional views on founder effects. Furthermore, these cave populations are natural replicates that can be used to test the contradictory hypotheses. Moreover, Hawaiian cave planthoppers exhibit one of the highest speciation rates among animals and, thus, radically shift our perception on the evolutionary potential of obligate cavernicoles.


Asunto(s)
Evolución Biológica , Cuevas , Efecto Fundador , Especiación Genética , Variación Genética , Hemípteros/genética , Fenotipo , Comunicación Animal , Animales , Secuencia de Bases , Teorema de Bayes , Pesos y Medidas Corporales , ADN Mitocondrial/genética , Evolución Molecular , Femenino , Geografía , Hawaii , Hemípteros/anatomía & histología , Funciones de Verosimilitud , Masculino , Modelos Genéticos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Espectrografía del Sonido , Especificidad de la Especie , Procesos Estocásticos
10.
Syst Biol ; 63(6): 879-901, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25070971

RESUMEN

Tropical Southeast (SE) Asia harbors extraordinary species richness and in its entirety comprises four of the Earth's 34 biodiversity hotspots. Here, we examine the assembly of the SE Asian biota through time and space. We conduct meta-analyses of geological, climatic, and biological (including 61 phylogenetic) data sets to test which areas have been the sources of long-term biological diversity in SE Asia, particularly in the pre-Miocene, Miocene, and Plio-Pleistocene, and whether the respective biota have been dominated by in situ diversification, immigration and/or emigration, or equilibrium dynamics. We identify Borneo and Indochina, in particular, as major "evolutionary hotspots" for a diverse range of fauna and flora. Although most of the region's biodiversity is a result of both the accumulation of immigrants and in situ diversification, within-area diversification and subsequent emigration have been the predominant signals characterizing Indochina and Borneo's biota since at least the early Miocene. In contrast, colonization events are comparatively rare from younger volcanically active emergent islands such as Java, which show increased levels of immigration events. Few dispersal events were observed across the major biogeographic barrier of Wallace's Line. Accelerated efforts to conserve Borneo's flora and fauna in particular, currently housing the highest levels of SE Asian plant and mammal species richness, are critically required.


Asunto(s)
Biodiversidad , Evolución Biológica , Distribución Animal , Animales , Asia Sudoriental , Borneo , Especiación Genética , Fenómenos Geológicos , Filogenia , Dispersión de las Plantas , Plantas/clasificación
11.
Biol Lett ; 11(7)2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26202427

RESUMEN

Lake Baikal is the deepest, oldest and most speciose ancient lake in the world. The lake is characterized by high levels of molluscan species richness and endemicity, including the limpet family Acroloxidae with 25 endemic species. Members of this group generally inhabit the littoral zone, but have been recently found in the abyssal zone at hydrothermal vents and oil-seeps. Here, we use mitochondrial and nuclear data to provide a first molecular phylogeny of the Lake Baikal limpet radiation, and to date the beginning of intra-lacustrine diversification. Divergence time estimates suggest a considerably younger age for the species flock compared with lake age estimates, and the beginning of extensive diversification is possibly related to rapid deepening and cooling during rifting. Phylogenetic relationships and divergence time estimates do not clearly indicate when exactly the abyssal was colonized but suggest a timeframe coincident with the formation of the abyssal in the northern basin (Middle to Late Pleistocene).


Asunto(s)
Gastrópodos/genética , Animales , Evolución Biológica , Fósiles , Gastrópodos/clasificación , Respiraderos Hidrotermales , Lagos , Filogenia , Análisis de Secuencia de ARN , Siberia
12.
BMC Evol Biol ; 14: 94, 2014 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-24886257

RESUMEN

BACKGROUND: The Malili Lakes system in central Sulawesi (Indonesia) is a hotspot of freshwater biodiversity in the Wallacea, characterized by endemic species flocks like the sailfin silversides (Teleostei: Atherinomorpha: Telmatherinidae) radiation. Phylogenetic reconstructions of these freshwater fishes have previously revealed two Lake Matano Telmatherina lineages (sharpfins and roundfins) forming an ancient monophyletic group, which is however masked by introgressive hybridization of sharpfins with riverine populations. The present study uses mitochondrial data, newly included taxa, and different external calibration points, to estimate the age of speciation and hybridization processes, and to test for phylogeographic relationships between Kalyptatherina from ancient islands off New Guinea, Marosatherina from SW Sulawesi, and the Malili Lakes flock. RESULTS: Contrary to previous expectations, Kalyptatherina is the closest relative to the Malili Lakes Telmatherinidae, and Marosatherina is the sister to this clade. Palaeogeographic reconstructions of Sulawesi suggest that the closer relationship of the Malili Lakes radiation to Kalyptatherina might be explained by a 'terrane-rafting' scenario, while proto-Marosatherina might have colonized Sulawesi by marine dispersal. The most plausible analysis conducted here implies an age of c. 1.9 My for the onset of divergence between the two major clades endemic to Lake Matano. Diversification within both lineages is apparently considerably more recent (c. 1.0 My); stream haplotypes present in the sharpfins are of even more recent origin (c. 0.4 My). CONCLUSIONS: Sulawesi's Telmatherinidae have most likely originated in the Sahul Shelf area, have possibly reached the island by both, marine dispersal and island/terrane-rafting, and have colonized the Malili Lakes system from rivers. Estimates for the split between the epibenthic sharpfins and the predominantly pelagic to benthopelagic roundfins in Lake Matano widely coincide with geological age estimates of this rift lake. Diversification within both clades clearly predates hybridization events with stream populations. For Lake Matano, these results support a scenario of initial benthic-pelagic divergence after colonization of the lake by riverine populations, followed by rapid radiation within both clades within the last 1 My. Secondary hybridization of stream populations with the sharpfins occurred more recently, and has thus most likely not contributed to the initial divergence of this benthic species flock.


Asunto(s)
Peces/clasificación , Peces/genética , Lagos , Animales , Biodiversidad , Especiación Genética , Hibridación Genética , Indonesia , Nueva Guinea , Filogeografía
13.
Syst Biol ; 62(3): 398-410, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23391942

RESUMEN

Understanding factors driving diversity across biodiversity hotspots is critical for formulating conservation priorities in the face of ongoing and escalating environmental deterioration. While biodiversity hotspots encompass a small fraction of Earth's land surface, more than half the world's plants and two-thirds of terrestrial vertebrate species are endemic to these hotspots. Tropical Southeast (SE) Asia displays extraordinary species richness, encompassing four biodiversity hotspots, though disentangling multiple potential drivers of species richness is confounded by the region's dynamic geological and climatic history. Here, we use multilocus molecular genetic data from dense multispecies sampling of freshwater fishes across three biodiversity hotspots, to test the effect of Quaternary climate change and resulting drainage rearrangements on aquatic faunal diversification. While Cenozoic geological processes have clearly shaped evolutionary history in SE Asian halfbeak fishes, we show that paleo-drainage re-arrangements resulting from Quaternary climate change played a significant role in the spatiotemporal evolution of lowland aquatic taxa, and provide priorities for conservation efforts.


Asunto(s)
Beloniformes/genética , Cambio Climático , Ecosistema , Evolución Molecular , Especiación Genética , Animales , Asia Sudoriental , Beloniformes/clasificación , Biodiversidad , Evolución Biológica , Conservación de los Recursos Naturales , ADN/análisis , Agua Dulce , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Filogenia , Reacción en Cadena de la Polimerasa
14.
BMC Ecol Evol ; 24(1): 42, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589809

RESUMEN

BACKGROUND: Species flocks in ancient lakes, and particularly those arising from adaptive radiation, make up the bulk of overall taxonomic and morphological diversity in these insular ecosystems. For these mostly young species assemblages, classical mitochondrial barcoding markers have so far been key to disentangle interspecific relationships. However, with the rise and further development of next-generation sequencing (NGS) methods and mapping tools, genome-wide data have become an increasingly important source of information even for non-model groups. RESULTS: Here, we provide, for the first time, a comprehensive mitogenome dataset of freshwater gastropods endemic to Sulawesi and thus of an ancient lake invertebrate species flock in general. We applied low-coverage whole-genome sequencing for a total of 78 individuals including 27 out of the 28 Tylomelania morphospecies from the Malili lake system as well as selected representatives from Lake Poso and adjacent catchments. Our aim was to assess whether mitogenomes considerably contribute to the phylogenetic resolution within this young species flock. Interestingly, we identified a high number of variable and parsimony-informative sites across the other 'non-traditional' mitochondrial loci. However, although the overall support was very high, the topology obtained was largely congruent with previously published single-locus phylogenies. Several clades remained unresolved and a large number of species was recovered polyphyletic, indicative of both rapid diversification and mitochondrial introgression. CONCLUSIONS: This once again illustrates that, despite the higher number of characters available, mitogenomes behave like a single locus and thus can only make a limited contribution to resolving species boundaries, particularly when introgression events are involved.


Asunto(s)
Gastrópodos , Genoma Mitocondrial , Humanos , Animales , Filogenia , Genoma Mitocondrial/genética , Gastrópodos/genética , Ecosistema , Lagos
15.
Mol Phylogenet Evol ; 63(1): 82-96, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22209861

RESUMEN

Atyid freshwater shrimps are globally distributed and form an important part of freshwater ecosystems, particularly in the tropics and subtropics. Despite their widespread distribution and ecological importance, their phylogenetic relationships are largely unresolved. Here we present the first comprehensive molecular phylogeny of the Atyidae investigating the evolutionary relationships among 32 of the 42 genera using mitochondrial and nuclear markers. Our data indicate that the established classification of the Atyidae is in need of substantial taxonomic revision at all taxonomic levels. We suggest a new suprageneric systematization of atyids and discuss problematic issues at the generic level, particularly in the most speciose genus, Caridina. Molecular clock based divergence time estimates for atyids vary widely, but invariably support the assumption that atyids are an ancient freshwater lineage with an origin in the mid-Cretaceous at the very latest. Atyid distribution patterns are the result of instances of both long-distance dispersal and vicariance, depending largely on the reproductive mode of taxa. From an evolutionary perspective, the high frequency of independent origin of both a complete (landlocked) freshwater life cycle and a cave-dwelling mode of life is remarkable and unparalleled among crustaceans.


Asunto(s)
Evolución Biológica , Decápodos/clasificación , Filogenia , Animales , Teorema de Bayes , Cuevas , Núcleo Celular/genética , ADN Mitocondrial/genética , Decápodos/genética , Agua Dulce , Análisis de Secuencia de ADN
16.
Zookeys ; 1085: 1-9, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35210901

RESUMEN

The distribution of the five Erhaia (Gastropoda, Truncatelloidea, Amnicolidae) species that are diagnosed by both morphological and molecular data is combined with several records of less completely diagnosed nominal Erhaia species. The resulting distribution pattern is summarized in a map and is discussed herein. Erhaianorbui sp. nov. is described from Bhutan on the basis of shell morphology and two mitochondrial DNA barcoding markers. A molecular phylogeny is presented for the five Erhaia species for which molecular data are available, three of which form a separate clade and are from Bhutan.

17.
Mol Phylogenet Evol ; 54(2): 395-404, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19647086

RESUMEN

Angel sharks of the genus Squatina represent a group comprising 22 extant benthic species inhabiting continental shelves and upper slopes. In the present study, a comprehensive phylogenetic reconstruction of 17 Squatina species based on two mitochondrial markers (COI and 16S rRNA) is provided. The phylogenetic reconstructions are used to test biogeographic patterns. In addition, a molecular clock analysis is conducted to estimate divergence times of the emerged clades. All analyses show Squatina to be monophyletic. Four geographic clades are recognized, of which the Europe-North Africa-Asia clade is probably a result of the Tethys Sea closure. A second sister group relationship emerged in the analyses, including S. californica (eastern North Pacific) and S. dumeril (western North Atlantic), probably related to the rise of the Panamanian isthmus. The molecular clock analysis show that both lineage divergences coincide with the estimated time of these two geological events.


Asunto(s)
Evolución Molecular , Filogenia , Tiburones/genética , Animales , ADN Mitocondrial/genética , Fósiles , Geografía , Alineación de Secuencia , Análisis de Secuencia de ADN , Tiburones/clasificación
18.
Sci Adv ; 6(40)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32998898

RESUMEN

The scarcity of high-resolution empirical data directly tracking diversity over time limits our understanding of speciation and extinction dynamics and the drivers of rate changes. Here, we analyze a continuous species-level fossil record of endemic diatoms from ancient Lake Ohrid, along with environmental and climate indicator time series since lake formation 1.36 million years (Ma) ago. We show that speciation and extinction rates nearly simultaneously decreased in the environmentally dynamic phase after ecosystem formation and stabilized after deep-water conditions established in Lake Ohrid. As the lake deepens, we also see a switch in the macroevolutionary trade-off, resulting in a transition from a volatile assemblage of short-lived endemic species to a stable community of long-lived species. Our results emphasize the importance of the interplay between environmental/climate change, ecosystem stability, and environmental limits to diversity for diversification processes. The study also provides a new understanding of evolutionary dynamics in long-lived ecosystems.


Asunto(s)
Evolución Biológica , Ecosistema , Biodiversidad , Cambio Climático , Fósiles , Lagos
19.
Mitochondrial DNA B Resour ; 4(2): 3229-3231, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33365931

RESUMEN

Here, we present the first near-complete mitogenome of a member of the freshwater gastropod family Paludomidae, Pseudocleopatra dartevellei. This Congo River species is of particular importance because the sister to the Lake Tanganyika radiation is supposed to be a paludomid riverine species. We used ancient DNA (aDNA) techniques including single-stranded DNA library preparation in order to assemble the mitogenome from historical museum material collected in 1937. The mitogenome was 15,368 bp long and showed typical characteristics as identified in other freshwater gastropods. The present phylogeny shows a closer relationship between Pseudocleoptra dartevellei and another non-Tanganyikan species, Cleopatra johnstoni.

20.
Ecol Evol ; 9(18): 10816-10827, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31632651

RESUMEN

Ecrobia is a genus of small brackish-water mud snails with an amphi-Atlantic distribution. Interestingly, the species occurring in the northwestern Atlantic, Ecrobia truncata, is more closely related to the Pontocaspian taxa, Ecrobia grimmi and Ecrobia maritima, than to the species occurring in the northeastern Atlantic and Mediterranean Sea. At least three colonization scenarios may account for this peculiar biogeographical pattern: (1) a recent human-mediated dispersal, (2) a historical transatlantic interchange, and (3) a historical transpolar interchange. To test these three scenarios, we used five operational criteria-time of species divergence, first appearance in the fossil record, dispersal limitation as well as environmental filtering and biotic interactions along the potential migration routes. Specifically, we inferred a time-calibrated molecular phylogeny for Ecrobia and reconstructed a paleogeographical map of the Arctic Ocean at 2.5 million years ago (Mya). Based on the five operational criteria, scenarios 1 and 2 can likely be rejected. In contrast, all criteria support scenario 3 (historical transpolar interchange). It is therefore suggested that a bird-mediated and/or ocean current-mediated faunal interchange via the Arctic Ocean occurred during the Late Pliocene or Early Pleistocene. This dispersal was likely facilitated by reduced distances between the Eurasian and North American/Greenland landmasses, marine introgressions, and/or a stepping-stone system of brackish-water habitats in northern Siberia, as well as a lack of competition along the migration route. As for the direction of dispersal, the scientific data presented are not conclusive. However, there is clearly more support for the scenario of dispersal from the Pontocaspian Basin to North America than vice versa. This is the first study providing evidence for a natural faunal exchange between the Pontocaspian Basin and North America via the Arctic Ocean.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA