Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(1): 174-185, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36564464

RESUMEN

The kinase LCK and CD4/CD8 co-receptors are crucial components of the T cell antigen receptor (TCR) signaling machinery, leading to key T cell fate decisions. Despite decades of research, the roles of CD4-LCK and CD8-LCK interactions in TCR triggering in vivo remain unknown. In this study, we created animal models expressing endogenous levels of modified LCK to resolve whether and how co-receptor-bound LCK drives TCR signaling. We demonstrated that the role of LCK depends on the co-receptor to which it is bound. The CD8-bound LCK is largely dispensable for antiviral and antitumor activity of cytotoxic T cells in mice; however, it facilitates CD8+ T cell responses to suboptimal antigens in a kinase-dependent manner. By contrast, the CD4-bound LCK is required for efficient development and function of helper T cells via a kinase-independent stabilization of surface CD4. Overall, our findings reveal the role of co-receptor-bound LCK in T cell biology, show that CD4- and CD8-bound LCK drive T cell development and effector immune responses using qualitatively different mechanisms and identify the co-receptor-LCK interactions as promising targets for immunomodulation.


Asunto(s)
Proteína Tirosina Quinasa p56(lck) Específica de Linfocito , Linfocitos T Citotóxicos , Ratones , Animales , Linfocitos T Citotóxicos/metabolismo , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Antígenos CD4 , Transducción de Señal , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos CD8/metabolismo
2.
Nat Immunol ; 23(11): 1644-1652, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36271145

RESUMEN

Interleukin-17A (IL-17A) is a key mediator of protective immunity to yeast and bacterial infections but also drives the pathogenesis of several autoimmune diseases, such as psoriasis or psoriatic arthritis. Here we show that the tetra-transmembrane protein CMTM4 is a subunit of the IL-17 receptor (IL-17R). CMTM4 constitutively associated with IL-17R subunit C to mediate its stability, glycosylation and plasma membrane localization. Both mouse and human cell lines deficient in CMTM4 were largely unresponsive to IL-17A, due to their inability to assemble the IL-17R signaling complex. Accordingly, CMTM4-deficient mice had a severe defect in the recruitment of immune cells following IL-17A administration and were largely resistant to experimental psoriasis, but not to experimental autoimmune encephalomyelitis. Collectively, our data identified CMTM4 as an essential component of IL-17R and a potential therapeutic target for treating IL-17-mediated autoimmune diseases.


Asunto(s)
Artritis Psoriásica , Encefalomielitis Autoinmune Experimental , Psoriasis , Humanos , Ratones , Animales , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Interleucina-17/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Proteínas con Dominio MARVEL/genética
3.
Nat Immunol ; 20(11): 1481-1493, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31611699

RESUMEN

Self-non-self discrimination is central to T cell-mediated immunity. The kinetic proofreading model can explain T cell antigen receptor (TCR) ligand discrimination; however, the rate-limiting steps have not been identified. Here, we show that tyrosine phosphorylation of the T cell adapter protein LAT at position Y132 is a critical kinetic bottleneck for ligand discrimination. LAT phosphorylation at Y132, mediated by the kinase ZAP-70, leads to the recruitment and activation of phospholipase C-γ1 (PLC-γ1), an important effector molecule for T cell activation. The slow phosphorylation of Y132, relative to other phosphosites on LAT, is governed by a preceding glycine residue (G131) but can be accelerated by substituting this glycine with aspartate or glutamate. Acceleration of Y132 phosphorylation increases the speed and magnitude of PLC-γ1 activation and enhances T cell sensitivity to weaker stimuli, including weak agonists and self-peptides. These observations suggest that the slow phosphorylation of Y132 acts as a proofreading step to facilitate T cell ligand discrimination.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Activación de Linfocitos , Proteínas de la Membrana/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Femenino , Ligandos , Masculino , Proteínas de la Membrana/inmunología , Ratones , Fosfolipasa C gamma/metabolismo , Fosforilación/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/metabolismo , Tirosina/metabolismo , Proteína Tirosina Quinasa ZAP-70/metabolismo
4.
Nat Immunol ; 19(7): 733-741, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29915297

RESUMEN

T cell-antigen receptor (TCR) signaling requires the sequential activities of the kinases Lck and Zap70. Upon TCR stimulation, Lck phosphorylates the TCR, thus leading to the recruitment, phosphorylation, and activation of Zap70. Lck binds and stabilizes phosho-Zap70 by using its SH2 domain, and Zap70 phosphorylates the critical adaptors LAT and SLP76, which coordinate downstream signaling. It is unclear whether phosphorylation of these adaptors occurs through passive diffusion or active recruitment. We report the discovery of a conserved proline-rich motif in LAT that mediates efficient LAT phosphorylation. Lck associates with this motif via its SH3 domain, and with phospho-Zap70 via its SH2 domain, thereby acting as a molecular bridge that facilitates the colocalization of Zap70 and LAT. Elimination of this proline-rich motif compromises TCR signaling and T cell development. These results demonstrate the remarkable multifunctionality of Lck, wherein each of its domains has evolved to orchestrate a distinct step in TCR signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Tirosina Quinasa ZAP-70/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Secuencias de Aminoácidos , Animales , Células HEK293 , Humanos , Células Jurkat , Proteínas de la Membrana/química , Ratones , Ratones Endogámicos C57BL , Fosforilación , Prolina/análisis , Receptores de Antígenos de Linfocitos T/metabolismo , Timo/inmunología
5.
Cell ; 159(2): 333-45, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25284152

RESUMEN

In the thymus, high-affinity, self-reactive thymocytes are eliminated from the pool of developing T cells, generating central tolerance. Here, we investigate how developing T cells measure self-antigen affinity. We show that very few CD4 or CD8 coreceptor molecules are coupled with the signal-initiating kinase, Lck. To initiate signaling, an antigen-engaged T cell receptor (TCR) scans multiple coreceptor molecules to find one that is coupled to Lck; this is the first and rate-limiting step in a kinetic proofreading chain of events that eventually leads to TCR triggering and negative selection. MHCII-restricted TCRs require a shorter antigen dwell time (0.2 s) to initiate negative selection compared to MHCI-restricted TCRs (0.9 s) because more CD4 coreceptors are Lck-loaded compared to CD8. We generated a model (Lck come&stay/signal duration) that accurately predicts the observed differences in antigen dwell-time thresholds used by MHCI- and MHCII-restricted thymocytes to initiate negative selection and generate self-tolerance.


Asunto(s)
Autoantígenos/inmunología , Tolerancia Inmunológica , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Cinética , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Cadenas de Markov , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/metabolismo , Timocitos/citología , Timocitos/inmunología
6.
Trends Immunol ; 44(11): 890-901, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37827864

RESUMEN

The therapeutic potential of interleukin (IL)-2 in cancer treatment has been known for decades, yet its widespread adoption in clinical practice remains limited. Recently, chimeric proteins of an anti-PD-1 antibody and suboptimal IL-2 variants were shown to stimulate potent antitumor and antiviral immunity by inducing unique effector CD8+ T cells in mice. A similar subset of cytotoxic T cells is induced by depletion of regulatory T cells (Tregs), suggesting IL-2 sequestration as a major mechanism through which regulatory T cells suppress activated CD8+ T cells. Here, we present our view of how IL-2-based biologicals can boost the antitumor response at a cellular level, and propose that the role of Tregs following such treatments may have been previously overestimated.


Asunto(s)
Linfocitos T CD8-positivos , Interleucina-2 , Ratones , Animales , Interleucina-2/uso terapéutico , Interleucina-2/metabolismo , Inmunoterapia , Linfocitos T Citotóxicos , Linfocitos T Reguladores , Fenotipo
7.
EMBO Rep ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877170

RESUMEN

T cells are pivotal in the adaptive immune defense, necessitating a delicate balance between robust response against infections and self-tolerance. Their activation involves intricate cross-talk among signaling pathways triggered by the T-cell antigen receptors (TCR) and co-stimulatory or inhibitory receptors. The molecular regulation of these complex signaling networks is still incompletely understood. Here, we identify the adaptor protein ABIN1 as a component of the signaling complexes of GITR and OX40 co-stimulation receptors. T cells lacking ABIN1 are hyper-responsive ex vivo, exhibit enhanced responses to cognate infections, and superior ability to induce experimental autoimmune diabetes in mice. ABIN1 negatively regulates p38 kinase activation and late NF-κB target genes. P38 is at least partially responsible for the upregulation of the key effector proteins IFNG and GZMB in ABIN1-deficient T cells after TCR stimulation. Our findings reveal the intricate role of ABIN1 in T-cell regulation.

8.
EMBO J ; 39(17): e104202, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32696476

RESUMEN

IL-17 mediates immune protection from fungi and bacteria, as well as it promotes autoimmune pathologies. However, the regulation of the signal transduction from the IL-17 receptor (IL-17R) remained elusive. We developed a novel mass spectrometry-based approach to identify components of the IL-17R complex followed by analysis of their roles using reverse genetics. Besides the identification of linear ubiquitin chain assembly complex (LUBAC) as an important signal transducing component of IL-17R, we established that IL-17 signaling is regulated by a robust negative feedback loop mediated by TBK1 and IKKε. These kinases terminate IL-17 signaling by phosphorylating the adaptor ACT1 leading to the release of the essential ubiquitin ligase TRAF6 from the complex. NEMO recruits both kinases to the IL-17R complex, documenting that NEMO has an unprecedented negative function in IL-17 signaling, distinct from its role in NF-κB activation. Our study provides a comprehensive view of the molecular events of the IL-17 signal transduction and its regulation.


Asunto(s)
Retroalimentación Fisiológica , Receptores de Interleucina-17/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células HEK293 , Células HeLa , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Interleucina-17/genética
9.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34893856

RESUMEN

Domestic sheep and their wild relatives harbor substantial genetic variants that can form the backbone of molecular breeding, but their genome landscapes remain understudied. Here, we present a comprehensive genome resource for wild ovine species, landraces and improved breeds of domestic sheep, comprising high-coverage (∼16.10×) whole genomes of 810 samples from 7 wild species and 158 diverse domestic populations. We detected, in total, ∼121.2 million single nucleotide polymorphisms, ∼61 million of which are novel. Some display significant (P < 0.001) differences in frequency between wild and domestic species, or are private to continent-wide or individual sheep populations. Retained or introgressed wild gene variants in domestic populations have contributed to local adaptation, such as the variation in the HBB associated with plateau adaptation. We identified novel and previously reported targets of selection on morphological and agronomic traits such as stature, horn, tail configuration, and wool fineness. We explored the genetic basis of wool fineness and unveiled a novel mutation (chr25: T7,068,586C) in the 3'-UTR of IRF2BP2 as plausible causal variant for fleece fiber diameter. We reconstructed prehistorical migrations from the Near Eastern domestication center to South-and-Southeast Asia and found two main waves of migrations across the Eurasian Steppe and the Iranian Plateau in the Early and Late Bronze Ages. Our findings refine our understanding of genome variation as shaped by continental migrations, introgression, adaptation, and selection of sheep.


Asunto(s)
Genoma , Oveja Doméstica , Animales , Asia , Europa (Continente) , Variación Genética , Irán , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Ovinos/genética , Oveja Doméstica/genética
10.
J Cell Sci ; 134(16)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34423835

RESUMEN

Components of the intraflagellar transport (IFT) system that regulates the assembly of the primary cilium are co-opted by the non-ciliated T cell to orchestrate polarized endosome recycling and to sustain signaling during immune synapse formation. Here, we investigated the potential role of Bardet-Biedl syndrome 1 protein (BBS1), an essential core component of the BBS complex that cooperates with the IFT system in ciliary protein trafficking, in the assembly of the T cell synapse. We demonstrated that BBS1 allows for centrosome polarization towards the immune synapse. This function is achieved through the clearance of centrosomal F-actin and its positive regulator WASH1 (also known as WASHC1), a process that we demonstrated to be dependent on the proteasome. We show that BBS1 regulates this process by coupling the 19S proteasome regulatory subunit to the microtubule motor dynein for its transport to the centrosome. Our data identify the ciliopathy-related protein BBS1 as a new player in T cell synapse assembly that functions upstream of the IFT system to set the stage for polarized vesicular trafficking and sustained signaling. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Síndrome de Bardet-Biedl , Cilios , Síndrome de Bardet-Biedl/genética , Polaridad Celular , Endosomas , Humanos , Proteínas Asociadas a Microtúbulos/genética , Sinapsis , Linfocitos T
11.
EMBO Rep ; 22(2): e50785, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33426789

RESUMEN

Bardet-Biedl Syndrome (BBS) is a pleiotropic genetic disease caused by the dysfunction of primary cilia. The immune system of patients with ciliopathies has not been investigated. However, there are multiple indications that the impairment of the processes typically associated with cilia may have influence on the hematopoietic compartment and immunity. In this study, we analyze clinical data of BBS patients and corresponding mouse models carrying mutations in Bbs4 or Bbs18. We find that BBS patients have a higher prevalence of certain autoimmune diseases. Both BBS patients and animal models have altered red blood cell and platelet compartments, as well as elevated white blood cell levels. Some of the hematopoietic system alterations are associated with BBS-induced obesity. Moreover, we observe that the development and homeostasis of B cells in mice is regulated by the transport complex BBSome, whose dysfunction is a common cause of BBS. The BBSome limits canonical WNT signaling and increases CXCL12 levels in bone marrow stromal cells. Taken together, our study reveals a connection between a ciliopathy and dysregulated immune and hematopoietic systems.


Asunto(s)
Enfermedades Autoinmunes , Síndrome de Bardet-Biedl , Hematopoyesis , Animales , Síndrome de Bardet-Biedl/complicaciones , Síndrome de Bardet-Biedl/genética , Cilios , Modelos Animales de Enfermedad , Hematopoyesis/genética , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Mutación
12.
J Immunol ; 206(9): 2109-2121, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33858960

RESUMEN

Ag-inexperienced memory-like T (AIMT) cells are functionally unique T cells, representing one of the two largest subsets of murine CD8+ T cells. However, differences between laboratory inbred strains, insufficient data from germ-free mice, a complete lack of data from feral mice, and an unclear relationship between AIMT cells formation during aging represent major barriers for better understanding of their biology. We performed a thorough characterization of AIMT cells from mice of different genetic background, age, and hygienic status by flow cytometry and multiomics approaches, including analyses of gene expression, TCR repertoire, and microbial colonization. Our data showed that AIMT cells are steadily present in mice, independent of their genetic background and hygienic status. Despite differences in their gene expression profiles, young and aged AIMT cells originate from identical clones. We identified that CD122 discriminates two major subsets of AIMT cells in a strain-independent manner. Whereas thymic CD122LOW AIMT cells (innate memory) prevail only in young animals with high thymic IL-4 production, peripheral CD122HIGH AIMT cells (virtual memory) dominate in aged mice. Cohousing with feral mice changed the bacterial colonization of laboratory strains but had only minimal effects on the CD8+ T cell compartment, including AIMT cells.


Asunto(s)
Envejecimiento/genética , Antígenos/genética , Memoria Inmunológica/genética , Linfocitos T/inmunología , Envejecimiento/inmunología , Animales , Antígenos/inmunología , Evolución Clonal , Inestabilidad Genómica , Memoria Inmunológica/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo
13.
Mol Biol Evol ; 38(3): 838-855, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32941615

RESUMEN

How animals, particularly livestock, adapt to various climates and environments over short evolutionary time is of fundamental biological interest. Further, understanding the genetic mechanisms of adaptation in indigenous livestock populations is important for designing appropriate breeding programs to cope with the impacts of changing climate. Here, we conducted a comprehensive genomic analysis of diversity, interspecies introgression, and climate-mediated selective signatures in a global sample of sheep and their wild relatives. By examining 600K and 50K genome-wide single nucleotide polymorphism data from 3,447 samples representing 111 domestic sheep populations and 403 samples from all their seven wild relatives (argali, Asiatic mouflon, European mouflon, urial, snow sheep, bighorn, and thinhorn sheep), coupled with 88 whole-genome sequences, we detected clear signals of common introgression from wild relatives into sympatric domestic populations, thereby increasing their genomic diversities. The introgressions provided beneficial genetic variants in native populations, which were significantly associated with local climatic adaptation. We observed common introgression signals of alleles in olfactory-related genes (e.g., ADCY3 and TRPV1) and the PADI gene family including in particular PADI2, which is associated with antibacterial innate immunity. Further analyses of whole-genome sequences showed that the introgressed alleles in a specific region of PADI2 (chr2: 248,302,667-248,306,614) correlate with resistance to pneumonia. We conclude that wild introgression enhanced climatic adaptation and resistance to pneumonia in sheep. This has enabled them to adapt to varying climatic and environmental conditions after domestication.


Asunto(s)
Adaptación Biológica/genética , Resistencia a la Enfermedad/genética , Introgresión Genética , Ovinos/genética , Animales , Evolución Biológica , Cambio Climático , Variación Genética , Filogeografía , Neumonía/inmunología , Ovinos/inmunología
14.
EMBO J ; 37(14)2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29752423

RESUMEN

Virtual memory T cells are foreign antigen-inexperienced T cells that have acquired memory-like phenotype and constitute 10-20% of all peripheral CD8+ T cells in mice. Their origin, biological roles, and relationship to naïve and foreign antigen-experienced memory T cells are incompletely understood. By analyzing T-cell receptor repertoires and using retrogenic monoclonal T-cell populations, we demonstrate that the virtual memory T-cell formation is a so far unappreciated cell fate decision checkpoint. We describe two molecular mechanisms driving the formation of virtual memory T cells. First, virtual memory T cells originate exclusively from strongly self-reactive T cells. Second, the stoichiometry of the CD8 interaction with Lck regulates the size of the virtual memory T-cell compartment via modulating the self-reactivity of individual T cells. Although virtual memory T cells descend from the highly self-reactive clones and acquire a partial memory program, they are not more potent in inducing experimental autoimmune diabetes than naïve T cells. These data underline the importance of the variable level of self-reactivity in polyclonal T cells for the generation of functional T-cell diversity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diferenciación Celular , Memoria Inmunológica , Receptores de Antígenos de Linfocitos T/análisis , Animales , Homeostasis , Ratones
15.
Eur J Immunol ; 51(3): 512-530, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33501647

RESUMEN

Regulatory T cells (Tregs) play a key role in the peripheral self-tolerance and preventing autoimmunity. While classical CD4+ Foxp3+ Tregs are well established, their CD8+ counterparts are still controversial in many aspects including their phenotypic identity and their mechanisms of suppression. Because of these controversies and because of only a limited number of studies documenting the immunoregulatory function of CD8+ Tregs in vivo, the concept of CD8+ Tregs is still not unanimously accepted. We propose that any T-cell subset considered as true regulatory must be distinguishable from other cell types and must suppress in vivo immune responses via a known mechanism. In this article, we revisit the concept of CD8+ Tregs by focusing on the characterization of individual CD8+ T-cell subsets with proposed regulatory capacity separately. Therefore, we review the phenotype and function of CD8+ FOXP3+ T cells, CD8+ CD122+ T cells, CD8+ CD28low/- T cells, CD8+ CD45RClow T cells, T cells expressing CD8αα homodimer and Qa-1-restricted CD8+ T cells to show whether there is sufficient evidence to establish these subsets as bona fide Tregs. Based on the intrinsic ability of CD8+ Treg subsets to promote immune tolerance in animal models, we elaborate on their potential use in clinics.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antígenos CD28/inmunología , Humanos , Tolerancia Inmunológica/inmunología , Fenotipo , Subgrupos de Linfocitos T/inmunología
16.
J Biol Chem ; 295(42): 14279-14290, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32759308

RESUMEN

Bardet-Biedl syndrome (BBS) is a pleiotropic ciliopathy caused by dysfunction of primary cilia. More than half of BBS patients carry mutations in one of eight genes encoding for subunits of a protein complex, the BBSome, which mediates trafficking of ciliary cargoes. In this study, we elucidated the mechanisms of the BBSome assembly in living cells and how this process is spatially regulated. We generated a large library of human cell lines deficient in a particular BBSome subunit and expressing another subunit tagged with a fluorescent protein. We analyzed these cell lines utilizing biochemical assays, conventional and expansion microscopy, and quantitative fluorescence microscopy techniques: fluorescence recovery after photobleaching and fluorescence correlation spectroscopy. Our data revealed that the BBSome formation is a sequential process. We show that the pre-BBSome is nucleated by BBS4 and assembled at pericentriolar satellites, followed by the translocation of the BBSome into the ciliary base mediated by BBS1. Our results provide a framework for elucidating how BBS-causative mutations interfere with the biogenesis of the BBSome.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/patología , Sistemas CRISPR-Cas/genética , Línea Celular , Cilios/metabolismo , Citoplasma/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Edición Génica , Humanos , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Mutación , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
17.
Genet Sel Evol ; 52(1): 25, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32408891

RESUMEN

BACKGROUND: In the Neolithic, domestic sheep migrated into Europe and subsequently spread in westerly and northwesterly directions. Reconstruction of these migrations and subsequent genetic events requires a more detailed characterization of the current phylogeographic differentiation. RESULTS: We collected 50 K single nucleotide polymorphism (SNP) profiles of Balkan sheep that are currently found near the major Neolithic point of entry into Europe, and combined these data with published genotypes from southwest-Asian, Mediterranean, central-European and north-European sheep and from Asian and European mouflons. We detected clines, ancestral components and admixture by using variants of common analysis tools: geography-informative supervised principal component analysis (PCA), breed-specific admixture analysis, across-breed [Formula: see text] profiles and phylogenetic analysis of regional pools of breeds. The regional Balkan sheep populations exhibit considerable genetic overlap, but are clearly distinct from the breeds in surrounding regions. The Asian mouflon did not influence the differentiation of the European domestic sheep and is only distantly related to present-day sheep, including those from Iran where the mouflons were sampled. We demonstrate the occurrence, from southeast to northwest Europe, of a continuously increasing ancestral component of up to 20% contributed by the European mouflon, which is assumed to descend from the original Neolithic domesticates. The overall patterns indicate that the Balkan region and Italy served as post-domestication migration hubs, from which wool sheep reached Spain and north Italy with subsequent migrations northwards. The documented dispersal of Tarentine wool sheep during the Roman period may have been part of this process. Our results also reproduce the documented 18th century admixture of Spanish Merino sheep into several central-European breeds. CONCLUSIONS: Our results contribute to a better understanding of the events that have created the present diversity pattern, which is relevant for the management of the genetic resources represented by the European sheep population.


Asunto(s)
Genética de Población/métodos , Polimorfismo de Nucleótido Simple/genética , Ovinos/genética , Animales , Peninsula Balcánica , Cruzamiento/métodos , Domesticación , Pruebas Genéticas/métodos , Variación Genética/genética , Genotipo , Filogenia , Filogeografía/métodos
18.
Hum Mutat ; 40(11): 2068-2087, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31283077

RESUMEN

Bardet-Biedl syndrome (BBS) is a recessive genetic disease causing multiple organ anomalies. Most patients carry mutations in genes encoding for the subunits of the BBSome, an octameric ciliary transport complex, or accessory proteins involved in the BBSome assembly or function. BBS proteins have been extensively studied using in vitro, cellular, and animal models. However, the molecular functions of particular BBS proteins and the etiology of the BBS symptoms are still largely elusive. In this study, we applied a meta-analysis approach to study the genotype-phenotype association in humans using our database of all reported BBS patients. The analysis revealed that the identity of the causative gene and the character of the mutation partially predict the clinical outcome of the disease. Besides their potential use for clinical prognosis, our analysis revealed functional differences of particular BBS genes in humans. Core BBSome subunits BBS2, BBS7, and BBS9 manifest as more critical for the function and development of kidneys than peripheral subunits BBS1, BBS4, and BBS8/TTC8, suggesting that incomplete BBSome retains residual function at least in the kidney.


Asunto(s)
Síndrome de Bardet-Biedl/diagnóstico , Síndrome de Bardet-Biedl/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Fenotipo , Factores de Ribosilacion-ADP/genética , Disfunción Cognitiva/genética , Anomalías Congénitas/genética , Estudios de Asociación Genética/métodos , Humanos , Riñón/anomalías , Enfermedades Renales/congénito , Enfermedades Renales/genética , Mutación , Penetrancia , Proteínas/genética
19.
Eur J Immunol ; 46(8): 1887-901, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27188212

RESUMEN

Mature CD8(+) T cells use a narrow antigen affinity threshold to generate tissue-infiltrating cytotoxic effector T cells and induce autoimmune pathology, but the mechanisms that establish this antigen affinity threshold are poorly understood. Only antigens with affinities above the threshold induce stable contacts with APCs, polarization of a T cell, and asymmetric T-cell division. Previously published data indicate that LFA-1 inside-out signaling might be involved in establishing the antigen affinity threshold. Here, we show that subthreshold antigens weakly activate all major distal TCR signaling pathways. Low-affinity antigens are more dependent on LFA-1 than suprathreshold antigens. Moreover, augmenting the inside-out signaling by hyperactive Rap1 does not increase responses to the subthreshold antigens. Thus, LFA-1 signaling does not contribute to the affinity-based antigen discrimination. However, we found that subthreshold antigens do not induce actin rearrangement toward an APC, mediated by Rho-family GTPases, Cdc42, and Rac. Our data suggest that Rac and Cdc42 contribute to the establishment of the antigen affinity threshold in CD8(+) T cells by enhancing responses to high-affinity antigens, or by reducing the responses to low-affinity antigens.


Asunto(s)
Actinas/metabolismo , Linfocitos T CD8-positivos/inmunología , Antígeno-1 Asociado a Función de Linfocito/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal , Animales , Adhesión Celular , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
20.
Cell Immunol ; 316: 21-31, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28366195

RESUMEN

While autoimmune T cells are present in most individuals, only a minority of the population suffers from an autoimmune disease. To better appreciate the limits of T cell tolerance, we carried out experiments to determine how many autoimmune T cells are required to initiate an experimental autoimmune disease. Variable numbers of autoimmune OT-I T cells were transferred into RIP-OVA mice, which were injected with antigen-loaded DCs in a single footpad; this restricted T cell priming to a few OT-I T cells that are present in the draining popliteal lymph node. Using selective plane illumination microscopy (SPIM) we counted the number of OT-I T cells present in the popliteal lymph node at the time of priming. Analysis of our data suggests that a single autoimmune T cell cannot induce an experimental autoimmune disease, but a "quorum" of 2-5 autoimmune T cells clearly has this capacity.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Autoinmunidad , Linfocitos T CD8-positivos/inmunología , Diabetes Mellitus Experimental/inmunología , Traslado Adoptivo , Animales , Presentación de Antígeno , Linfocitos T CD8-positivos/citología , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Tolerancia Inmunológica , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ratones , Ratones Transgénicos , Ovalbúmina/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA