Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 96(14): e0048822, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35758692

RESUMEN

Species A rotavirus (RVA) vaccines based on live attenuated viruses are used worldwide in humans. The recent establishment of a reverse genetics system for rotoviruses (RVs) has opened the possibility of engineering chimeric viruses expressing heterologous peptides from other viral or microbial species in order to develop polyvalent vaccines. We tested the feasibility of this concept by two approaches. First, we inserted short SARS-CoV-2 spike peptides into the hypervariable region of the simian RV SA11 strain viral protein (VP) 4. Second, we fused the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, or the shorter receptor binding motif (RBM) nested within the RBD, to the C terminus of nonstructural protein (NSP) 3 of the bovine RV RF strain, with or without an intervening Thosea asigna virus 2A (T2A) peptide. Mutating the hypervariable region of SA11 VP4 impeded viral replication, and for these mutants, no cross-reactivity with spike antibodies was detected. To rescue NSP3 mutants, we established a plasmid-based reverse genetics system for the bovine RV RF strain. Except for the RBD mutant that demonstrated a rescue defect, all NSP3 mutants delivered endpoint infectivity titers and exhibited replication kinetics comparable to that of the wild-type virus. In ELISAs, cell lysates of an NSP3 mutant expressing the RBD peptide showed cross-reactivity with a SARS-CoV-2 RBD antibody. 3D bovine gut enteroids were susceptible to infection by all NSP3 mutants, but cross-reactivity with SARS-CoV-2 RBD antibody was only detected for the RBM mutant. The tolerance of large SARS-CoV-2 peptide insertions at the C terminus of NSP3 in the presence of T2A element highlights the potential of this approach for the development of vaccine vectors targeting multiple enteric pathogens simultaneously. IMPORTANCE We explored the use of rotaviruses (RVs) to express heterologous peptides, using SARS-CoV-2 as an example. Small SARS-CoV-2 peptide insertions (<34 amino acids) into the hypervariable region of the viral protein 4 (VP4) of RV SA11 strain resulted in reduced viral titer and replication, demonstrating a limited tolerance for peptide insertions at this site. To test the RV RF strain for its tolerance for peptide insertions, we constructed a reverse genetics system. NSP3 was C-terminally tagged with SARS-CoV-2 spike peptides of up to 193 amino acids in length. With a T2A-separated 193 amino acid tag on NSP3, there was no significant effect on the viral rescue efficiency, endpoint titer, and replication kinetics. Tagged NSP3 elicited cross-reactivity with SARS-CoV-2 spike antibodies in ELISA. We highlight the potential for development of RV vaccine vectors targeting multiple enteric pathogens simultaneously.


Asunto(s)
Genética Inversa , Rotavirus , Glicoproteína de la Espiga del Coronavirus , Desarrollo de Vacunas , Aminoácidos/metabolismo , Animales , Anticuerpos Antivirales/metabolismo , COVID-19/virología , Epítopos/genética , Epítopos/metabolismo , Humanos , Microorganismos Modificados Genéticamente , Rotavirus/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Desarrollo de Vacunas/métodos
2.
J Sleep Res ; 30(6): e13328, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34340251

RESUMEN

The orexin receptor antagonist suvorexant was previously reported to significantly improve total sleep time (TST), by 28 min per night versus placebo after 4 weeks, in a sleep laboratory polysomnography (PSG) study of patients with Alzheimer's disease and insomnia. The study included an exploratory evaluation of a consumer-grade wearable "watch" device for assessing sleep that we report on here. Participants who met diagnostic criteria for both probable Alzheimer's disease dementia and insomnia were randomized to suvorexant 10-20 mg (N = 142) or placebo (N = 143) in a double-blind, 4-week trial. Patients were provided with a consumer-grade wearable watch device (Garmin vívosmart® HR) to be worn continuously. Overnight sleep laboratory PSG was performed on three nights: screening, baseline and Night 29 (last dose). Watch treatment effects were assessed by change-from-baseline in watch TST at Week 4 (average TST per night). We also analysed Night 29 data only, with watch data restricted to the PSG recording time. In the 193 participants included in the Week 4 watch analysis (suvorexant = 97, placebo = 96), the suvorexant-placebo difference in watch TST was 4 min (p = .622). In patients with usable data for both assessments at the baseline and Night 29 PSG (suvorexant = 57, placebo = 50), the watch overestimated TST compared to PSG (e.g., placebo baseline = 412 min for watch and 265 min for PSG) and underestimated change-from-baseline treatment effects: the suvorexant-placebo difference was 20 min for watch TST (p = .405) and 35 min for PSG TST (p = .057). These findings show that the watch was less sensitive than PSG for evaluating treatment effects on TST.


Asunto(s)
Enfermedad de Alzheimer , Trastornos del Inicio y del Mantenimiento del Sueño , Dispositivos Electrónicos Vestibles , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/tratamiento farmacológico , Azepinas , Humanos , Proyectos Piloto , Polisomnografía , Sueño , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/etiología , Triazoles
3.
Alzheimers Dement ; 16(3): 541-551, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31944580

RESUMEN

INTRODUCTION: We evaluated the clinical profile of the orexin receptor antagonist suvorexant for treating insomnia in patients with mild-to-moderate probable Alzheimer's disease (AD) dementia. METHODS: Randomized, double-blind, 4-week trial of suvorexant 10 mg (could be increased to 20 mg based on clinical response) or placebo in patients who met clinical diagnostic criteria for both probable AD dementia and insomnia. Sleep was assessed by overnight polysomnography in a sleep laboratory. The primary endpoint was change-from-baseline in polysomnography-derived total sleep time (TST) at week 4. RESULTS: Of 285 participants randomized (suvorexant, N = 142; placebo, N = 143), 277 (97%) completed the trial (suvorexant, N = 136; placebo, N = 141). At week 4, the model-based least squares mean improvement-from-baseline in TST was 73 minutes for suvorexant and 45 minutes for placebo; (difference = 28 minutes [95% confidence interval 11-45], p < 0.01). Somnolence was reported in 4.2% of suvorexant-treated patients and 1.4% of placebo-treated patients. DISCUSSION: Suvorexant improved TST in patients with probable AD dementia and insomnia.


Asunto(s)
Enfermedad de Alzheimer/psicología , Azepinas/administración & dosificación , Polisomnografía , Fármacos Inductores del Sueño/administración & dosificación , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Sueño/efectos de los fármacos , Triazoles/administración & dosificación , Anciano , Femenino , Humanos , Masculino
4.
J Proteome Res ; 18(7): 2848-2858, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31244210

RESUMEN

In Thailand, diabetes mellitus is the most significant risk factor for melioidosis, a severe disease caused by Burkholderia pseudomallei. In this study, neutrophils isolated from healthy or diabetic subjects were infected with B. thailandensis E555, a variant strain with a B. pseudomallei-like capsular polysaccharide used here as a surrogate micro-organism for B. pseudomallei. At 2 h post-infection, neutrophil proteins were subjected to 4-plex iTRAQ-based comparative proteomic analysis. A total of 341 proteins were identified in two or more samples, of which several proteins involved in oxidative stress and inflammation were enriched in infected diabetic neutrophils. We validated this finding by demonstrating that infected diabetic neutrophils generated significantly elevated levels of pro-inflammatory cytokines TNFα, IL-6, IL-1ß, and IL-17 compared to healthy neutrophils. Our data also revealed that infected neutrophils from healthy or diabetic individuals undergo apoptotic cell death at distinctly different rates, with infected diabetic neutrophils showing a diminished ability to delay apoptosis and an increased likelihood of undergoing a lytic form of cell death, compared to infected neutrophils from healthy individuals. Increased expression of inflammatory proteins by infected neutrophils could contribute to the increased susceptibility to infection and inflammation in diabetic patients in melioidosis-endemic areas.


Asunto(s)
Infecciones por Burkholderia/inmunología , Burkholderia/inmunología , Diabetes Mellitus/patología , Neutrófilos/inmunología , Proteómica , Estudios de Casos y Controles , Muerte Celular , Células Cultivadas , Citocinas/metabolismo , Diabetes Mellitus/microbiología , Humanos , Inflamación/metabolismo , Melioidosis/etiología , Neutrófilos/metabolismo , Neutrófilos/microbiología
5.
Bioorg Med Chem Lett ; 27(6): 1364-1370, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28216403

RESUMEN

In an ongoing effort to explore the use of orexin receptor antagonists for the treatment of insomnia, dual orexin receptor antagonists (DORAs) were structurally modified, resulting in compounds selective for the OX2R subtype and culminating in the discovery of 23, a highly potent, OX2R-selective molecule that exhibited a promising in vivo profile. Further structural modification led to an unexpected restoration of OX1R antagonism. Herein, these changes are discussed and a rationale for selectivity based on computational modeling is proposed.


Asunto(s)
Antagonistas de los Receptores de Orexina/farmacología , Orexinas/antagonistas & inhibidores , Animales , Electroencefalografía , Electromiografía , Estructura Molecular , Antagonistas de los Receptores de Orexina/química , Ratas
6.
Mol Cell Proteomics ; 14(4): 905-16, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25635268

RESUMEN

Burkholderia pseudomallei is an intracellular pathogen and the causative agent of melioidosis, a severe disease of humans and animals. One of the virulence factors critical for early stages of infection is the Burkholderia secretion apparatus (Bsa) Type 3 Secretion System (T3SS), a molecular syringe that injects bacterial proteins, called effectors, into eukaryotic cells where they subvert cellular functions to the benefit of the bacteria. Although the Bsa T3SS itself is known to be important for invasion, intracellular replication, and virulence, only a few genuine effector proteins have been identified and the complete repertoire of proteins secreted by the system has not yet been fully characterized. We constructed a mutant lacking bsaP, a homolog of the T3SS "gatekeeper" family of proteins that exert control over the timing and magnitude of effector protein secretion. Mutants lacking BsaP, or the T3SS translocon protein BipD, were observed to hypersecrete the known Bsa effector protein BopE, providing evidence of their role in post-translational control of the Bsa T3SS and representing key reagents for the identification of its secreted substrates. Isobaric Tags for Relative and Absolute Quantification (iTRAQ), a gel-free quantitative proteomics technique, was used to compare the secreted protein profiles of the Bsa T3SS hypersecreting mutants of B. pseudomallei with the isogenic parent strain and a bsaZ mutant incapable of effector protein secretion. Our study provides one of the most comprehensive core secretomes of B. pseudomallei described to date and identified 26 putative Bsa-dependent secreted proteins that may be considered candidate effectors. Two of these proteins, BprD and BapA, were validated as novel effector proteins secreted by the Bsa T3SS of B. pseudomallei.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderia pseudomallei/metabolismo , Mutación/genética , Proteómica/métodos , Sistemas de Secreción Tipo III/metabolismo , Western Blotting , Epítopos/inmunología , Marcaje Isotópico , Proteínas Recombinantes de Fusión/metabolismo , Reproducibilidad de los Resultados
7.
J Proteome Res ; 15(12): 4675-4685, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27934296

RESUMEN

Intracellular actin-based motility of the melioidosis pathogen Burkholderia pseudomallei requires the bacterial factor BimA. Located at one pole of the bacterium, BimA recruits and polymerizes cellular actin to promote bacterial motility within and between cells. Here, we describe an affinity approach coupled with mass spectrometry to identify cellular proteins recruited to BimA-expressing bacteria under conditions that promote actin polymerization. We identified a group of cellular proteins that are recruited to the B. pseudomallei surface in a BimA-dependent manner, a subset of which were independently validated with specific antisera including the ubiquitous scaffold protein Ras GTPase-activating-like protein (IQGAP1). IQGAP1 integrates several key cellular signaling pathways including those involved in actin dynamics and has been shown to be involved in the adhesion of attaching and effacing Escherichia coli to infected cells and invasion of host cells by Salmonella enterica serovar Typhimurium. Although a direct interaction between BimA and IQGAP1 could not be detected using either conventional pulldown or yeast two hybrid techniques, confocal microscopy revealed that IQGAP1 is recruited to B. pseudomallei actin tails in infected cells, and siRNA-mediated knockdown highlighted a role for this protein in controlling the length and actin density of B. pseudomallei actin tails.


Asunto(s)
Actinas/metabolismo , Burkholderia pseudomallei/química , Movimiento Celular , Proteínas Bacterianas/análisis , Proteínas Bacterianas/fisiología , Burkholderia pseudomallei/citología , Polaridad Celular , Humanos , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/fisiología , Polimerizacion , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas Activadoras de ras GTPasa/fisiología
8.
Bioorg Med Chem Lett ; 25(12): 2488-92, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25981685

RESUMEN

Antagonism of orexin receptors has shown clinical efficacy as a novel paradigm for the treatment of insomnia and related disorders. Herein, molecules related to the dual orexin receptor antagonist filorexant were transformed into compounds that were selective for the OX2R subtype. Judicious selection of the substituents on the pyridine ring and benzamide groups led to 6b; which was highly potent, OX2R selective, and exhibited excellent development properties.


Asunto(s)
Antagonistas de los Receptores de Orexina/química , Receptores de Orexina/química , Piperidinas/química , Triazoles/química , Animales , Perros , Semivida , Ratones , Antagonistas de los Receptores de Orexina/farmacocinética , Antagonistas de los Receptores de Orexina/uso terapéutico , Receptores de Orexina/metabolismo , Piperidinas/farmacocinética , Piperidinas/uso terapéutico , Unión Proteica , Pirimidinas/química , Ratas , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/veterinaria , Relación Estructura-Actividad , Triazoles/farmacocinética , Triazoles/uso terapéutico
9.
BMC Neurosci ; 15: 109, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25242351

RESUMEN

BACKGROUND: The current standard of care for insomnia includes gamma-aminobutyric acid receptor A (GABAA) activators, which promote sleep as well as general central nervous system depression. Dual orexin receptor antagonists (DORAs) represent an alternative mechanism for insomnia treatment that induces somnolence by blocking the wake-promoting effects of orexin neuropeptides. The current study compares the role and interdependence of these two mechanisms on their ability to influence sleep architecture and quantitative electroencephalography (qEEG) spectral profiles across preclinical species. RESULTS: Active-phase dosing of DORA-22 induced consistent effects on sleep architecture in mice, rats, dogs, and rhesus monkeys; attenuation of active wake was accompanied by increases in both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Eszopiclone, a representative GABAA receptor modulator, promoted sleep in rats and rhesus monkeys that was marked by REM sleep suppression, but had inconsistent effects in mice and paradoxically promoted wakefulness in dogs. Active-phase treatment of rats with DORA-12 similarly promoted NREM and REM sleep to magnitudes nearly identical to those seen during normal resting-phase sleep following vehicle treatment, whereas eszopiclone suppressed REM even to levels below those seen during the active phase. The qEEG changes induced by DORA-12 in rats also resembled normal resting-phase patterns, whereas eszopiclone induced changes distinct from normal active- or inactive-phase spectra. Co-dosing experiments, as well as studies in transgenic rats lacking orexin neurons, indicated partial overlap in the mechanism of sleep promotion by orexin and GABA modulation with the exception of the REM suppression exclusive to GABAA receptor modulation. Following REM deprivation in mice, eszopiclone further suppressed REM sleep while DORA-22 facilitated recovery including increased REM sleep. CONCLUSION: DORAs promote NREM and importantly REM sleep that is similar in proportion and magnitude to that seen during the normal resting phase across mammalian animal models. While limited overlap exists between therapeutic mechanisms, orexin signaling does not appear involved in the REM suppression exhibited by GABAA receptor modulators. The ability of DORAs to promote proportional NREM and REM sleep following sleep deprivation suggests that this mechanism may be effective in alleviating recovery from sleep disturbance.


Asunto(s)
Compuestos de Azabiciclo/farmacología , Azepinas/farmacología , Bencimidazoles/farmacología , Moduladores del GABA/farmacología , Hipnóticos y Sedantes/farmacología , Piperazinas/farmacología , Piperidinas/farmacología , Sueño/efectos de los fármacos , Triazoles/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Estudios Cruzados , Perros , Electroencefalografía , Eszopiclona , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Macaca mulatta , Masculino , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuropéptidos/deficiencia , Neuropéptidos/genética , Antagonistas de los Receptores de Orexina , Orexinas , Ratas Sprague-Dawley , Ratas Transgénicas , Sueño/fisiología , Privación de Sueño/tratamiento farmacológico , Privación de Sueño/fisiopatología , Fases del Sueño/efectos de los fármacos , Fases del Sueño/fisiología , Especificidad de la Especie , Vigilia/efectos de los fármacos , Vigilia/fisiología
11.
Bioorg Med Chem Lett ; 24(20): 4884-90, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25248679

RESUMEN

Orexin receptor antagonists have demonstrated clinical utility for the treatment of insomnia. The majority of clinical efforts to date have focused on the development of dual orexin receptor antagonists (DORAs), small molecules that antagonize both the orexin 1 and orexin 2 receptors. Our group has recently disclosed medicinal chemistry efforts to identify highly potent, orally bioavailable selective orexin 2 receptor antagonists (2-SORAs) that possess acceptable profiles for clinical development. Herein we report additional SAR studies within the 'triaryl' amide 2-SORA series focused on improvements in compound stability in acidic media and time-dependent inhibition of CYP3A4. These studies resulted in the discovery of 2,5-disubstituted isonicotinamide 2-SORAs such as compound 24 that demonstrated improved stability and TDI profiles as well as excellent sleep efficacy across species.


Asunto(s)
Descubrimiento de Drogas , Antagonistas de los Receptores de Orexina , Piridinas/farmacología , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Tiazoles/farmacología , Animales , Perros , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Estructura Molecular , Piridinas/síntesis química , Piridinas/química , Ratas , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
12.
Sci Rep ; 14(1): 14964, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942800

RESUMEN

Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of Johne's Disease, a chronic granulomatous enteritis of ruminants. MAP establishes an infection in the host via the small intestine. This requires the bacterium to adhere to, and be internalised by, cells of the intestinal tract. The effector molecules expressed by MAP for this purpose remain to be fully identified and understood. Mammalian cell entry (mce) proteins have been shown to enable other Mycobacterial species to attach to and invade host epithelial cells. Here, we have expressed Mce1A, Mce1D, Mce3C and Mce4A proteins derived from MAP on the surface of a non-invasive Escherichia coli to characterise their role in the initial interaction between MAP and the host. To this end, expression of mce1A was found to significantly increase the ability of the E. coli to attach and survive intracellularly in human monocyte-like THP-1 cells, whereas expression of mce1D was found to significantly increase attachment and invasion of E. coli to bovine epithelial cell-like MDBK cells, implying cell-type specificity. Furthermore, expression of Mce1A and Mce1D on the surface of a previously non-invasive E. coli enhanced the ability of the bacterium to infect 3D bovine basal-out enteroids. Together, our data contributes to our understanding of the effector molecules utilised by MAP in the initial interaction with the host, and may provide potential targets for therapeutic intervention.


Asunto(s)
Proteínas Bacterianas , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Mycobacterium avium subsp. paratuberculosis/metabolismo , Paratuberculosis/microbiología , Animales , Humanos , Bovinos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Adhesión Bacteriana , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Escherichia coli/metabolismo , Línea Celular , Células THP-1
13.
Front Cell Infect Microbiol ; 14: 1416537, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040600

RESUMEN

Infection of ruminants such as cattle with Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease, a disease characterized by chronic inflammation of the small intestine and diarrhoea. Infection with MAP is acquired via the faecal-to-oral route and the pathogen initially invades the epithelial lining of the small intestine. In this study we used an in vitro 3D mouse enteroid model to determine the influence of M cells in infection of the gut epithelia by MAP, in comparison with another bacterial intestinal pathogen of veterinary importance, Salmonella enterica serovar Typhimurium. The differentiation of M cells in the enteroid cultures was induced by stimulation with the cytokine receptor activator of nuclear factor-κB ligand (RANKL), and the effects on MAP and Salmonella uptake and intracellular survival were determined. The presence of M cells in the cultures correlated with increased uptake and intracellular survival of Salmonella, but had no effect on MAP. Interestingly neither pathogen was observed to preferentially accumulate within GP2-positive M cells.


Asunto(s)
Mycobacterium avium subsp. paratuberculosis , Salmonella typhimurium , Animales , Mycobacterium avium subsp. paratuberculosis/fisiología , Salmonella typhimurium/fisiología , Salmonella typhimurium/patogenicidad , Ratones , Paratuberculosis/microbiología , Viabilidad Microbiana , Mucosa Intestinal/microbiología , Bovinos , Células M
14.
BMC Neurosci ; 14: 90, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23981345

RESUMEN

BACKGROUND: Drugs targeting insomnia ideally promote sleep throughout the night, maintain normal sleep architecture, and are devoid of residual effects associated with morning sedation. These features of an ideal compound are not only dependent upon pharmacokinetics, receptor binding kinetics, potency and pharmacodynamic activity, but also upon a compound's mechanism of action. RESULTS: Dual orexin receptor antagonists (DORAs) block the arousal-promoting activity of orexin peptides and, as demonstrated in the current work, exhibit an efficacy signal window dependent upon oscillating levels of endogenous orexin neuropeptide. Sleep efficacy of structurally diverse DORAs in rat and dog was achieved at plasma exposures corresponding to orexin 2 receptor (OX2R) occupancies in the range of 65 to 80%. In rats, the time course of OX2R occupancy was dependent upon receptor binding kinetics and was tightly correlated with the timing of active wake reduction. In rhesus monkeys, direct comparison of DORA-22 with GABA-A modulators at similar sleep-inducing doses revealed that diazepam produced next-day residual sleep and both diazepam and eszopiclone induced next-day cognitive deficits. In stark contrast, DORA-22 did not produce residual effects. Furthermore, DORA-22 evoked only minimal changes in quantitative electroencephalogram (qEEG) activity during the normal resting phase in contrast to GABA-A modulators which induced substantial qEEG changes. CONCLUSION: The higher levels of receptor occupancy necessary for DORA efficacy require a plasma concentration profile sufficient to maintain sleep for the duration of the resting period. DORAs, with a half-life exceeding 8 h in humans, are expected to fulfill this requirement as exposures drop to sub-threshold receptor occupancy levels prior to the wake period, potentially avoiding next-day residual effects at therapeutic doses.


Asunto(s)
Azepinas/farmacocinética , Antagonistas de los Receptores de Orexina , Sueño/efectos de los fármacos , Triazoles/farmacocinética , Animales , Perros , Electroencefalografía , Femenino , Humanos , Inmunoensayo , Péptidos y Proteínas de Señalización Intracelular/líquido cefalorraquídeo , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Neuropéptidos/líquido cefalorraquídeo , Orexinas , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Sueño/fisiología
15.
Nat Sci Sleep ; 15: 593-606, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37551277

RESUMEN

Purpose: Idiopathic hypersomnia is a debilitating neurologic sleep disorder characterized by excessive daytime sleepiness, sleep inertia, and prolonged sleep. Its impact on patients' quality of life and daily functioning has not been fully elucidated. The Real World Idiopathic Hypersomnia Outcomes Study (ARISE) evaluated the daily functioning, relationships, cognition, emotional well-being, and productivity/employment of participants with idiopathic hypersomnia. Patients and Methods: ARISE was a US-based virtual cross-sectional survey comprising multiple patient-reported outcome measures (Functional Outcomes of Sleep Questionnaire, short version [FOSQ-10], Quality of Life in Neurological Disorders [Neuro-QoL] Social Roles and Stigma domains, British Columbia Cognitive Complaints Inventory [BC-CCI], Patient Health Questionnaire [PHQ-9], and the Work Productivity and Activity Impairment Questionnaire: Specific Health Problem [WPAI:SHP]). Participants were adults 21-65 years of age with idiopathic hypersomnia. Data were analyzed for all participants and for subgroups with/without long sleep time (LST; self-reported sleep ≥11 hours in 24 hours). Results: Of 75 participants enrolled, most were female (81.3%) and the mean (SD) age was 34.1 (10.7) years. Participants' scores on the FOSQ-10 (mean [SD] score: 10.7 [2.8]) and the Neuro-QoL Social Roles (43.4 [4.2]) and Stigma (57.3 [5.9]) domains reflected impairments in daily functioning and quality of life. More than half of participants reported moderate to severe cognitive complaints (BC-CCI; 62.7%) and moderate to severe depressive symptoms (PHQ-9; 66.7%). Scores on the WPAI:SHP showed substantial impairments in absenteeism, presenteeism, overall work productivity, and overall regular daily activity (mean percent [SD]: 12.3 [23.6], 47.6 [22.7], 51.4 [24.7], and 64.0 [21.9], respectively). These considerable impairments were found in participants with and without LST. Conclusion: ARISE participants with idiopathic hypersomnia demonstrated poor quality of life and impaired functioning across multiple symptom domains.

16.
Nat Sci Sleep ; 15: 89-101, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937782

RESUMEN

Objective: Idiopathic hypersomnia is a debilitating sleep disorder characterized by excessive daytime sleepiness, sleep inertia, and prolonged sleep duration. The patient burden of idiopathic hypersomnia is poorly understood. The Real World Idiopathic Hypersomnia Outcomes Study (ARISE) evaluated symptoms and treatment effectiveness/satisfaction in participants with idiopathic hypersomnia. Methods: ARISE was a United States-based virtual cross-sectional survey. Participants were adults 21-65 years of age with idiopathic hypersomnia recruited from social media, the Hypersomnia Foundation website, and a patient panel. Self-assessments included the Epworth Sleepiness Scale (ESS), Idiopathic Hypersomnia Severity Scale (IHSS), Treatment Satisfaction Questionnaire for Medication, version II (TSQM-vII), and additional treatment questions. Data were analyzed for all participants and for subgroups with/without long sleep time (LST; ≥11 hours in 24 hours). Results: Of 75 participants enrolled, most were female (81.3%). The mean (SD) age was 34.1 (10.7) years and 49% had LST. Most participants took off-label prescription medications (89.3%) and/or used other measures (93.3%) to manage their symptoms. The mean (SD) ESS score was 14.5 (3.5) and the mean IHSS score was 35.2 (7.6). Treatment satisfaction was low (mean [SD] TSQM-vII score: overall, 61.9 [21.2]; with LST, 57.9 [21.4]; without LST, 66.7 [20.3]), primarily driven by dissatisfaction with treatment effectiveness. The most common classes of prescription medications used were stimulants (61.3%), wake-promoting agents (28.0%), and antidepressants (18.7%); non-prescription measures used to manage symptoms included caffeine (73.3%), planned naps (34.7%), and individual accommodations (32.0%). Conclusion: Overall, participants with idiopathic hypersomnia, with or without LST, had substantial symptom burden despite most of the study population taking off-label medications and using nonprescription measures to manage symptoms.

17.
PLoS One ; 18(2): e0282098, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36821630

RESUMEN

Burkholderia pseudomallei is a facultative intracellular bacterial pathogen that causes melioidosis, a severe invasive disease of humans. We previously reported that the stress-related catecholamine hormone epinephrine enhances motility of B. pseudomallei, transcription of flagellar genes and the production of flagellin. It has been reported that the QseBC two-component sensory system regulates motility and virulence-associated genes in other Gram-negative bacteria in response to stress-related catecholamines, albeit disparities between studies exist. We constructed and whole-genome sequenced a mutant of B. pseudomallei with a deletion spanning the predicted qseBC homologues (bpsl0806 and bpsl0807). The ΔqseBC mutant exhibited significantly reduced swimming and swarming motility and reduced transcription of fliC. It also exhibited a defect in biofilm formation and net intracellular survival in J774A.1 murine macrophage-like cells. While epinephrine enhanced bacterial motility and fliC transcription, no further reduction in these phenotypes was observed with the ΔqseBC mutant in the presence of epinephrine. Plasmid-mediated expression of qseBC suppressed bacterial growth, complicating attempts to trans-complement mutant phenotypes. Our data support a role for QseBC in motility, biofilm formation and net intracellular survival of B. pseudomallei, but indicate that it is not essential for epinephrine-induced motility per se.


Asunto(s)
Burkholderia pseudomallei , Melioidosis , Animales , Humanos , Ratones , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia pseudomallei/metabolismo , Epinefrina/farmacología , Epinefrina/metabolismo , Flagelina/metabolismo
18.
Front Vet Sci ; 9: 921160, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35859809

RESUMEN

Mycobacterium avium subspecies paratuberculosis (MAP) is the etiological agent of Johne's Disease, a chronic enteritis of ruminants prevalent across the world. It is estimated that approximately 50% of UK dairy herds are infected with MAP, but this is likely an underestimate of the true prevalence. Infection can result in reduced milk yield, infertility and premature culling of the animal, leading to significant losses to the farming economy and negatively affecting animal welfare. Understanding the initial interaction between MAP and the host is critical to develop improved diagnostic tools and novel vaccines. Here we describe the characterisation of three different multicellular in vitro models derived from bovine intestinal tissue, and their use for the study of cellular interactions with MAP. In addition to the previously described basal-out 3D bovine enteroids, we have established viable 2D monolayers and 3D apical-out organoids. The apical-out enteroids differ from previously described bovine enteroids as the apical surface is exposed on the exterior surface of the 3D structure, enabling study of host-pathogen interactions at the epithelial surface without the need for microinjection. We have characterised the cell types present in each model system using RT-qPCR to detect predicted cell type-specific gene expression, and confocal microscopy for cell type-specific protein expression. Each model contained the cells present in the original bovine intestinal tissue, confirming they were representative of the bovine gut. Exposure of the three model systems to the K10 reference strain of MAP K10, and a recent Scottish isolate referred to as C49, led to the observation of intracellular bacteria by confocal microscopy. Enumeration of the bacteria by quantification of genome copy number, indicated that K10 was less invasive than C49 at early time points in infection in all model systems. This study shows that bovine enteroid-based models are permissive to infection with MAP and that these models may be useful in investigating early stages of MAP pathogenesis in a physiologically relevant in vitro system, whilst reducing the use of animals in scientific research. Bos taurus: urn:lsid:zoobank.org:act:4C90C4FA-6296-4972-BE6A-5EF578677D64.

19.
Front Cell Infect Microbiol ; 12: 941939, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967844

RESUMEN

Lymphostatin is a virulence factor of enteropathogenic E. coli (EPEC) and non-O157 serogroup enterohaemorrhagic E. coli. Previous studies using whole-cell lysates of EPEC showed that lymphostatin inhibits the mitogen-activated proliferation of bulk human peripheral blood mononuclear cells (PBMCs) and the production of cytokines IL-2, IL-4, IL-5, and IFN-γ. Here, we used highly purified lymphostatin and PBMC-derived T cells to show that lymphostatin inhibits anti-CD3/anti-CD28-activated proliferation of human CD4+ and CD8+ T cells and blocks the synthesis of IL-2, IL-4, IL-10 and IFN-γ without affecting cell viability and in a manner dependent on an N-terminal DTD glycosyltransferase motif. Such inhibition was not observed with T cells activated by phorbol 12-myristate 13-acetate and ionomycin, implying that lymphostatin targets T cell receptor signaling. Analysis of the expression of CD69 indicated that lymphostatin suppresses T cell activation at an early stage and no impacts on apoptosis or necrosis were observed. Flow cytometric analysis of the DNA content of lymphostatin-treated CD4+ and CD8+ T cells showed a concentration- and DTD-dependent accumulation of the cells in the G0/G1 phase of the cell cycle, and corresponding reduction of the percentage of cells in S phase. Consistent with this, we found a marked reduction in the abundance of cyclins D3, E and A and loss of phosphorylated Rb over time in activated T cells from 8 donors treated with lymphostatin. Moreover, the cyclin-dependent kinase (cdk) inhibitor p27kip1, which inhibits progression of the cell cycle at G1 by acting on cyclin E-cdk2 or cyclin D-cdk4 complexes, was found to be accumulated in lymphostatin-treated T cells. Analysis of the abundance of phosphorylated kinases involved in signal transduction found that 30 of 39 were reduced in abundance following lymphostatin treatment of T cells from 5 donors, albeit not significantly so. Our data provide novel insights into the mode of action of lymphostatin on human T lymphocytes.


Asunto(s)
Toxinas Bacterianas , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli , Linfocitos T , Apoptosis , Toxinas Bacterianas/inmunología , Linfocitos T CD8-positivos/inmunología , Puntos de Control del Ciclo Celular/inmunología , División Celular , Proliferación Celular/fisiología , Citocinas/biosíntesis , Citocinas/inmunología , Escherichia coli Enteropatógena/inmunología , Escherichia coli Enteropatógena/patogenicidad , Escherichia coli/inmunología , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/inmunología , Proteínas de Escherichia coli/inmunología , Humanos , Interleucina-2 , Interleucina-4 , Leucocitos Mononucleares/inmunología , Necrosis , Linfocitos T/inmunología , Factores de Virulencia/inmunología
20.
J Bacteriol ; 193(8): 1901-10, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21335455

RESUMEN

Actin-based motility of the melioidosis pathogen Burkholderia pseudomallei requires BimA (Burkholderia intracellular motility A). The mechanism by which BimA mediates actin assembly at the bacterial pole is ill-defined. Toward an understanding of the regions of B. pseudomallei BimA required for intracellular motility and the binding and polymerization of actin, we constructed plasmid-borne bimA variants and glutathione-S-transferase fusion proteins with in-frame deletions of specific motifs. A 13-amino-acid direct repeat and IP7 proline-rich motif were dispensable for actin binding and assembly in vitro, and expression of the mutated proteins in a B. pseudomallei bimA mutant restored actin-based motility in J774.2 murine macrophage-like cells. However, two WASP homology 2 (WH2) domains were found to be required for actin binding, actin assembly, and plaque formation. A tract of five PDASX direct repeats influenced the polymerization of pyrene-actin monomers in vitro and was required for actin-based motility and intercellular spread, but not actin binding. None of the mutations impaired surface expression or polar targeting of BimA. The number of PDASX repeats varied in natural isolates from two to seven. Such repeats acted additively to promote pyrene-actin polymerization in vitro, with stepwise increases in the rate of polymerization as the number of repeats was increased. No differences in the efficiency of actin tail formation could be discerned between strains expressing BimA variants with two, five, or seven PDASX repeats. The data provide valuable new insights into the role of conserved and variable motifs of BimA in actin-based motility and intercellular spread of B. pseudomallei.


Asunto(s)
Actinas/metabolismo , Burkholderia pseudomallei/fisiología , Locomoción , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Secuencias de Aminoácidos , Animales , Línea Celular , Macrófagos/microbiología , Ratones , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA