Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(11): 2650-2663.e6, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37816353

RESUMEN

The accurate selection of neoantigens that bind to class I human leukocyte antigen (HLA) and are recognized by autologous T cells is a crucial step in many cancer immunotherapy pipelines. We reprocessed whole-exome sequencing and RNA sequencing (RNA-seq) data from 120 cancer patients from two external large-scale neoantigen immunogenicity screening assays combined with an in-house dataset of 11 patients and identified 46,017 somatic single-nucleotide variant mutations and 1,781,445 neo-peptides, of which 212 mutations and 178 neo-peptides were immunogenic. Beyond features commonly used for neoantigen prioritization, factors such as the location of neo-peptides within protein HLA presentation hotspots, binding promiscuity, and the role of the mutated gene in oncogenicity were predictive for immunogenicity. The classifiers accurately predicted neoantigen immunogenicity across datasets and improved their ranking by up to 30%. Besides insights into machine learning methods for neoantigen ranking, we have provided homogenized datasets valuable for developing and benchmarking companion algorithms for neoantigen-based immunotherapies.


Asunto(s)
Antígenos de Neoplasias , Neoplasias , Humanos , Antígenos de Neoplasias/genética , Neoplasias/genética , Neoplasias/terapia , Antígenos de Histocompatibilidad Clase I , Aprendizaje Automático , Péptidos , Inmunoterapia/métodos
2.
Mol Microbiol ; 121(5): 1039-1062, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38527857

RESUMEN

The PilZ domain-containing protein, PlzA, is the only known cyclic di-GMP binding protein encoded by all Lyme disease spirochetes. PlzA has been implicated in the regulation of many borrelial processes, but the effector mechanism of PlzA was not previously known. Here, we report that PlzA can bind DNA and RNA and that nucleic acid binding requires c-di-GMP, with the affinity of PlzA for nucleic acids increasing as concentrations of c-di-GMP were increased. A mutant PlzA that is incapable of binding c-di-GMP did not bind to any tested nucleic acids. We also determined that PlzA interacts predominantly with the major groove of DNA and that sequence length and G-C content play a role in DNA binding affinity. PlzA is a dual-domain protein with a PilZ-like N-terminal domain linked to a canonical C-terminal PilZ domain. Dissection of the domains demonstrated that the separated N-terminal domain bound nucleic acids independently of c-di-GMP. The C-terminal domain, which includes the c-di-GMP binding motifs, did not bind nucleic acids under any tested conditions. Our data are supported by computational docking, which predicts that c-di-GMP binding at the C-terminal domain stabilizes the overall protein structure and facilitates PlzA-DNA interactions via residues in the N-terminal domain. Based on our data, we propose that levels of c-di-GMP during the various stages of the enzootic life cycle direct PlzA binding to regulatory targets.


Asunto(s)
Proteínas Bacterianas , Borrelia burgdorferi , GMP Cíclico , Proteínas de Unión al ARN , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Unión Proteica , Dominios Proteicos , ADN Bacteriano/metabolismo , ADN Bacteriano/genética
3.
J Bacteriol ; 205(1): e0039622, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36533911

RESUMEN

Borrelia burgdorferi, the spirochete agent of Lyme disease, has evolved within a consistent infectious cycle between tick and vertebrate hosts. The transmission of the pathogen from tick to vertebrate is characterized by rapid replication and a change in the outer surface protein profile. EbfC, a highly conserved nucleoid-associated protein, binds throughout the borrelial genome, affecting expression of many genes, including the Erp outer surface proteins. In B. burgdorferi, like many other bacterial species, ebfC is cotranscribed with dnaX, an essential component of the DNA polymerase III holoenzyme, which facilitates chromosomal replication. The expression of the dnaX-ebfC operon is tied to the spirochete's replication rate, but the underlying mechanism for this connection was unknown. In this work, we provide evidence that the expression of dnaX-ebfC is controlled by direct interactions of DnaA, the chromosomal replication initiator, and EbfC at the unusually long dnaX-ebfC 5' untranslated region (UTR). Both proteins bind to the 5' UTR DNA, with EbfC also binding to the RNA. The DNA binding of DnaA to this region was similarly impacted by ATP and ADP. In vitro studies characterized DnaA as an activator of dnaX-ebfC and EbfC as an antiactivator. We further found evidence that DnaA may regulate other genes essential for replication. IMPORTANCE The dual life cycle of Borrelia burgdorferi, the causative agent of Lyme disease, is characterized by periods of rapid and slowed replication. The expression patterns of many of the spirochete's virulence factors are impacted by these changes in replication rates. The connection between replication and virulence can be understood at the dnaX-ebfC operon. DnaX is an essential component of the DNA polymerase III holoenzyme, which replicates the chromosome. EbfC is a nucleoid-associated protein that regulates the infection-associated outer surface Erp proteins, as well as other transcripts. The expression of dnaX-ebfC is tied to replication rate, which we demonstrate is mediated by DnaA, the master chromosomal initiator protein and transcription factor, and EbfC.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Garrapatas , Animales , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Proteínas Bacterianas/metabolismo , ADN Polimerasa III/genética , Enfermedad de Lyme/microbiología , Operón , Garrapatas/microbiología , Proteínas de la Membrana/metabolismo , Regulación Bacteriana de la Expresión Génica
4.
J Bacteriol ; 205(4): e0044022, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36920207

RESUMEN

The OspC outer-surface lipoprotein is essential for the Lyme disease spirochete's initial phase of vertebrate infection. Bacteria within the midguts of unfed ticks do not express OspC but produce high levels when ticks begin to ingest blood. Lyme disease spirochetes cease production of OspC within 1 to 2 weeks of vertebrate infection, and bacteria that fail to downregulate OspC are cleared by host antibodies. Thus, tight regulation of OspC levels is critical for survival of Lyme borreliae and, therefore, an attractive target for development of novel treatment strategies. Previous studies determined that a DNA region 5' of the ospC promoter, the ospC operator, is required for control of OspC production. Hypothesizing that the ospC operator may bind a regulatory factor, DNA affinity pulldown was performed and identified binding by the Gac protein. Gac is encoded by the C-terminal domain of the gyrA open reading frame from an internal promoter, ribosome-binding site, and initiation codon. Our analyses determined that Gac exhibits a greater affinity for ospC operator and promoter DNAs than for other tested borrelial sequences. In vitro and in vivo analyses demonstrated that Gac is a transcriptional repressor of ospC. These results constitute a substantial advance to our understanding of the mechanisms by which the Lyme disease spirochete controls production of OspC. IMPORTANCE Borrelia burgdorferi sensu lato requires its surface-exposed OspC protein in order to establish infection in humans and other vertebrate hosts. Bacteria that either do not produce OspC during transmission or fail to repress OspC after infection is established are rapidly cleared by the host. Herein, we identified a borrelial protein, Gac, that exhibits preferential affinity to the ospC promoter and 5' adjacent DNA. A combination of biochemical analyses and investigations of genetically manipulated bacteria demonstrated that Gac is a transcriptional repressor of ospC. This is a substantial advance toward understanding how the Lyme disease spirochete controls production of the essential OspC virulence factor and identifies a novel target for preventative and curative therapies.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Humanos , Borrelia burgdorferi/genética , Virulencia , Enfermedad de Lyme/microbiología , Antígenos Bacterianos/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Factores de Transcripción
5.
J Bacteriol ; 205(2): e0046822, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36719218

RESUMEN

To accelerate genetic studies on the Lyme disease pathogen Borrelia burgdorferi, we developed an enhanced CRISPR interference (CRISPRi) approach for isopropyl-ß-d-thiogalactopyranoside (IPTG)-inducible repression of specific B. burgdorferi genes. The entire system is encoded on a compact 11-kb shuttle vector plasmid that allows for inducible expression of both the sgRNA module and a nontoxic codon-optimized dCas9 protein. We validated this CRISPRi system by targeting the genes encoding OspA and OspB, abundant surface lipoproteins coexpressed by a single operon, and FlaB, the major subunit forming the periplasmic flagella. As in other systems, single guide RNAs (sgRNAs) complementary to the nontemplate strand were consistently effective in gene repression, with 4- to 994-fold reductions in targeted transcript levels and concomitant reductions of protein levels. Furthermore, we showed that ospAB knockdowns could be selectively complemented in trans for OspA expression via the insertion of CRISPRi-resistant, synonymously or nonsynonymously mutated protospacer adjacent motif (PAM*) ospA alleles into a unique site within the CRISPRi plasmid. Together, this establishes CRISPRi PAM* as a robust new genetic tool to simplify the study of B. burgdorferi genes, bypassing the need for gene disruptions by allelic exchange and avoiding rare codon toxicity from the heterologous expression of dCas9. IMPORTANCE Borrelia burgdorferi, the spirochetal bacterium causing Lyme disease, is a tick-borne pathogen of global importance. Here, we expand the genetic toolbox for studying B. burgdorferi physiology and pathogenesis by establishing a single plasmid-based, fully inducible, and nontoxic CRISPR interference (CRISPRi) system for transcriptional silencing of B. burgdorferi genes and operons. We also show that alleles of CRISPRi-targeted genes with mutated protospacer-adjacent motif (PAM*) sites are CRISPRi resistant and can be used for simultaneous in trans gene complementation. The CRISPRi PAM* system will streamline the study of essential Borrelia proteins and accelerate investigations into their structure-function relationships.


Asunto(s)
Borrelia burgdorferi , Antígenos de Superficie/genética , Proteínas de la Membrana Bacteriana Externa/genética , Vacunas Bacterianas , Borrelia burgdorferi/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Codón , Operón
6.
Infect Immun ; 91(3): e0025022, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36853019

RESUMEN

Almost all spirochetes in the genus Borrelia (sensu lato) naturally contain multiple variants of closely related prophages. In the Lyme disease borreliae, these prophages are maintained as circular episomes that are called circular plasmid 32 kb (cp32s). The cp32s of Lyme agents are particularly unique in that they encode two distinct families of lipoproteins, namely, Erp and Rev, that are expressed on the bacterial outer surface during infection of vertebrate hosts. All identified functions of those outer surface proteins involve interactions between the spirochetes and host molecules, as follows: Erp proteins bind plasmin(ogen), laminin, glycosaminoglycans, and/or components of complement and Rev proteins bind fibronectin. Thus, cp32 prophages provide their bacterial hosts with surface proteins that can enhance infection processes, thereby facilitating their own survival. Horizontal transfer via bacteriophage particles increases the spread of beneficial alleles and creates diversity among Erp and Rev proteins.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Animales , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Profagos/genética , Profagos/metabolismo , Secuencia de Bases , Proteínas de la Membrana Bacteriana Externa/genética , Enfermedad de Lyme/microbiología , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Vertebrados/metabolismo , Proteínas Bacterianas/genética
7.
Infect Immun ; 91(3): e0006123, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36853005

RESUMEN

Borrelia mayonii is a newly recognized causative agent of Lyme disease in the Upper Midwestern United States, with distinct clinical presentations compared to classical Lyme disease caused by other Lyme Borrelia species. However, little is known about the B. mayonii genetic determinants required for establishing infection or perpetuating disease in mammals. Extrachromosomal plasmids in Borrelia species often encode proteins necessary for infection and pathogenesis, and spontaneous loss of these plasmids can lead to the identification of virulence determinant genes. Here, we describe infection of Lyme disease-susceptible C3H mice with B. mayonii, and show bacterial dissemination and persistence in peripheral tissues. Loss of endogenous plasmids, including lp28-4, lp25, and lp36 correlated with reduced infectivity in mice. The apparent requirement for lp28-4 during murine infection suggests the presence of a novel virulence determinant, as this plasmid does not encode homologs of any known virulence determinant. We also describe transformation and stable maintenance of a self-replicating shuttle vector in B. mayonii, and show that loss of either lp25 or lp28-4 correlated with increased transformation competency. Finally, we demonstrate that linear plasmids lp25 and lp28-4 each encode functional restriction modification systems with distinct but partially overlapping target modification sequences, which likely accounts for the observed decrease in transformation efficiency when those plasmids are present. Taken together, this study describes a role for endogenous plasmids in mammalian infection and restriction protection in the Lyme disease spirochete Borrelia mayonii.


Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Enfermedad de Lyme , Animales , Ratones , Borrelia burgdorferi/genética , Ratones Endogámicos C3H , Plásmidos/genética , Enfermedad de Lyme/microbiología , Mamíferos
8.
Biochem Biophys Res Commun ; 654: 40-46, 2023 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-36889033

RESUMEN

The Borrelia burgdorferi SpoVG protein has previously been found to be a DNA- and RNA-binding protein. To aid in the elucidation of ligand motifs, affinities for numerous RNAs, ssDNAs, and dsDNAs were measured and compared. The loci used in the study were spoVG, glpFKD, erpAB, bb0242, flaB, and ospAB, with particular focus on the untranslated 5' portion of the mRNAs. Performing binding and competition assays yielded that the 5' end of spoVG mRNA had the highest affinity while the lowest observed affinity was to the 5' end of flaB mRNA. Mutagenesis studies of spoVG RNA and ssDNA sequences suggested that the formation of SpoVG-nucleic acid complexes are not entirely dependent on either sequence or structure. Additionally, exchanging uracil for thymine in ssDNAs did not affect protein-nucleic acid complex formation.


Asunto(s)
Borrelia burgdorferi , ARN , ARN/genética , ARN/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN/genética , ADN/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , ARN Mensajero/metabolismo , Ensayo de Cambio de Movilidad Electroforética
9.
Mol Cell Proteomics ; 20: 100080, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33845167

RESUMEN

Mass spectrometry (MS) is the state-of-the-art methodology for capturing the breadth and depth of the immunopeptidome across human leukocyte antigen (HLA) allotypes and cell types. The majority of studies in the immunopeptidomics field are discovery driven. Hence, data-dependent tandem MS (MS/MS) acquisition (DDA) is widely used, as it generates high-quality references of peptide fingerprints. However, DDA suffers from the stochastic selection of abundant ions that impairs sensitivity and reproducibility. In contrast, in data-independent acquisition (DIA), the systematic fragmentation and acquisition of all fragment ions within given isolation m/z windows yield a comprehensive map for a given sample. However, many DIA approaches commonly require generating comprehensive DDA-based spectrum libraries, which can become impractical for studying noncanonical and personalized neoantigens. Because the amount of HLA peptides eluted from biological samples such as small tissue biopsies is typically not sufficient for acquiring both meaningful DDA data necessary for generating comprehensive spectral libraries and DIA MS measurements, the implementation of DIA in the immunopeptidomics translational research domain has remained limited. We implemented a DIA immunopeptidomics workflow and assessed its sensitivity and accuracy by matching DIA data against libraries with growing complexity-from sample-specific libraries to libraries combining 2 to 40 different immunopeptidomics samples. Analyzing DIA immunopeptidomics data against a complex multi-HLA spectral library resulted in a two-fold increase in peptide identification compared with sample-specific library and in a three-fold increase compared with DDA measurements, yet with no detrimental effect on the specificity. Furthermore, we demonstrated the implementation of DIA for sensitive personalized neoantigen discovery through the analysis of DIA data with predicted MS/MS spectra of clinically relevant HLA ligands. We conclude that a comprehensive multi-HLA library for DIA approach in combination with MS/MS prediction is highly advantageous for clinical immunopeptidomics, especially when low amounts of biological samples are available.


Asunto(s)
Antígenos de Histocompatibilidad , Péptidos , Proteómica/métodos , Simulación por Computador , Biblioteca de Péptidos , Espectrometría de Masas en Tándem
10.
Mol Cell Proteomics ; 20: 100032, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33592498

RESUMEN

CD4+ T cell responses are crucial for inducing and maintaining effective anticancer immunity, and the identification of human leukocyte antigen class II (HLA-II) cancer-specific epitopes is key to the development of potent cancer immunotherapies. In many tumor types, and especially in glioblastoma (GBM), HLA-II complexes are hardly ever naturally expressed. Hence, little is known about immunogenic HLA-II epitopes in GBM. With stable expression of the class II major histocompatibility complex transactivator (CIITA) coupled to a detailed and sensitive mass spectrometry-based immunopeptidomics analysis, we here uncovered a remarkable breadth of the HLA-ligandome in HROG02, HROG17, and RA GBM cell lines. The effect of CIITA expression on the induction of the HLA-II presentation machinery was striking in each of the three cell lines, and it was significantly higher compared with interferon gamma (IFNÉ£) treatment. In total, we identified 16,123 unique HLA-I peptides and 32,690 unique HLA-II peptides. In order to genuinely define the identified peptides as true HLA ligands, we carefully characterized their association with the different HLA allotypes. In addition, we identified 138 and 279 HLA-I and HLA-II ligands, respectively, most of which are novel in GBM, derived from known GBM-associated tumor antigens that have been used as source proteins for a variety of GBM vaccines. Our data further indicate that CIITA-expressing GBM cells acquired an antigen presenting cell-like phenotype as we found that they directly present external proteins as HLA-II ligands. Not only that CIITA-expressing GBM cells are attractive models for antigen discovery endeavors, but also such engineered cells have great therapeutic potential through massive presentation of a diverse antigenic repertoire.


Asunto(s)
Antígenos de Neoplasias/inmunología , Neoplasias Encefálicas/inmunología , Glioblastoma/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Proteínas Nucleares/inmunología , Transactivadores/inmunología , Animales , Bovinos , Línea Celular Tumoral , Humanos , Proteínas Nucleares/genética , Péptidos/inmunología , Transactivadores/genética
11.
J Bacteriol ; 204(5): e0060621, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35380872

RESUMEN

The Lyme disease spirochete, Borrelia burgdorferi, persists in nature by alternatingly cycling between ticks and vertebrates. During each stage of the infectious cycle, B. burgdorferi produces surface proteins that are necessary for interactions with the tick or vertebrate tissues it encounters while also repressing the synthesis of unnecessary proteins. Among these are the Erp surface proteins, which are produced during vertebrate infection for interactions with host plasmin, laminin, glycosaminoglycans, and components of the complement system. Erp proteins are not expressed during tick colonization but are induced when the tick begins to ingest blood from a vertebrate host, a time when the bacteria undergo rapid growth and division. Using the erp genes as a model of borrelial gene regulation, our research group has identified three novel DNA-binding proteins that interact with DNA to control erp transcription. At least two of those regulators are, in turn, affected by DnaA, the master regulator of chromosome replication. Our data indicate that B. burgdorferi has evolved to detect the change from slow to rapid replication during tick feeding as a signal to begin expression of Erp and other vertebrate-specific proteins. The majority of other known regulatory factors of B. burgdorferi also respond to metabolic cues. These observations lead to a model in which the Lyme spirochete recognizes unique environmental conditions encountered during the infectious cycle to "know" where they are and adapt accordingly.


Asunto(s)
Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Garrapatas , Animales , Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Ixodes/metabolismo , Ixodes/microbiología , Enfermedad de Lyme/microbiología , Proteínas de la Membrana/metabolismo , Garrapatas/microbiología , Vertebrados/metabolismo
12.
Community Ment Health J ; 58(8): 1544-1553, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35524906

RESUMEN

Increasing social connection and access to care has been found to decrease the rate of suicide in U.S. veterans. The Veteran Outreach Into the Community to Expand Social Support (VOICES) is an intervention developed by Department Veteran Affairs (VA) staff to improve social connection and provide information about services by implementing community-based Veterans Socials. Seventy veterans at eight locations completed an anonymous cross-sectional survey. This evaluation examined three domains, acceptability (i.e., perceived value), demand (i.e., estimated or actual use), and expansion (i.e., sustainability and increase of Veterans Socials across time and locations). Findings indicated considerable levels of acceptability, demand for, and expansion of this intervention. Additionally, data suggested this intervention may increase social connection and utilization of VA services among attendees.


Asunto(s)
Veteranos , Estados Unidos , Humanos , United States Department of Veterans Affairs , Estudios Transversales , Estudios de Factibilidad , Apoyo Social
13.
Curr Issues Mol Biol ; 42: 223-266, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33300497

RESUMEN

Borrelia (Borreliella) burgdorferi, along with closely related species, is the etiologic agent of Lyme disease. The spirochete subsists in an enzootic cycle that encompasses acquisition from a vertebrate host to a tick vector and transmission from a tick vector to a vertebrate host. To adapt to its environment and persist in each phase of its enzootic cycle, B. burgdorferi wields three systems to regulate the expression of genes: the RpoN-RpoS alternative sigma factor cascade, the Hk1/Rrp1 two-component system and its product c-di-GMP, and the stringent response mediated by RelBbu and DksA. These regulatory systems respond to enzootic phase-specific signals and are controlled or fine- tuned by transcription factors, including BosR and BadR, as well as small RNAs, including DsrABb and Bb6S RNA. In addition, several other DNA-binding and RNA-binding proteins have been identified, although their functions have not all been defined. Global changes in gene expression revealed by high-throughput transcriptomic studies have elucidated various regulons, albeit technical obstacles have mostly limited this experimental approach to cultivated spirochetes. Regardless, we know that the spirochete, which carries a relatively small genome, regulates the expression of a considerable number of genes required for the transitions between the tick vector and the vertebrate host as well as the adaptation to each.


Asunto(s)
Borrelia burgdorferi/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Enfermedad de Lyme/microbiología , Transcriptoma , Adaptación Fisiológica , Animales , Vectores Artrópodos/microbiología , Genes Bacterianos , Interacciones Huésped-Patógeno , Humanos , Enfermedad de Lyme/transmisión , Garrapatas/microbiología
14.
Psychiatr Q ; 92(3): 981-994, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33409927

RESUMEN

Severe Post-Traumatic Stress Disorder (PTSD) has been identified as a significant impediment to employment. However, little is known about correlates of employment recovery after a period of not working among veterans with severe PTSD treated in specialized intensive treatment programs. This study examines rates and correlates of transitioning from not being employed at admission to working four months after discharge using national Veterans Health Administration (VHA) program evaluation data on veterans engaged in specialized intensive PTSD treatment (N = 27,339). Results suggest that only 5.68% of the sample made the transition to employment while 10.6% lost employment, 8.9% worked both at admission and following discharge, and 74.9%, did not work either at admission or following discharge. Multinomial regression analysis found that compared to other groups, veterans who became employed were younger, less likely to receive service-connected disability payments, and experienced a significantly greater reduction in PTSD symptoms. Findings from this study highlight that this distinct population has very poor employment outcomes and deserves more attention, and that reducing PTSD symptoms can lead to improved employment outcomes. Efforts to integrate evidence-based vocational rehabilitation practice into residential PTSD treatment targeting PTSD symptoms is encouraged.


Asunto(s)
Trastornos por Estrés Postraumático , Veteranos , Empleo , Humanos , Rehabilitación Vocacional , Trastornos por Estrés Postraumático/terapia , Estados Unidos , United States Department of Veterans Affairs
15.
Mol Microbiol ; 112(3): 973-991, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31240776

RESUMEN

When the Lyme disease spirochete, Borrelia burgdorferi, transfers from a feeding tick into a human or other vertebrate host, the bacterium produces vertebrate-specific proteins and represses factors needed for arthropod colonization. Previous studies determined that the B. burgdorferi BpuR protein binds to its own mRNA and autoregulates its translation, and also serves as co-repressor of erp transcription. Here, we demonstrate that B. burgdorferi controls transcription of bpuR, expressing high levels of bpuR during tick colonization but significantly less during mammalian infection. The master regulator of chromosomal replication, DnaA, was found to bind specifically to a DNA sequence that overlaps the bpuR promoter. Cultured B. burgdorferi that were genetically manipulated to produce elevated levels of BpuR exhibited altered levels of several proteins, although BpuR did not impact mRNA levels. Among these was the SodA superoxide dismutase, which is essential for mammalian infection. BpuR bound to sodA mRNA in live B. burgdorferi, and a specific BpuR-binding site was mapped 5' of the sodA open reading frame. Recognition of posttranscriptional regulation of protein levels by BpuR adds another layer to our understanding of the B. burgdorferi regulome, and provides further evidence that bacterial protein levels do not always correlate directly with mRNA levels.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Enfermedad de Lyme/microbiología , Proteínas de Unión al ARN/metabolismo , Superóxido Dismutasa/metabolismo , Garrapatas/microbiología , Animales , Proteínas Bacterianas/genética , Borrelia burgdorferi/genética , Proteínas de Unión al ADN/genética , Femenino , Humanos , Ratones , Ratones Endogámicos C3H , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/genética , Superóxido Dismutasa/genética
16.
Int J Syst Evol Microbiol ; 70(5): 3577-3581, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32320380

RESUMEN

Rejection (nomen rejiciendum) of the name Borreliella and all new combinations therein is being requested on grounds of risk to human health and patient safety (Principle 1, subprinciple 2 and Rule 56a) and violation to aim for stability of names, to avoid useless creation of names (Principle 1, subprinciple 1 and 3) and that names should not be changed without sufficient reason (Principle 9 of the International Code of Nomenclature of Prokaryotes).


Asunto(s)
Filogenia , Spirochaetales/clasificación , Terminología como Asunto
17.
Int J Mol Sci ; 21(21)2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182400

RESUMEN

Androgen insensitivity syndrome (AIS), manifesting incomplete virilization in 46,XY individuals, is caused mostly by androgen receptor (AR) gene mutations. Therefore, a search for AR mutations is a routine approach in AIS diagnosis. However, some AIS patients lack AR mutations, which complicates the diagnosis. Here, we describe a patient suffering from partial androgen insensitivity syndrome (PAIS) and lacking AR mutations. The whole exome sequencing of the patient and his family members identified a heterozygous FKBP4 gene mutation, c.956T>C (p.Leu319Pro), inherited from the mother. The gene encodes FKBP prolyl isomerase 4, a positive regulator of the AR signaling pathway. This is the first report describing a FKBP4 gene mutation in association with a human disorder of sexual development (DSD). Importantly, the dysfunction of a homologous gene was previously reported in mice, resulting in a phenotype corresponding to PAIS. Moreover, the Leu319Pro amino acid substitution occurred in a highly conserved position of the FKBP4 region, responsible for interaction with other proteins that are crucial for the AR functional heterocomplex formation and therefore the substitution is predicted to cause the disease. We proposed the FKBP4 gene as a candidate AIS gene and suggest screening that gene for the molecular diagnosis of AIS patients lacking AR gene mutations.


Asunto(s)
Síndrome de Resistencia Androgénica/genética , Receptores Androgénicos/genética , Transducción de Señal/genética , Proteínas de Unión a Tacrolimus/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Niño , Exoma/genética , Humanos , Masculino , Mutación/genética , Desarrollo Sexual/genética
18.
J Clin Psychol ; 76(5): 896-904, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31909827

RESUMEN

Veterans face a range of challenges as they transition out of the military and into civilian life. For some, this period of transition is characterized by loss of identity, loss of daily structure, loss of community, and confusion about where they fit within society. If not attended to, problems associated with the military-to-civilian transition can lead to significant functional impairment. Yet, little is known about how psychotherapy can support this period of adjustment that every veteran will face. This article presents a case study of a veteran struggling to adjust to the civilian world following his service in the military. Critical areas of assessment, conceptualization, and intervention are explicated to help inform best practices for mental health providers working with veterans.


Asunto(s)
Integración a la Comunidad , Psicoterapia/métodos , Veteranos/psicología , Adulto , Humanos , Masculino , Salud Mental , Personal Militar/psicología
19.
N Engl J Med ; 374(26): 2553-2562, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27355534

RESUMEN

BACKGROUND: Cortical-bone fragility is a common feature in osteoporosis that is linked to nonvertebral fractures. Regulation of cortical-bone homeostasis has proved elusive. The study of genetic disorders of the skeleton can yield insights that fuel experimental therapeutic approaches to the treatment of rare disorders and common skeletal ailments. METHODS: We evaluated four patients with Pyle's disease, a genetic disorder that is characterized by cortical-bone thinning, limb deformity, and fractures; two patients were examined by means of exome sequencing, and two were examined by means of Sanger sequencing. After a candidate gene was identified, we generated a knockout mouse model that manifested the phenotype and studied the mechanisms responsible for altered bone architecture. RESULTS: In all affected patients, we found biallelic truncating mutations in SFRP4, the gene encoding secreted frizzled-related protein 4, a soluble Wnt inhibitor. Mice deficient in Sfrp4, like persons with Pyle's disease, have increased amounts of trabecular bone and unusually thin cortical bone, as a result of differential regulation of Wnt and bone morphogenetic protein (BMP) signaling in these two bone compartments. Treatment of Sfrp4-deficient mice with a soluble Bmp2 receptor (RAP-661) or with antibodies to sclerostin corrected the cortical-bone defect. CONCLUSIONS: Our study showed that Pyle's disease was caused by a deficiency of sFRP4, that cortical-bone and trabecular-bone homeostasis were governed by different mechanisms, and that sFRP4-mediated cross-regulation between Wnt and BMP signaling was critical for achieving proper cortical-bone thickness and stability. (Funded by the Swiss National Foundation and the National Institutes of Health.).


Asunto(s)
Densidad Ósea/genética , Remodelación Ósea/genética , Osteocondrodisplasias/genética , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Adolescente , Animales , Biomarcadores/sangre , Proteínas Morfogenéticas Óseas/metabolismo , Remodelación Ósea/fisiología , Huesos/patología , Huesos/fisiología , Preescolar , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Homeostasis , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Osteocondrodisplasias/fisiopatología , Análisis de Secuencia de ADN , Transducción de Señal , Proteínas Wnt/metabolismo
20.
J Transl Med ; 17(1): 391, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31771601

RESUMEN

BACKGROUND: Most ovarian cancer patients are diagnosed at a late stage with 85% of them relapsing after surgery and standard chemotherapy; for this reason, new treatments are urgently needed. Ovarian cancer has become a candidate for immunotherapy by reason of their expression of shared tumor-associated antigens (TAAs) and private mutated neoantigens (NeoAgs) and the recognition of the tumor by the immune system. Additionally, the presence of intraepithelial tumor infiltrating lymphocytes (TILs) is associated with improved progression-free and overall survival of patients with ovarian cancer. The aim of active immunotherapy, including vaccination, is to generate a new anti-tumor response and amplify an existing immune response. Recently developed NeoAgs-based cancer vaccines have the advantage of being more tumor specific, reducing the potential for immunological tolerance, and inducing robust immunogenicity. METHODS: We propose a randomized phase I/II study in patients with advanced ovarian cancer to compare the immunogenicity and to assess safety and feasibility of two personalized DC vaccines. After standard of care surgery and chemotherapy, patients will receive either a novel vaccine consisting of autologous DCs pulsed with up to ten peptides (PEP-DC), selected using an agnostic, yet personalized, epitope discovery algorithm, or a sequential combination of a DC vaccine loaded with autologous oxidized tumor lysate (OC-DC) prior to an equivalent PEP-DC vaccine. All vaccines will be administered in combination with low-dose cyclophosphamide. This study is the first attempt to compare the two approaches and to use NeoAgs-based vaccines in ovarian cancer in the adjuvant setting. DISCUSSION: The proposed treatment takes advantage of the beneficial effects of pre-treatment with OC-DC prior to PEP-DC vaccination, prompting immune response induction against a wide range of patient-specific antigens, and amplification of pre-existing NeoAgs-specific T cell clones. Trial registration This trial is already approved by Swissmedic (Ref.: 2019TpP1004) and will be registered at http://www.clinicaltrials.gov before enrollment opens.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Células Dendríticas/inmunología , Neoplasias Quísticas, Mucinosas y Serosas/patología , Neoplasias Quísticas, Mucinosas y Serosas/terapia , Neoplasias Ováricas/patología , Neoplasias Ováricas/terapia , Péptidos/inmunología , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Femenino , Humanos , Clasificación del Tumor , Estadificación de Neoplasias , Trasplante Autólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA