Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 18(11): e3000791, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33232312

RESUMEN

Small island developing states in the Caribbean are among the most vulnerable countries on the planet to climate variability and climate change. In the last 3 decades, the Caribbean region has undergone frequent and intense heat waves, storms, floods, and droughts. This has had a detrimental impact on population health and well-being, including an increase in infectious disease outbreaks. Recent advances in climate science have enhanced our ability to anticipate hydrometeorological hazards and associated public health challenges. Here, we discuss progress towards bridging the gap between climate science and public health decision-making in the Caribbean to build health system resilience to extreme climatic events. We focus on the development of climate services to help manage mosquito-transmitted disease epidemics. There are numerous areas of ongoing biological research aimed at better understanding the direct and indirect impacts of climate change on the transmission of mosquito-borne diseases. Here, we emphasise additional factors that affect our ability to operationalise this biological understanding. We highlight a lack of financial resources, technical expertise, data sharing, and formalised partnerships between climate and health communities as major limiting factors to developing sustainable climate services for health. Recommendations include investing in integrated climate, health and mosquito surveillance systems, building regional and local human resource capacities, and designing national and regional cross-sectoral policies and national action plans. This will contribute towards achieving the Sustainable Development Goals (SDGs) and maximising regional development partnerships and co-benefits for improved health and well-being in the Caribbean.


Asunto(s)
Brotes de Enfermedades/prevención & control , Enfermedades Transmitidas por Vectores/epidemiología , Enfermedades Transmitidas por Vectores/transmisión , Animales , Región del Caribe/epidemiología , Cambio Climático , Brotes de Enfermedades/economía , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/fisiología , Vectores de Enfermedades , Sequías , Política de Salud/tendencias , Humanos , Salud Pública/métodos , Salud Pública/tendencias
2.
Epidemiol Infect ; 151: e181, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37823310

RESUMEN

Dengue, chikungunya, and Zika are arboviruses that cause 390 million infections annually. Risk factors for hospitalization are poorly understood. Communities affected by these diseases have an escalating prevalence of allergies and obesity, which are linked to immune dysfunction. We assessed the association of allergies or body mass with hospitalization for an arbovirus infection. From 2014 to 2017, we recruited participants with a clinical diagnosis of arbovirus infection. Arbovirus infections were laboratory-confirmed and allergies were self-reported. Mid-upper arm circumference (MUAC), weight, and height were measured. We used two logistic regression models to assess the relationships between hospitalization and allergies and between hospitalization and body mass (MUAC for participants <20 years old and body mass index (BMI) for adults ≥20 years old). Models were stratified by age group and adjusted for confounders. For allergies, 41 of 265 were hospitalized. There was no association between allergies and hospitalization. For body mass, 34 of 251 were hospitalized. There was a 43% decrease in hospitalization odds for each additional centimetre MUAC among children (aOR 0.566, 95% CI 0.252-1.019) and a 12% decrease in hospitalization odds for each additional BMI unit among adults (aOR 0.877, 95% CI 0.752-0.998). Our work encourages the exploration of the underlying mechanisms.


Asunto(s)
Infecciones por Arbovirus , Hipersensibilidad , Infección por el Virus Zika , Virus Zika , Adulto , Niño , Humanos , Adulto Joven , Estudios Prospectivos , Ecuador/epidemiología , Índice de Masa Corporal , Hospitalización
3.
J Infect Dis ; 221(1): 91-101, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31428794

RESUMEN

BACKGROUND: Micronutrients are known to modulate host immunity, and there is limited literature on this association in the context of dengue virus infection (DENV). METHODS: Using a nested case-control design in a surveillance program, we measured the following: anthropometry; nutritional biomarkers including serum ferritin, soluble transferrin receptor, retinol-binding protein (RBP), 25-hydroxy vitamin D, folate, and vitamin B12; and a panel of immune response markers. We then compared these measures across 4 illness categories: healthy control, nonfebrile DENV, other febrile illness (OFI), and apparent DENV using multivariate polytomous logistic regression models. RESULTS: Among 142 participants, serum ferritin (ng/mL) was associated with apparent DENV compared to healthy controls (odds ratio [OR], 2.66; confidence interval [CI], 1.53-4.62; P = .001), and RBP concentrations (µmol/L) were associated with apparent DENV (OR, 0.03; CI, 0.00-0.30; P = .003) and OFI (OR, 0.02; CI, 0.00-0.24; P = .003). In a subset of 71 participants, interleukin-15 levels (median fluorescent intensity) were positively associated with apparent DENV (OR, 1.09; CI, 1.03-1.14; P = .001) and negatively associated with nonfebrile DENV (OR, 0.89; CI, 0.80-0.99; P = .03) compared to healthy controls. CONCLUSIONS: After adjusting for the acute-phase response, serum ferritin and RBP concentrations were associated with apparent DENV and may represent biomarkers of clinical importance in the context of dengue illness.


Asunto(s)
Dengue/sangre , Dengue/inmunología , Interleucina-15/sangre , Vigilancia de la Población , Adolescente , Biomarcadores/sangre , Índice de Masa Corporal , Tamaño Corporal , Proteína C-Reactiva/metabolismo , Estudios de Casos y Controles , Ecuador , Femenino , Ferritinas/sangre , Fiebre/sangre , Fiebre/virología , Humanos , Masculino , Micronutrientes , Estado Nutricional , Orosomucoide/metabolismo , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Vitamina D/sangre , Adulto Joven
4.
BMC Evol Biol ; 20(1): 31, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075576

RESUMEN

BACKGROUND: In recent years, Ecuador and other South American countries have experienced an increase in arboviral diseases. A rise in dengue infections was followed by introductions of chikungunya and Zika, two viruses never before seen in many of these areas. Furthermore, the latest socioeconomic and political instability in Venezuela and the mass migration of its population into the neighboring countries has given rise to concerns of infectious disease spillover and escalation of arboviral spread in the region. RESULTS: We performed phylogeographic analyses of dengue (DENV) and chikungunya (CHIKV) virus genomes sampled from a surveillance site in Ecuador in 2014-2015, along with genomes from the surrounding countries. Our results revealed at least two introductions of DENV, in 2011 and late 2013, that initially originated from Venezuela and/or Colombia. The introductions were subsequent to increases in the influx of Venezuelan and Colombian citizens into Ecuador, which in 2013 were 343% and 214% higher than in 2009, respectively. However, we show that Venezuela has historically been an important source of DENV dispersal in this region, even before the massive exodus of its population, suggesting already established paths of viral distribution. Like DENV, CHIKV was introduced into Ecuador at multiple time points in 2013-2014, but unlike DENV, these introductions were associated with the Caribbean. Our findings indicated no direct CHIKV connection between Ecuador, Colombia, and Venezuela as of 2015, suggesting that CHIKV was, at this point, not following the paths of DENV spread. CONCLUSION: Our results reveal that Ecuador is vulnerable to arbovirus import from many geographic locations, emphasizing the need of continued surveillance and more diversified prevention strategies. Importantly, increase in human movement along established paths of viral dissemination, combined with regional outbreaks and epidemics, may facilitate viral spread and lead to novel virus introductions. Thus, strengthening infectious disease surveillance and control along migration routes and improving access to healthcare for the vulnerable populations is of utmost importance.


Asunto(s)
Fiebre Chikungunya/epidemiología , Virus Chikungunya/clasificación , Virus Chikungunya/genética , Virus del Dengue/clasificación , Virus del Dengue/genética , Dengue/epidemiología , Emigración e Inmigración/estadística & datos numéricos , Fiebre Chikungunya/transmisión , Fiebre Chikungunya/virología , Virus Chikungunya/aislamiento & purificación , Colombia/epidemiología , Dengue/transmisión , Dengue/virología , Virus del Dengue/aislamiento & purificación , Brotes de Enfermedades , Ecuador/epidemiología , Emigración e Inmigración/tendencias , Genoma Viral , Genotipo , Humanos , Mutación Missense/fisiología , Fenotipo , Filogeografía , Análisis de Secuencia de ADN , América del Sur/epidemiología , Venezuela/epidemiología , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología
5.
Int J Health Geogr ; 19(1): 3, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32046732

RESUMEN

BACKGROUND: Vector-borne disease places a high health and economic burden in the American tropics. Comprehensive vector control programs remain the primary method of containing local outbreaks. With limited resources, many vector control operations struggle to serve all affected communities within their districts. In the coastal city of Machala, Ecuador, vector control services, such as application of larvicides and truck-mounted fogging, are delivered through two deployment facilities managed by the Ecuadorian Ministry of Health. Public health professionals in Machala face several logistical issues when delivering mosquito abatement services, namely applying limited resources in ways that will most effectively suppress vectors of malaria, dengue, and encephalitis viruses. METHODS: Using a transportation network analysis framework, we built models of service areas and optimized delivery routes based on distance costs associated with accessing neighborhoods throughout the city. Optimized routes were used to estimate the relative cost of accessing neighborhoods for mosquito control services in Machala, creating a visual tool to guide decision makers and maximize mosquito control program efficiency. Location-allocation analyses were performed to evaluate efficiency gains of moving service deployment to other available locations with respect to distance to service hub, neighborhood population, dengue incidence, and housing condition. RESULTS: Using this framework, we identified different locations for targeting mosquito control efforts, dependent upon management goals and specified risk factors of interest, including human population, housing condition, and reported dengue incidence. Our models indicate that neighborhoods on the periphery of Machala with the poorest housing conditions are the most costly to access. Optimal locations of facilities for deployment of control services change depending on pre-determined management priorities, increasing the population served via inexpensive routes up to 34.9%, and reducing overall cost of accessing neighborhoods up to 12.7%. CONCLUSIONS: Our transportation network models indicate that current locations of mosquito control facilities in Machala are not ideal for minimizing driving distances or maximizing populations served. Services may be optimized by moving vector control operations to other existing public health facilities in Machala. This work represents a first step in creating a spatial tool for planning and critically evaluating the systematic delivery of mosquito control services in Machala and elsewhere.


Asunto(s)
Modelos Teóricos , Control de Mosquitos , Mosquitos Vectores , Transportes , Animales , Brotes de Enfermedades , Ecuador/epidemiología , Vivienda , Humanos , Malaria/epidemiología , Control de Mosquitos/economía , Control de Mosquitos/métodos , Salud Pública , Factores de Riesgo
6.
BMC Public Health ; 20(1): 1065, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631315

RESUMEN

BACKGROUND: Dengue is a major emerging infectious disease, endemic throughout the tropics and subtropics, with approximately 2.5 billion people at risk globally. Active (AS) and passive surveillance (PS), when combined, can improve our understanding of dengue's complex disease dynamics to guide effective, targeted public health interventions. The objective of this study was to compare findings from the Ministry of Health (MoH) PS to a prospective AS arbovirus research study in Machala, Ecuador in 2014 and 2015. METHODS: Dengue cases in the PS system were compared to laboratory confirmed acute dengue illness cases that entered the AS study during the study period. Variables of interest included age class and sex. Outbreak detection curves by epidemiologic week, overall cumulative incidence and age-specific incidence proportions were calculated. Descriptive statistics were tabulated for all variables of interest. Chi-square tests were performed to compare demographic characteristics between the AS and PS data sets in 2014 and 2015. RESULTS: 177 and 245 cases were identified from 1/1/2014 to 12/31/2015 by PS and AS, respectively; nine cases appeared in both systems. AS identified a greater number of laboratory-confirmed cases in 2014, accounting for more than 60% of dengue cases in the study area. In 2015, the opposite trend was observed with PS identifying 60% of the dengue cases in the study area. Peak transmission time in laboratory confirmed dengue illness, as noted by AS and PS was similar in 2014, whereas earlier detection (7 weeks) was observed by AS in 2015. Younger patients were more frequently identified by PS, while older patients were identified more frequently by AS. The cumulative incidence proportion for laboratory confirmed dengue illness reported via PS to the MoH was 4.12 cases per 10,000 residents in 2014, and 2.21 cases per 10,000 residents in 2015. CONCLUSIONS: Each surveillance system captured distinct demographic subgroups within the Machala population, possibly due to differences in healthcare seeking behaviors, access to care, emerging threats of other viruses transmitted by the same mosquito vector and/or differences in clinical presentation. Integrating AS with pre-existing PS can aid in identifying additional cases in previously underdiagnosed subpopulations, improving our understanding of disease dynamics, and facilitating the implementation of timely public health interventions.


Asunto(s)
Dengue/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Vigilancia en Salud Pública/métodos , Vigilancia de Guardia , Adulto , Animales , Distribución de Chi-Cuadrado , Ecuador/epidemiología , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Mosquitos Vectores , Estudios Prospectivos , Salud Pública/estadística & datos numéricos , Adulto Joven
7.
Ecol Lett ; 22(10): 1690-1708, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31286630

RESUMEN

Mosquito-borne diseases cause a major burden of disease worldwide. The vital rates of these ectothermic vectors and parasites respond strongly and nonlinearly to temperature and therefore to climate change. Here, we review how trait-based approaches can synthesise and mechanistically predict the temperature dependence of transmission across vectors, pathogens, and environments. We present 11 pathogens transmitted by 15 different mosquito species - including globally important diseases like malaria, dengue, and Zika - synthesised from previously published studies. Transmission varied strongly and unimodally with temperature, peaking at 23-29ºC and declining to zero below 9-23ºC and above 32-38ºC. Different traits restricted transmission at low versus high temperatures, and temperature effects on transmission varied by both mosquito and parasite species. Temperate pathogens exhibit broader thermal ranges and cooler thermal minima and optima than tropical pathogens. Among tropical pathogens, malaria and Ross River virus had lower thermal optima (25-26ºC) while dengue and Zika viruses had the highest (29ºC) thermal optima. We expect warming to increase transmission below thermal optima but decrease transmission above optima. Key directions for future work include linking mechanistic models to field transmission, combining temperature effects with control measures, incorporating trait variation and temperature variation, and investigating climate adaptation and migration.


Asunto(s)
Aedes/parasitología , Aedes/virología , Temperatura , Animales , Cambio Climático , Virus del Dengue , Malaria/transmisión , Mosquitos Vectores/parasitología , Mosquitos Vectores/virología , Plasmodium , Virus del Río Ross , Virosis/transmisión , Virus Zika
8.
Emerg Infect Dis ; 25(4): 834-836, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30698522

RESUMEN

Mass migration from Venezuela has increased malaria resurgence risk across South America. During 2018, migrants from Venezuela constituted 96% of imported malaria cases along the Ecuador-Peru border. Plasmodium vivax predominated (96%). Autochthonous malaria cases emerged in areas previously malaria-free. Heightened malaria control and a response to this humanitarian crisis are imperative.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Malaria/epidemiología , Sistemas Políticos , Medio Social , Enfermedades Transmisibles Emergentes/historia , Ecuador/epidemiología , Geografía Médica , Historia del Siglo XXI , Humanos , Malaria/historia , Perú/epidemiología , Venezuela/epidemiología
10.
PLoS Med ; 15(7): e1002613, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30016319

RESUMEN

BACKGROUND: Over the last 5 years (2013-2017), the Caribbean region has faced an unprecedented crisis of co-occurring epidemics of febrile illness due to arboviruses transmitted by the Aedes sp. mosquito (dengue, chikungunya, and Zika). Since 2013, the Caribbean island of Barbados has experienced 3 dengue outbreaks, 1 chikungunya outbreak, and 1 Zika fever outbreak. Prior studies have demonstrated that climate variability influences arbovirus transmission and vector population dynamics in the region, indicating the potential to develop public health interventions using climate information. The aim of this study is to quantify the nonlinear and delayed effects of climate indicators, such as drought and extreme rainfall, on dengue risk in Barbados from 1999 to 2016. METHODS AND FINDINGS: Distributed lag nonlinear models (DLNMs) coupled with a hierarchal mixed-model framework were used to understand the exposure-lag-response association between dengue relative risk and key climate indicators, including the standardised precipitation index (SPI) and minimum temperature (Tmin). The model parameters were estimated in a Bayesian framework to produce probabilistic predictions of exceeding an island-specific outbreak threshold. The ability of the model to successfully detect outbreaks was assessed and compared to a baseline model, representative of standard dengue surveillance practice. Drought conditions were found to positively influence dengue relative risk at long lead times of up to 5 months, while excess rainfall increased the risk at shorter lead times between 1 and 2 months. The SPI averaged over a 6-month period (SPI-6), designed to monitor drought and extreme rainfall, better explained variations in dengue risk than monthly precipitation data measured in millimetres. Tmin was found to be a better predictor than mean and maximum temperature. Furthermore, including bidimensional exposure-lag-response functions of these indicators-rather than linear effects for individual lags-more appropriately described the climate-disease associations than traditional modelling approaches. In prediction mode, the model was successfully able to distinguish outbreaks from nonoutbreaks for most years, with an overall proportion of correct predictions (hits and correct rejections) of 86% (81%:91%) compared with 64% (58%:71%) for the baseline model. The ability of the model to predict dengue outbreaks in recent years was complicated by the lack of data on the emergence of new arboviruses, including chikungunya and Zika. CONCLUSION: We present a modelling approach to infer the risk of dengue outbreaks given the cumulative effect of climate variations in the months leading up to an outbreak. By combining the dengue prediction model with climate indicators, which are routinely monitored and forecasted by the Regional Climate Centre (RCC) at the Caribbean Institute for Meteorology and Hydrology (CIMH), probabilistic dengue outlooks could be included in the Caribbean Health-Climatic Bulletin, issued on a quarterly basis to provide climate-smart decision-making guidance for Caribbean health practitioners. This flexible modelling approach could be extended to model the risk of dengue and other arboviruses in the Caribbean region.


Asunto(s)
Aedes/virología , Clima , Virus del Dengue/patogenicidad , Dengue/epidemiología , Brotes de Enfermedades , Vectores de Enfermedades , Tiempo (Meteorología) , Animales , Barbados/epidemiología , Teorema de Bayes , Dengue/diagnóstico , Dengue/transmisión , Dengue/virología , Sequías , Inundaciones , Calor/efectos adversos , Humanos , Dinámicas no Lineales , Lluvia , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo
11.
Emerg Infect Dis ; 23(11): 1926-1927, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29048289

RESUMEN

In February 2016, the World Health Organization declared the pandemic of Zika virus a public health emergency. On March 4, 2016, Dominica reported its first autochthonous Zika virus disease case; subsequently, 1,263 cases were reported. We describe the outbreak through November 2016, when the last known case was reported.


Asunto(s)
Brotes de Enfermedades , Salud Pública , Infección por el Virus Zika/epidemiología , Virus Zika/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Dominica/epidemiología , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven , Infección por el Virus Zika/virología
12.
Malar J ; 16(1): 479, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29166907

RESUMEN

BACKGROUND: Quantifying mosquito biting rates for specific locations enables estimation of mosquito-borne disease risk, and can inform intervention efforts. Measuring biting itself is fraught with ethical concerns, so the landing rate of mosquitoes on humans is often used as a proxy measure. Southern coastal Ecuador was historically endemic for malaria (Plasmodium falciparum and Plasmodium vivax), although successful control efforts in the 2000s eliminated autochthonous transmission (since 2011). This study presents an analysis of data collected during the elimination period. METHODS: Human landing catch (HLC) data for three mosquito taxa: two malaria vectors, Anopheles albimanus and Anopheles punctimacula, and grouped Culex spp. were examined for this study. These data were collected by the National Vector Control Service of the Ministry of Health over a 5-year time span (2007-2012) in five cities in southern coastal Ecuador, at multiple households, in all months of the year, during dusk-dawn (18:00-6:00) hours, often at both indoor and outdoor locations. Hurdle models were used to determine if biting activity was fundamentally different for the three taxa, and to identify spatial and temporal factors influencing bite rate. Due to the many different approaches to studying and quantifying bite rates in the literature, a glossary of terms was created, to facilitate comparative studies in the future. RESULTS: Biting trends varied significantly with species and time. All taxa exhibited exophagic feeding behavior, and outdoor locations increased both the odds and incidence of bites across taxa. Anopheles albimanus was most frequently observed biting, with an average of 4.7 bites/h. The highest and lowest respective months for significant biting activity were March and July for An. albimanus, July and August for An. punctimacula, and February and July for Culex spp. CONCLUSIONS: Fine-scale differences in endophagy and exophagy, and temporal differences among months and hours exist in biting patterns among mosquito taxa in southern coastal Ecuador. This analysis provides detailed information for targeting vector control activities, and household level vector prevention strategies. These data were collected as part of routine vector surveillance conducted by the Ministry of Health, and such data have not been collected since. Reinstating such surveillance measures would provide important information to aid in preventing malaria re-emergence.


Asunto(s)
Anopheles/fisiología , Ritmo Circadiano , Culex/fisiología , Mordeduras y Picaduras de Insectos/epidemiología , Mosquitos Vectores/fisiología , Animales , Ecuador/epidemiología , Conducta Alimentaria , Mordeduras y Picaduras de Insectos/etiología , Modelos Biológicos , Estaciones del Año , Especificidad de la Especie , Población Urbana/estadística & datos numéricos
13.
Malar J ; 15(1): 573, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-27894320

RESUMEN

BACKGROUND: In recent years, malaria (Plasmodium vivax and Plasmodium falciparum) has been successfully controlled in the Ecuador-Peru coastal border region. The aim of this study was to document this control effort and to identify the best practices and lessons learned that are applicable to malaria control and to other vector-borne diseases. A proximal outcome evaluation was conducted of the robust elimination programme in El Oro Province, Ecuador, and the Tumbes Region, Peru. Data collection efforts included a series of workshops with local public health experts who played central roles in the elimination effort, review of epidemiological records from Ministries of Health, and a review of national policy documents. Key programmatic and external factors are identified that determined the success of this eradication effort. CASE DESCRIPTION: From the mid 1980s until the early 2000s, the region experienced a surge in malaria transmission, which experts attributed to a combination of ineffective anti-malarial treatment, social-ecological factors (e.g., El Niño, increasing rice farming, construction of a reservoir), and political factors (e.g., reduction in resources and changes in management). In response to the malaria crisis, local public health practitioners from El Oro and Tumbes joined together in the mid-1990s to forge an unofficial binational collaboration for malaria control. Over the next 20 years, they effectively eradicated malaria in the region, by strengthening surveillance and treatment strategies, sharing of resources, operational research to inform policy, and novel interventions. DISCUSSION AND EVALUATION: The binational collaboration at the operational level was the fundamental component of the successful malaria elimination programme. This unique relationship created a trusting, open environment that allowed for flexibility, rapid response, innovation and resilience in times of crisis, and ultimately a sustainable control programme. Strong community involvement, an extensive microscopy network and ongoing epidemiologic investigations at the local level were also identified as crucial programmatic strategies. CONCLUSION: The results of this study provide key principles of a successful malaria elimination programme that can inform the next generation of public health professionals in the region, and serve as a guide to ongoing and future control efforts of other emerging vector borne diseases globally.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Control de Enfermedades Transmisibles/organización & administración , Erradicación de la Enfermedad , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malaria Vivax/epidemiología , Malaria Vivax/prevención & control , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Ecuador/epidemiología , Femenino , Humanos , Lactante , Recién Nacido , Cooperación Internacional , Masculino , Persona de Mediana Edad , Perú/epidemiología , Adulto Joven
14.
BMC Infect Dis ; 14: 610, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25420543

RESUMEN

BACKGROUND: Dengue fever, a mosquito-borne viral disease, is a rapidly emerging public health problem in Ecuador and throughout the tropics. However, we have a limited understanding of the disease transmission dynamics in these regions. Previous studies in southern coastal Ecuador have demonstrated the potential to develop a dengue early warning system (EWS) that incorporates climate and non-climate information. The objective of this study was to characterize the spatiotemporal dynamics and climatic and social-ecological risk factors associated with the largest dengue epidemic to date in Machala, Ecuador, to inform the development of a dengue EWS. METHODS: The following data from Machala were included in analyses: neighborhood-level georeferenced dengue cases, national census data, and entomological surveillance data from 2010; and time series of weekly dengue cases (aggregated to the city-level) and meteorological data from 2003 to 2012. We applied LISA and Moran's I to analyze the spatial distribution of the 2010 dengue cases, and developed multivariate logistic regression models through a multi-model selection process to identify census variables and entomological covariates associated with the presence of dengue at the neighborhood level. Using data aggregated at the city-level, we conducted a time-series (wavelet) analysis of weekly climate and dengue incidence (2003-2012) to identify significant time periods (e.g., annual, biannual) when climate co-varied with dengue, and to describe the climate conditions associated with the 2010 outbreak. RESULTS: We found significant hotspots of dengue transmission near the center of Machala. The best-fit model to predict the presence of dengue included older age and female gender of the head of the household, greater access to piped water in the home, poor housing condition, and less distance to the central hospital. Wavelet analyses revealed that dengue transmission co-varied with rainfall and minimum temperature at annual and biannual cycles, and we found that anomalously high rainfall and temperatures were associated with the 2010 outbreak. CONCLUSIONS: Our findings highlight the importance of geospatial information in dengue surveillance and the potential to develop a climate-driven spatiotemporal prediction model to inform disease prevention and control interventions. This study provides an operational methodological framework that can be applied to understand the drivers of local dengue risk.


Asunto(s)
Aedes , Dengue/epidemiología , Insectos Vectores , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Niño , Preescolar , Clima , Dengue/prevención & control , Dengue/transmisión , Brotes de Enfermedades , Ecuador/epidemiología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Modelos Teóricos , Factores de Riesgo , Factores Socioeconómicos , Análisis Espacio-Temporal , Factores de Tiempo
15.
BMC Public Health ; 14: 1135, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25370883

RESUMEN

BACKGROUND: The growing burden of dengue fever and the lack of a vaccine or specific medical treatment have increased the urgency of the public health sector to identify alternative management strategies. A prevailing trend in Latin America has been a shift towards decentralized vector control programs with integrated management strategies, requiring significant intersectoral coordination, community engagement, and knowledge of the local social-ecological system (SES). Community perceptions and responses are a critical component of this system, since perceptions shape actions, and thus govern behavioral responses and acceptance of shifts in policy and management. METHODS: We investigated perceptions, misconceptions, and local SES risk factors for dengue in high risk communities located at the urban periphery and center in Machala, Ecuador. We facilitated twelve focus group discussions with community members using semi-structured question guides and causal diagrams. Focus groups were recorded, transcribed, and coded to identify emergent themes using qualitative methods for theme analysis. To estimate the relative importance of the themes in each study area, we tabulated the number of focus groups in which each theme was present. Household surveys (n = 79) were conducted to further explore these themes, and we compared survey responses from the two areas using descriptive statistics. RESULTS: We identified thirty biophysical, political-institutional, and community-household risk factors for dengue. People at the periphery identified a greater number of risk factors. Dengue control required considerable investment of time and resources, which presented a greater challenge for women and people at the periphery. Common misperceptions included confusion with other febrile diseases, lack of knowledge of transmission mechanisms, and misconceptions about mosquito behavior. People perceived that dengue control programs had been limited by the lack of inter-institutional coordination and lack of social cohesion. CONCLUSIONS: There is a need for local, policy-relevant research that can be translated to strengthen the design, implementation, and evaluation of new dengue management strategies. This study contributes to a growing body of research in this area. Based on these findings, we identify key policy and management recommendations that will inform the ongoing transition to a decentralized dengue control program in Ecuador and other dengue endemic countries.


Asunto(s)
Aedes , Dengue/prevención & control , Insectos Vectores/fisiología , Adulto , Animales , Servicios de Salud Comunitaria , Dengue/microbiología , Ecuador , Femenino , Grupos Focales , Humanos , Masculino , Control de Mosquitos/métodos , Factores de Riesgo , Factores Socioeconómicos , Encuestas y Cuestionarios
16.
Am J Trop Med Hyg ; 110(5): 979-988, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579697

RESUMEN

Community participation is a critical element in the management of Aedes aegypti and Aedes albopictus breeding sites. Many educational interventions have been conducted to encourage prevention and elimination of breeding sites among different community actors, such as government-run programs for vector surveillance aimed at preventing and eliminating breeding sites at the household level within a community. Getting people involved in prevention and elimination of vector breeding sites in their communities requires communication and social mobilization strategies to promote and reinforce those prevention actions that, in turn, should be effective from the entomological standpoint. Articles published in English, Spanish, and Portuguese, were reviewed to assess whether educational interventions targeting Ae. aegypti and Ae. albopictus were effective in reducing entomological indicators or in improving practices to prevent the presence of or eliminate breeding sites. The most widely used indicators were larval indices and the practices associated with reducing/eliminating breeding sites. We found that using a community-based approach adapted to eco-epidemiological and sociocultural scenarios explains the reduction of entomological indicators by educational interventions. Those who design or implement educational interventions should strengthen the evaluation of those interventions using qualitative approaches that provide a more complete picture of the social context and the barriers and facilitators to implementing vector control. Engaging school children in cross-sectorial collaboration involving the health and education spheres promotes the participation of the community in vector surveillance and reduces the risk of arboviral disease transmission.


Asunto(s)
Aedes , Control de Mosquitos , Mosquitos Vectores , Aedes/fisiología , Animales , Control de Mosquitos/métodos , Humanos , Cruzamiento , Larva , Educación en Salud/métodos , Participación de la Comunidad
17.
PLoS Negl Trop Dis ; 18(1): e0011908, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38236943

RESUMEN

We performed an arboviral survey in mosquitoes from four endemic Ecuadorian cities (Huaquillas, Machala, Portovelo and Zaruma) during the epidemic period 2016-2018. Collections were performed during the pre-rainy season (2016), peak transmission season (2017) and post-rainy season (2018). Ae. aegypti mosquitoes were pooled by date, location and sex. Pools were screened by RT-PCR for the presence of ZIKV RNA, and infection rates (IRs) per 1,000 specimens were calculated. A total of 2,592 pools (comprising 6,197 mosquitoes) were screened. Our results reveal high IRs in all cities and periods sampled. Overall IRs among female mosquitoes were highest in Machala (89.2), followed by Portovelo (66.4), Zaruma (47.4) and Huaquillas (41.9). Among male mosquitoes, overall IRs were highest in Machala (35.6), followed by Portovelo (33.1), Huaquillas (31.9) and Zaruma (27.9), suggesting that alternative transmission routes (vertical/venereal) can play important roles for ZIKV maintenance in the vector population of these areas. Additionally, we propose that the stabilization of ZIKV vertical transmission in the vector population could help explain the presence of high IRs in field-caught mosquitoes during inter-epidemic periods.


Asunto(s)
Aedes , Infección por el Virus Zika , Virus Zika , Animales , Masculino , Femenino , Humanos , Virus Zika/genética , Ecuador/epidemiología , Prevalencia , Mosquitos Vectores
18.
Lancet Planet Health ; 7(6): e527-e536, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37286249

RESUMEN

Climate-sensitive infectious disease modelling is crucial for public health planning and is underpinned by a complex network of software tools. We identified only 37 tools that incorporated both climate inputs and epidemiological information to produce an output of disease risk in one package, were transparently described and validated, were named (for future searching and versioning), and were accessible (ie, the code was published during the past 10 years or was available on a repository, web platform, or other user interface). We noted disproportionate representation of developers based at North American and European institutions. Most tools (n=30 [81%]) focused on vector-borne diseases, and more than half (n=16 [53%]) of these tools focused on malaria. Few tools (n=4 [11%]) focused on food-borne, respiratory, or water-borne diseases. The under-representation of tools for estimating outbreaks of directly transmitted diseases represents a major knowledge gap. Just over half (n=20 [54%]) of the tools assessed were described as operationalised, with many freely available online.


Asunto(s)
Enfermedades Transmisibles , Malaria , Estados Unidos , Humanos , Enfermedades Transmisibles/epidemiología , Brotes de Enfermedades , Salud Pública , Malaria/epidemiología , Programas Informáticos
19.
Nat Ecol Evol ; 6(11): 1601-1616, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36303000

RESUMEN

The prevalence of diseases borne by mosquitoes, particularly in the genus Aedes, is rising worldwide. This has been attributed, in part, to the dramatic rates of contemporary urbanization. While Aedes-borne disease risk varies within and between cities, few investigations use urban science-based approaches to examine how city structure and function contribute to vector or pathogen introduction and maintenance. Here, we integrate theories from complex adaptive systems, landscape ecology and urban geography to develop an urban systems framework for understanding Aedes-borne diseases. The framework establishes that cities comprise hierarchically structured patches of different land uses and characteristics. Properties of the patches (that is, composition) determine localized disease risk, while configuration and connectivity drive emergent patterns of pathogen spread. Complexity is added by incorporating individual and collective human social structures, considering how feedbacks among social actors and with the landscape drive risk and transmission. We discuss how these concepts apply to case studies of Aedes-borne disease from around the world. Ultimately, the framework strengthens existing theoretical and mixed qualitative-quantitative approaches, and advances considerations of how interventions including urban planning (for example, piped water provisioning) and emerging vector control strategies (for example, Wolbachia-infected mosquitoes) can be implemented to prevent and control the rising threat of Aedes-borne diseases.


Asunto(s)
Aedes , Enfermedades Transmitidas por Vectores , Animales , Humanos , Mosquitos Vectores , Ecología , Urbanización , Enfermedades Transmitidas por Vectores/prevención & control
20.
PLoS One ; 17(3): e0265395, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35294504

RESUMEN

The absence of a chronic kidney disease (CKD) registry in Ecuador makes it difficult to assess the burden of disease, but there is an anticipated increase in the incidence of CKD along with increasing diabetes, hypertension and population age. From 2012, augmented funding for renal replacement therapy expanded dialysis clinics and patient coverage. We conducted 73 in-depth sociological interviews with healthcare providers in eight provinces and collected quantitative epidemiological data on patients with CKD diagnoses from six national-level databases between 2015 and 2018. Datasets show a total of 17,484 dialysis patients in 2018, or 567 patients per million population (pmp), with an annual cost exceeding 11% of Ecuador's public health budget. Each year, there were 139-162 pmp new dialysis patients, while doctors reported waiting lists. The number of patients on peritoneal dialysis was static; those on hemodialysis increased over time. Only 13 of 24 provinces were found to have dialysis services, and nephrologists were clustered in major cities, which limits access, delays medical attention, and adds a travel burden on patients. Prevention and screening programs are scarce, while hospitalization is an important reality for CKD patients. CKD is an emerging public health crisis that has increased dramatically over the last decade in Ecuador and is expected to continue, making coverage for all patients impossible and the current structure, unsustainable. A patient registry would help health policymakers and administrators estimate the demand and progression of patients with consideration for comorbidities, disease stage, requirements and costs, mortality and follow-up. This should be used to help identify where to focus prevention and improved treatment efforts. Organized monitoring of CKD patients would benefit from improvements in patient referral. Community-based education and prevention programs, the strengthening of primary healthcare capacity (including basic routine tests) and improved nephrology services are also urgently needed.


Asunto(s)
Fallo Renal Crónico , Trasplante de Riñón , Insuficiencia Renal Crónica , Ecuador/epidemiología , Femenino , Humanos , Fallo Renal Crónico/terapia , Masculino , Salud Pública , Diálisis Renal , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA