Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(51)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34911757

RESUMEN

Magnetoelastic dilatometry of the piezomagnetic antiferromagnet UO2 was performed via the fiber Bragg grating method in magnetic fields up to 150 T generated by a single-turn coil setup. We show that in microsecond timescales, pulsed-magnetic fields excite mechanical resonances at temperatures ranging from 10 to 300 K, in the paramagnetic as well as within the robust antiferromagnetic state of the material. These resonances, which are barely attenuated within the 100-µs observation window, are attributed to the strong magnetoelastic coupling in UO2 combined with the high crystalline quality of the single crystal samples. They compare well with mechanical resonances obtained by a resonant ultrasound technique and superimpose on the known nonmonotonic magnetostriction background. A clear phase shift of π in the lattice oscillations is observed in the antiferromagnetic state when the magnetic field overcomes the piezomagnetic switch field H[Formula: see text] T. We present a theoretical argument that explains this unexpected behavior as a result of the reversal of the antiferromagnetic order parameter at Hc.

2.
Nano Lett ; 23(17): 8186-8193, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37603607

RESUMEN

The increasing role of two-dimensional (2D) devices requires the development of new techniques for ultrafast control of physical properties in 2D van der Waals (vdW) nanolayers. A special feature of heterobilayers assembled from vdW monolayers is femtosecond separation of photoexcited electrons and holes between the neighboring layers, resulting in the formation of Coulomb force. Using laser pulses, we generate a 0.8 THz coherent breathing mode in MoSe2/WSe2 heterobilayers, which modulates the thickness of the heterobilayer and should modulate the photogenerated electric field in the vdW gap. While the phonon frequency and decay time are independent of the stacking angle between the MoSe2 and WSe2 monolayers, the amplitude decreases at intermediate angles, which is explained by a decrease in the photogenerated electric field between the layers. The modulation of the vdW gap by coherent phonons enables a new technology for the generation of THz radiation in 2D nanodevices with vdW heterobilayers.

3.
Phys Rev Lett ; 130(12): 126901, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37027879

RESUMEN

We report resonant Raman spectroscopy of neutral excitons X^{0} and intravalley trions X^{-} in hBN-encapsulated MoS_{2} monolayer embedded in a nanobeam cavity. By temperature tuning the detuning between Raman modes of MoS_{2} lattice phonons and X^{0}/X^{-} emission peaks, we probe the mutual coupling of excitons, lattice phonons and cavity vibrational phonons. We observe an enhancement of X^{0}-induced Raman scattering and a suppression for X^{-}-induced, and explain our findings as arising from the tripartite exciton-phonon-phonon coupling. The cavity vibrational phonons provide intermediate replica states of X^{0} for resonance conditions in the scattering of lattice phonons, thus enhancing the Raman intensity. In contrast, the tripartite coupling involving X^{-} is found to be much weaker, an observation explained by the geometry-dependent polarity of the electron and hole deformation potentials. Our results indicate that phononic hybridization between lattice and nanomechanical modes plays a key role in the excitonic photophysics and light-matter interaction in 2D-material nanophotonic systems.

4.
Phys Rev Lett ; 130(2): 026901, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36706404

RESUMEN

Optoelectronic properties of van der Waals homostructures can be selectively engineered by the relative twist angle between layers. Here, we study the twist-dependent moiré coupling in MoSe_{2} homobilayers. For small angles, we find a pronounced redshift of the K-K and Γ-K excitons accompanied by a transition from K-K to Γ-K emission. Both effects can be traced back to the underlying moiré pattern in the MoSe_{2} homobilayers, as confirmed by our low-energy continuum model for different moiré excitons. We identify two distinct intralayer moiré excitons for R stacking, while H stacking yields two degenerate intralayer excitons due to inversion symmetry. In both cases, bright interlayer excitons are found at higher energies. The performed calculations are in excellent agreement with experiment and allow us to characterize the observed exciton resonances, providing insight about the layer composition and relevant stacking configuration of different moiré exciton species.

5.
Nano Lett ; 22(2): 561-569, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34978824

RESUMEN

Nanoplasmonic systems combined with optically active two-dimensional materials provide intriguing opportunities to explore and control light-matter interactions at extreme subwavelength length scales approaching the exciton Bohr radius. Here, we present room- and cryogenic-temperature investigations of a MoSe2 monolayer on individual gold dipole nanoantennas. By controlling nanoantenna size, the dipolar resonance is tuned relative to the exciton achieving a total tuning of ∼130 meV. Differential reflectance measurements performed on >100 structures reveal an apparent avoided crossing between exciton and dipolar mode and an exciton-plasmon coupling constant of g = 55 meV, representing g/(ℏωX) ≥ 3% of the transition energy. This places our hybrid system in the intermediate-coupling regime where spectra exhibit a characteristic Fano-like shape. We demonstrate active control by varying the polarization of the excitation light to programmably suppress coupling to the dipole mode. We further study the emerging optical signatures of the monolayer localized at dipole nanoantennas at 10 K.


Asunto(s)
Oro , Resonancia por Plasmón de Superficie , Oro/química , Resonancia por Plasmón de Superficie/métodos
6.
Nano Lett ; 22(13): 5137-5142, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35758596

RESUMEN

Negatively charged boron vacancies (VB-) in hexagonal boron nitride (hBN) exhibit a broad emission spectrum due to strong electron-phonon coupling and Jahn-Teller mixing of electronic states. As such, the direct measurement of the zero-phonon line (ZPL) of VB- has remained elusive. Here, we measure the room-temperature ZPL wavelength to be 773 ± 2 nm by coupling the hBN layer to the high-Q nanobeam cavity. As the wavelength of cavity mode is tuned, we observe a pronounced intensity resonance, indicating the coupling to VB-. Our observations are consistent with the spatial redistribution of VB- emission. Spatially resolved measurements show a clear Purcell effect maximum at the midpoint of the nanobeam, in accord with the optical field distribution of the cavity mode. Our results are in good agreement with theoretical calculations, opening the way to using VB- as cavity spin-photon interfaces.

7.
Phys Rev Lett ; 128(23): 237403, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35749182

RESUMEN

Atomically thin semiconductors can be readily integrated into a wide range of nanophotonic architectures for applications in quantum photonics and novel optoelectronic devices. We report the observation of nonlocal interactions of "free" trions in pristine hBN/MoS_{2}/hBN heterostructures coupled to single mode (Q>10^{4}) quasi 0D nanocavities. The high excitonic and photonic quality of the interaction system stems from our integrated nanofabrication approach simultaneously with the hBN encapsulation and the maximized local cavity field amplitude within the MoS_{2} monolayer. We observe a nonmonotonic temperature dependence of the cavity-trion interaction strength, consistent with the nonlocal light-matter interactions in which the extent of the center-of-mass (c.m.) wave function is comparable to the cavity mode volume in space. Our approach can be generalized to other optically active 2D materials, opening the way toward harnessing novel light-matter interaction regimes for applications in quantum photonics.

8.
Nano Lett ; 21(2): 959-966, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33428406

RESUMEN

Monolayer semiconducting transition metal dichalcogenides are a strongly emergent platform for exploring quantum phenomena in condensed matter, building novel optoelectronic devices with enhanced functionalities. Because of their atomic thickness, their excitonic optical response is highly sensitive to their dielectric environment. In this work, we explore the optical properties of monolayer thick MoSe2 straddling domain wall boundaries in periodically poled LiNbO3. Spatially resolved photoluminescence experiments reveal spatial sorting of charge and photogenerated neutral and charged excitons across the boundary. Our results reveal evidence for extremely large in-plane electric fields of ≃4000 kV/cm at the domain wall whose effect is manifested in exciton dissociation and routing of free charges and trions toward oppositely poled domains and a nonintuitive spatial intensity dependence. By modeling our result using drift-diffusion and continuity equations, we obtain excellent qualitative agreement with our observations and have explained the observed spatial luminescence modulation using realistic material parameters.

9.
Nano Lett ; 16(11): 7054-7060, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27718588

RESUMEN

Excitons in atomically thin semiconductors necessarily lie close to a surface, and therefore their properties are expected to be strongly influenced by the surrounding dielectric environment. However, systematic studies exploring this role are challenging, in part because the most readily accessible exciton parameter-the exciton's optical transition energy-is largely unaffected by the surrounding medium. Here we show that the role of the dielectric environment is revealed through its systematic influence on the size of the exciton, which can be directly measured via the diamagnetic shift of the exciton transition in high magnetic fields. Using exfoliated WSe2 monolayers affixed to single-mode optical fibers, we tune the surrounding dielectric environment by encapsulating the flakes with different materials and perform polarized low-temperature magneto-absorption studies to 65 T. The systematic increase of the exciton's size with dielectric screening, and concurrent reduction in binding energy (also inferred from these measurements), is quantitatively compared with leading theoretical models. These results demonstrate how exciton properties can be tuned in future 2D optoelectronic devices.

10.
Sci Adv ; 10(2): eadk6359, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38198542

RESUMEN

We report lasing of moiré trapped interlayer excitons (IXs) by integrating a pristine hBN-encapsulated MoSe2/WSe2 heterobilayer into a high-Q (>104) nanophotonic cavity. We control the cavity-IX detuning using a magnetic field and measure their dipolar coupling strength to be 78 ± 4 micro-electron volts, fully consistent with the 82 micro-electron volts predicted by theory. The emission from the cavity mode shows clear threshold-like behavior as the transition is tuned into resonance with the cavity. We observe a superlinear power dependence accompanied by a narrowing of the linewidth as the distinct features of lasing. The onset and prominence of these threshold-like behaviors are pronounced at resonance while weak off-resonance. Our results show that a lasing transition can be induced in interacting moiré IXs with macroscopic coherence extending over the length scale of the cavity mode. Such systems raise interesting perspectives for low-power switching and synaptic nanophotonic devices using two-dimensional materials.

11.
ACS Nano ; 17(24): 25459-25467, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38095325

RESUMEN

We report temperature-dependent spectroscopy on the layered (n = 4) two-dimensional (2D) Ruddlesden-Popper perovskite (BA)(MA)PbI. Helicity-resolved steady-state photoluminescence (PL) reveals no optical degree of polarization. Time-resolved PL shows a photocarrier lifetime on the order of nanoseconds. From simultaneously recorded time-resolved differential reflectivity (TRΔR) and time-resolved Kerr ellipticity (TRKE), a photocarrier lifetime of a few nanoseconds and a spin relaxation time on the order of picoseconds was found. This stark contrast in lifetimes clearly explains the lack of spin polarization in steady-state PL. While we observe clear temperature-dependent effects on the PL dynamics that can be related to structural dynamics, spin relaxation is nearly T-independent. Our results highlight that spin relaxation in 2D (BA)(MA)PbI occurs at time scales faster than the exciton recombination time, which poses a bottleneck for applications aiming to utilize this degree of freedom.

12.
Nat Commun ; 14(1): 5089, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607945

RESUMEN

Negatively-charged boron vacancy centers ([Formula: see text]) in hexagonal Boron Nitride (hBN) are attracting increasing interest since they represent optically-addressable qubits in a van der Waals material. In particular, these spin defects have shown promise as sensors for temperature, pressure, and static magnetic fields. However, their short spin coherence time limits their scope for quantum technology. Here, we apply dynamical decoupling techniques to suppress magnetic noise and extend the spin coherence time by two orders of magnitude, approaching the fundamental T1 relaxation limit. Based on this improvement, we demonstrate advanced spin control and a set of quantum sensing protocols to detect radiofrequency signals with sub-Hz resolution. The corresponding sensitivity is benchmarked against that of state-of-the-art NV-diamond quantum sensors. This work lays the foundation for nanoscale sensing using spin defects in an exfoliable material and opens a promising path to quantum sensors and quantum networks integrated into ultra-thin structures.

13.
ACS Nano ; 16(12): 20364-20375, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36516326

RESUMEN

Understanding the chemical and electronic properties of point defects in two-dimensional materials, as well as their generation and passivation, is essential for the development of functional systems, spanning from next-generation optoelectronic devices to advanced catalysis. Here, we use synchrotron-based X-ray photoelectron spectroscopy (XPS) with submicron spatial resolution to create sulfur vacancies (SVs) in monolayer MoS2 and monitor their chemical and electronic properties in situ during the defect creation process. X-ray irradiation leads to the emergence of a distinct Mo 3d spectral feature associated with undercoordinated Mo atoms. Real-time analysis of the evolution of this feature, along with the decrease of S content, reveals predominant monosulfur vacancy generation at low doses and preferential disulfur vacancy generation at high doses. Formation of these defects leads to a shift of the Fermi level toward the valence band (VB) edge, introduction of electronic states within the VB, and formation of lateral pn junctions. These findings are consistent with theoretical predictions that SVs serve as deep acceptors and are not responsible for the ubiquitous n-type conductivity of MoS2. In addition, we find that these defects are metastable upon short-term exposure to ambient air. By contrast, in situ oxygen exposure during XPS measurements enables passivation of SVs, resulting in partial elimination of undercoordinated Mo sites and reduction of SV-related states near the VB edge. Correlative Raman spectroscopy and photoluminescence measurements confirm our findings of localized SV generation and passivation, thereby demonstrating the connection between chemical, structural, and optoelectronic properties of SVs in MoS2.

14.
ACS Nano ; 15(2): 3139-3151, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33464815

RESUMEN

Layered, two-dimensional (2D) materials are promising for next-generation photonics devices. Typically, the thickness of mechanically cleaved flakes and chemical vapor deposited thin films is distributed randomly over a large area, where accurate identification of atomic layer numbers is time-consuming. Hyperspectral imaging microscopy yields spectral information that can be used to distinguish the spectral differences of varying thickness specimens. However, its spatial resolution is relatively low due to the spectral imaging nature. In this work, we present a 3D deep learning solution called DALM (deep-learning-enabled atomic layer mapping) to merge hyperspectral reflection images (high spectral resolution) and RGB images (high spatial resolution) for the identification and segmentation of MoS2 flakes with mono-, bi-, tri-, and multilayer thicknesses. DALM is trained on a small set of labeled images, automatically predicts layer distributions and segments individual layers with high accuracy, and shows robustness to illumination and contrast variations. Further, we show its advantageous performance over the state-of-the-art model that is solely based on RGB microscope images. This AI-supported technique with high speed, spatial resolution, and accuracy allows for reliable computer-aided identification of atomically thin materials.

15.
Nat Commun ; 12(1): 3489, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108469

RESUMEN

Materials combining semiconductor functionalities with spin control are desired for the advancement of quantum technologies. Here, we study the magneto-optical properties of novel paramagnetic Ruddlesden-Popper hybrid perovskites Mn:(PEA)2PbI4 (PEA = phenethylammonium) and report magnetically brightened excitonic luminescence with strong circular polarization from the interaction with isolated Mn2+ ions. Using a combination of superconducting quantum interference device (SQUID) magnetometry, magneto-absorption and transient optical spectroscopy, we find that a dark exciton population is brightened by state mixing with the bright excitons in the presence of a magnetic field. Unexpectedly, the circular polarization of the dark exciton luminescence follows the Brillouin-shaped magnetization with a saturation polarization of 13% at 4 K and 6 T. From high-field transient magneto-luminescence we attribute our observations to spin-dependent exciton dynamics at early times after excitation, with first indications for a Mn-mediated spin-flip process. Our findings demonstrate manganese doping as a powerful approach to control excitonic spin physics in Ruddlesden-Popper perovskites, which will stimulate research on this highly tuneable material platform with promise for tailored interactions between magnetic moments and excitonic states.

16.
Rev Sci Instrum ; 91(12): 123101, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33379948

RESUMEN

We present diffraction-limited photocurrent (PC) microscopy in the visible spectral range based on broadband excitation and an inherently phase-stable common-path interferometer. The excellent path-length stability guarantees high accuracy without the need for active feedback or post-processing of the interferograms. We illustrate the capabilities of the setup by recording PC spectra of a bulk GaAs device and compare the results to optical transmission data.

17.
Adv Mater ; 32(50): e2006320, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33175433

RESUMEN

Janus crystals represent an exciting class of 2D materials with different atomic species on their upper and lower facets. Theories have predicted that this symmetry breaking induces an electric field and leads to a wealth of novel properties, such as large Rashba spin-orbit coupling and formation of strongly correlated electronic states. Monolayer MoSSe Janus crystals have been synthesized by two methods, via controlled sulfurization of monolayer MoSe2 and via plasma stripping followed thermal annealing of MoS2 . However, the high processing temperatures prevent growth of other Janus materials and their heterostructures. Here, a room-temperature technique for the synthesis of a variety of Janus monolayers with high structural and optical quality is reported. This process involves low-energy reactive radical precursors, which enables selective removal and replacement of the uppermost chalcogen layer, thus transforming classical transition metal dichalcogenides into a Janus structure. The resulting materials show clear mixed character for their excitonic transitions, and more importantly, the presented room-temperature method enables the demonstration of first vertical and lateral heterojunctions of 2D Janus TMDs. The results present significant and pioneering advances in the synthesis of new classes of 2D materials, and pave the way for the creation of heterostructures from 2D Janus layers.

18.
Nat Commun ; 7: 10643, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26856412

RESUMEN

In bulk and quantum-confined semiconductors, magneto-optical studies have historically played an essential role in determining the fundamental parameters of excitons (size, binding energy, spin, dimensionality and so on). Here we report low-temperature polarized reflection spectroscopy of atomically thin WS2 and MoS2 in high magnetic fields to 65 T. Both the A and B excitons exhibit similar Zeeman splittings of approximately -230 µeV T(-1) (g-factor ≃-4), thereby quantifying the valley Zeeman effect in monolayer transition-metal disulphides. Crucially, these large fields also allow observation of the small quadratic diamagnetic shifts of both A and B excitons in monolayer WS2, from which radii of ∼1.53 and ∼1.16 nm are calculated. Further, when analysed within a model of non-local dielectric screening, these diamagnetic shifts also constrain estimates of the A and B exciton binding energies (410 and 470 meV, respectively, using a reduced A exciton mass of 0.16 times the free electron mass). These results highlight the utility of high magnetic fields for understanding new two-dimensional materials.

19.
Sci Rep ; 3: 3143, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24189548

RESUMEN

The remarkable electronic properties of graphene strongly depend on the thickness and geometry of graphene stacks. This wide range of electronic tunability is of fundamental interest and has many applications in newly proposed devices. Using the mid-infrared, magneto-optical Kerr effect, we detect and identify over 18 interband cyclotron resonances (CR) that are associated with ABA and ABC stacked multilayers as well as monolayers that coexist in graphene that is epitaxially grown on 4H-SiC. Moreover, the magnetic field and photon energy dependence of these features enable us to explore the band structure, electron-hole band asymmetries, and mechanisms that activate a CR response in the Kerr effect for various multilayers that coexist in a single sample. Surprisingly, we find that the magnitude of monolayer Kerr effect CRs is not temperature dependent. This unexpected result reveals new questions about the underlying physics that makes such an effect possible.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA