Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Bull Entomol Res ; 113(4): 508-515, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37278198

RESUMEN

The present study evaluated the reproductive compatibility of Trichogramma pretiosum Riley, 1879, through an integrative approach using biological data and morphometry of three isofemale lines (isolines) collected from two geographical areas. These isolines differed in sequences of mitochondrial DNA and reproductive performance in the laboratory. The wasps used to initiate the isolines were collected in different environments: two lines from a Mediterranean climate in Irvine, California, USA, and one line from a tropical climate in Piracicaba, São Paulo, Brazil. Reproductive compatibility was studied by evaluating the sex ratio and number of adult offspring produced of all mating combinations between adults from these isolines. Morphometry was studied by measuring 26 taxonomically useful characters, followed by a multivariate analysis. For the allopatric matings among Brazilian and North American isolines, a low level of crossing incompatibility was recorded, in only one direction of the crosses; whereas the sympatric North American isolines were incompatible in both directions. Multivariate analysis of the morphometric data indicated no distinct groups, suggesting that despite the genetic and biological differences, the isofemale lines are morphologically similar.


Asunto(s)
Reproducción , Avispas , Animales , Brasil , Avispas/genética , ADN Mitocondrial , Mitocondrias
2.
PLoS Pathog ; 16(3): e1008397, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32187233

RESUMEN

Wolbachia are maternally transmitted intracellular bacteria that induce a range of pathogenic and fitness-altering effects on insect and nematode hosts. In parasitoid wasps of the genus Trichogramma, Wolbachia infection induces asexual production of females, thus increasing transmission of Wolbachia. It has been hypothesized that Wolbachia infection accompanies a modification of the host epigenome. However, to date, data on genome-wide epigenomic changes associated with Wolbachia are limited, and are often confounded by background genetic differences. Here, we took sexually reproducing Trichogramma free of Wolbachia and introgressed their genome into a Wolbachia-infected cytoplasm, converting them to Wolbachia-mediated asexuality. Wolbachia was then cured from replicates of these introgressed lines, allowing us to examine the genome-wide effects of wasps newly converted to asexual reproduction while controlling for genetic background. We thus identified gene expression and DNA methylation changes associated with Wolbachia-infection. We found no overlaps between differentially expressed genes and differentially methylated genes, indicating that Wolbachia-infection associated DNA methylation change does not directly modulate levels of gene expression. Furthermore, genes affected by these mechanisms exhibit distinct evolutionary histories. Genes differentially methylated due to the infection tended to be evolutionarily conserved. In contrast, differentially expressed genes were significantly more likely to be unique to the Trichogramma lineage, suggesting host-specific transcriptomic responses to infection. Nevertheless, we identified several novel aspects of Wolbachia-associated DNA methylation changes. Differentially methylated genes included those involved in oocyte development and chromosome segregation. Interestingly, Wolbachia-infection was associated with higher levels of DNA methylation. Additionally, Wolbachia infection reduced overall variability in gene expression, even after accounting for the effect of DNA methylation. We also identified specific cases where alternative exon usage was associated with DNA methylation changes due to Wolbachia infection. These results begin to reveal distinct genes and molecular pathways subject to Wolbachia induced epigenetic modification and/or host responses to Wolbachia-infection.


Asunto(s)
Metilación de ADN , ADN Protozoario , Epigenoma/fisiología , Regulación de la Expresión Génica , Transcriptoma/fisiología , Wolbachia , Animales , ADN Protozoario/genética , ADN Protozoario/metabolismo , Estudio de Asociación del Genoma Completo , Avispas/parasitología , Wolbachia/genética , Wolbachia/metabolismo
3.
Fungal Genet Biol ; 133: 103269, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31518652

RESUMEN

Carrillo, J.D., Rugman-Jones, PF., Husein, D., Stajich, J.E., Kasson, M.T., Carrillo, D., Stouthamer, R., and Eskalen, A. 2019. Members of the Euwallacea fornicatus species complex exhibit promiscuous mutualism with ambrosia fungi in Taiwan. A number of ambrosia beetles have come to prominence in recent years because of the damage they inflict on a variety of trees within invaded habitats across the globe. Ambrosia beetles rely on symbiotic microorganisms, mainly fungi, as a dedicated food source and carry those microorganisms around with them within specialized organs termed mycangia. Investigation of members of the Euwallacea fornicatus species complex and their fungal symbionts in Taiwan revealed promiscuous symbioses with ambrosial Fusaria clade (AFC) members, Graphium spp., and Paracremonium spp. based on co-phylogenetic analyses. For AFC members, a novel diagnostic PCR assay targeting mating type genes MAT1-1-1 and MAT1-2-1 was developed and validated by amplicon size and sequencing. Mating type screening of AFC members revealed the isolates screened are all heterothallic (self-sterile), with both MAT types represented and recovered from fungi vectored by E. fornicatus (tea shot hole borer), E. kuroshio (Kuroshio shot hole borer), and E. whitfordiodendrus (polyphagous shot hole borer) in Taiwan. Members of the Euwallacea fornicatus species complex and the variety of ambrosia fungi they utilize further confirms that their relationship with these fungi are more likely promiscuous in native areas, as opposed to strictly obligate to a specific combination of fungi as observed in invaded areas.


Asunto(s)
Ascomicetos/fisiología , Simbiosis , Gorgojos/microbiología , Animales , Femenino
4.
Phytopathology ; 109(2): 294-300, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30645186

RESUMEN

Nonrecombinant strains of Xylella fastidiosa subsp. multiplex (those lacking evidence of significant intersubspecific homologous recombination) infect the xylem of a wide range of native and nonnative trees in North America. However, the degree to which different strains have a specialized host range remains poorly understood. We tested eight strains isolated from five different tree species (almond, olive, sweetgum, and plum in California and oak in Washington, DC). Experiments were conducted in greenhouses in Riverside, CA, and each strain was tested on 11 to 15 of the 17 plant species tested. Hosts infected by the most strains were plum (5 of 8 strains) and almond (4 of 8), while their congener peach was only infected by 1 of 8. No strains infected oleander or mulberry. All strains successfully infected their original host, with peach, olive (1 of 7), and sweetgum (2 of 6) only infected by such strains. Of the 90 total strain-novel-host combinations tested, 11 resulted in unambiguous infection, 2 gave ambiguous results, and the remaining 77 failed to result in symptoms or bacterial spread. All eight strains had a unique host range, including two pairs of strains with the same multilocus sequence typing sequence type, providing strong evidence of extensive plant-host specialization. There was little evidence that host relatedness was driving host specificity.


Asunto(s)
Enfermedades de las Plantas/microbiología , Xylella , California , Especificidad del Huésped , Estados Unidos , Washingtón
5.
BMC Biol ; 16(1): 54, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29776407

RESUMEN

BACKGROUND: Trichogrammatids are minute parasitoid wasps that develop within other insect eggs. They are less than half a millimeter long, smaller than some protozoans. The Trichogrammatidae are one of the earliest branching families of Chalcidoidea: a diverse superfamily of approximately half a million species of parasitoid wasps, proposed to have evolved from a miniaturized ancestor. Trichogramma are frequently used in agriculture, released as biological control agents against major moth and butterfly pests. Additionally, Trichogramma are well known for their symbiotic bacteria that induce asexual reproduction in infected females. Knowledge of the genome sequence of Trichogramma is a major step towards further understanding its biology and potential applications in pest control. RESULTS: We report the 195-Mb genome sequence of Trichogramma pretiosum and uncover signatures of miniaturization and adaptation in Trichogramma and related parasitoids. Comparative analyses reveal relatively rapid evolution of proteins involved in ribosome biogenesis and function, transcriptional regulation, and ploidy regulation. Chalcids also show loss or especially rapid evolution of 285 gene clusters conserved in other Hymenoptera, including many that are involved in signal transduction and embryonic development. Comparisons between sexual and asexual lineages of Trichogramma pretiosum reveal that there is no strong evidence for genome degradation (e.g., gene loss) in the asexual lineage, although it does contain a lower repeat content than the sexual lineage. Trichogramma shows particularly rapid genome evolution compared to other hymenopterans. We speculate these changes reflect adaptations to miniaturization, and to life as a specialized egg parasitoid. CONCLUSIONS: The genomes of Trichogramma and related parasitoids are a valuable resource for future studies of these diverse and economically important insects, including explorations of parasitoid biology, symbiosis, asexuality, biological control, and the evolution of miniaturization. Understanding the molecular determinants of parasitism can also inform mass rearing of Trichogramma and other parasitoids for biological control.


Asunto(s)
Evolución Molecular , Control Biológico de Vectores , Avispas/clasificación , Avispas/genética , Animales , Genómica , Mariposas Nocturnas/parasitología , Filogenia , Avispas/patogenicidad , Secuenciación Completa del Genoma/métodos
6.
Plant Dis ; 102(6): 1154-1164, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30673440

RESUMEN

Shot hole borer (SHB)-Fusarium dieback (FD) is a new pest-disease complex affecting numerous tree species in California and is vectored by two distinct, but related ambrosia beetles (Euwallacea sp. nr. fornicatus) called polyphagous shot hole borer (PSHB) and Kuroshio shot hole borer (KSHB). These pest-disease complexes cause branch dieback and tree mortality on numerous wildland and landscape tree species, as well as agricultural tree species, primarily avocado. The recent discovery of KSHB in California initiated an investigation of fungal symbionts associated with the KSHB vector. Ten isolates of Fusarium sp. and Graphium sp., respectively, were recovered from the mycangia of adult KSHB females captured in three different locations within San Diego County and compared with the known symbiotic fungi of PSHB. Multigene phylogenetic analyses of the internal transcribed spacer region (ITS), translation elongation factor-1 alpha (TEF1-α), and RNA polymerase II subunit (RPB1, RPB2) regions as well as morphological comparisons revealed that two novel fungal associates Fusarium kuroshium sp. nov. and Graphium kuroshium sp. nov. obtained from KSHB were related to, but distinct from the fungal symbionts F. euwallaceae and G. euwallaceae associated with PSHB in California. Pathogenicity tests on healthy, young avocado plants revealed F. kuroshium and G. kuroshium to be pathogenic. Lesion lengths from inoculation of F. kuroshium were found to be significantly shorter compared with those caused by F. euwallaceae, while no difference in symptom severity was detected between Graphium spp. associated with KSHB and PSHB. These findings highlight the pest disease complexes of KSHB-FD and PSHB-FD as distinct, but collective threats adversely impacting woody hosts throughout California.


Asunto(s)
Ascomicetos/genética , Escarabajos/microbiología , Fusarium/genética , Enfermedades de las Plantas/microbiología , Simbiosis , Animales , Ascomicetos/fisiología , California , Escarabajos/fisiología , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , Fusarium/fisiología , Persea/microbiología , Filogenia
7.
Mycologia ; 108(2): 313-29, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26740544

RESUMEN

Fusarium euwallaceae is a well-characterized fungal symbiont of the exotic ambrosia beetle Euwallacea sp. (polyphagous shot hole borer [PSHB]), together inciting Fusarium dieback on many host plants in Israel and California. Recent discoveries of additional fungal symbionts within ambrosia beetle mycangia suggest these fungi occur as communities. Colony-forming units of Graphium euwallaceae sp. nov. and Paracremonium pembeum sp. nov., two novel fungal associates of PSHB from California, grew from 36 macerated female heads and 36 gallery walls collected from Platanus racemosa, Acer negundo, Persea americana and Ricinus communis. Fungi were identified based on micromorphology and phylogenetic analyses of the combined internal transcribed spacer region (nuc rDNA ITS1-5.8S-ITS2 [ITS barcode]), elongation factor (EF 1-α), small subunit (18S rDNA) sequences for Graphium spp., ITS, EF 1-α, calmodulin (cmdA), large subunit of the ATP citrate lyase (acl1), ß-tubulin (tub2), RNA polymerase II second largest subunit (rpb2) and large subunit (28S rDNA) sequences for Paracremonium spp. Other Graphium spp. recovered from PSHB in Vietnam, Euwallacea fornicatus in Thailand, E. validus in Pennsylvania and Paracremonium sp. recovered from PSHB in Vietnam were identified. F. euwallaceae was recovered from mycangia at higher frequencies and abundances in all hosts except R. communis, in which those of F. euwallaceae and P. pembeum were equal. P. pembeum was relatively more abundant within gallery walls of A. negundo and R. communis. In all hosts combined F. euwallaceae was relatively more abundant within PSHB heads than gallery walls. All three fungi grew at different rates and colonized inoculated excised stems of P. americana and A. negundo. P. pembeum produced longer lesions than F. euwallaceae and G. euwallaceae on inoculated avocado shoots. Results indicate PSHB is associated with a dynamic assemblage of mycangial fungal associates that pose additional risk to native and nonnative hosts in California.


Asunto(s)
Ascomicetos/clasificación , Ascomicetos/aislamiento & purificación , Escarabajos/microbiología , Animales , Ascomicetos/genética , California , Femenino , Persea/microbiología , Filogenia , Enfermedades de las Plantas/microbiología
8.
J Econ Entomol ; 109(2): 969-72, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26838346

RESUMEN

A modular system for studying the biology of Scolytinae using 3D printed emergence traps is presented. This system consists of traps that can be used for the introduction of beetles into trees as well as for the determination of the number of offspring emerging from trees and branches, and their production of frass and sawdust. Open-source files used for printing these traps have been deposited as supplementary material and can be downloaded for trap production by students of Scolytinae with access to a 3D printer. The cost in material for the production of a single emergence trap on the printer used here is approximately $1.30, with a print time of less than 90 min.


Asunto(s)
Entomología/métodos , Gorgojos/fisiología , Animales
9.
J Insect Sci ; 16(1)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27651423

RESUMEN

The Red Palm Weevil (RPW) Rhynchophorus ferrugineus (Olivier) is a voracious pest of palm species. In recent decades its range has expanded greatly, particularly impacting the date palm industry in the Middle East. This has led to conjecture regarding the origins of invasive RPW populations. For example, in parts of the Middle East, RPW is commonly referred to as the "Pakistani weevil" in the belief that it originated there. We sought evidence to support or refute this belief. First reports of RPW in Pakistan were from the Punjab region in 1918, but it is unknown whether it is native or invasive there. We estimated genetic variation across five populations of RPW from two provinces of Pakistan, using sequences of the mitochondrial cytochrome oxidase subunit I gene. Four haplotypes were detected; two (H1 and H5) were abundant, accounting for 88% of specimens across the sampled populations, and were previously known from the Middle East. The remaining haplotypes (H51 and H52) were newly detected (in global terms) and there was no geographic overlap in their distribution within Pakistan. Levels of haplotype diversity were much lower than those previously recorded in accepted parts of the native range of RPW, suggesting that the weevil may be invasive in Pakistan. The affinity of Pakistani haplotypes to those reported from India (and the geographical proximity of the two countries), make the latter a likely "native" source. With regards the validity of the name "Pakistani weevil", we found little genetic evidence to justify it.


Asunto(s)
ADN Mitocondrial/genética , Variación Genética , Proteínas de Insectos/genética , Gorgojos/genética , Distribución Animal , Animales , Especies Introducidas , Pakistán , Gorgojos/enzimología
10.
BMC Microbiol ; 15: 140, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26205080

RESUMEN

BACKGROUND: The native microflora associated with mosquitoes have important roles in mosquito development and vector competence. Sequencing of bacterial V3 region from 16S rRNA genes across the developmental stages of Culex mosquitoes (early and late larval instars, pupae and adults) was used to test the hypothesis that bacteria found in the larval stage of Culex are transstadially transmitted to the adult stage, and to compare the microbiomes of field-collected versus laboratory-reared mosquitoes. RESULTS: Beta diversity analysis revealed that bacterial community structure differed among three life stages (larvae, pupae and adults) of Culex tarsalis. Although only ~2% of the total number of bacterial OTUs were found in all stages, sequences from these OTUs accounted for nearly 82% of the total bacterial sequences recovered from all stages. Thorsellia (Gammaproteobacteria) was the most abundant bacterial taxon found across all developmental stages of field-collected Culex mosquitoes, but was rare in mosquitoes from laboratory-reared colonies. The proportion of Thorsellia sequences in the microbiomes of mosquito life stages varied ontogenetically with the greatest proportions recovered from the pupae of C. tarsalis and the lowest from newly emerged adults. The microbiome of field-collected late instar larvae was not influenced significantly by differences in the microbiota of the habitat due to habitat age or biopesticide treatments. The microbiome diversity was the greatest in the early instar larvae and the lowest in laboratory-reared mosquitoes. CONCLUSIONS: Bacterial communities in early instar C. tarsalis larvae were significantly more diverse when compared to late instar larvae, pupae and newly emerged adults. Some of the bacterial OTUs found in the early instar larvae were also found across developmental stages. Thorsellia dominated the bacterial communities in field-collected immature stages but occurred at much lower relative abundance in adults. Differences in microbiota observed in larval habitats did not influence bacterial community profiles of late instar larvae or adults. However, bacterial communities in laboratory-reared C. tarsalis larvae differed significantly from the field. Determining the role of Thorsellia in mosquitoes and its distribution across different species of mosquitoes warrants further investigation.


Asunto(s)
Culex/crecimiento & desarrollo , Culex/microbiología , Microbiota , Animales , Bacterias/clasificación , Bacterias/genética , Análisis por Conglomerados , ADN Ribosómico/química , ADN Ribosómico/genética , Tracto Gastrointestinal/microbiología , Larva/microbiología , Datos de Secuencia Molecular , Filogenia , Pupa/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
11.
Appl Environ Microbiol ; 80(3): 1159-69, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24296499

RESUMEN

The bacterial pathogen Xylella fastidiosa infects xylem and causes disease in many plant species in the Americas. Different subspecies of this bacterium and different genotypes within subspecies infect different plant hosts, but the genetics of host adaptation are unknown. Here we examined the hypothesis that the introduction of novel genetic variation via intersubspecific homologous recombination (IHR) facilitates host shifts. We investigated IHR in 33 X. fastidiosa subsp. multiplex isolates previously identified as recombinant based on 8 loci (7 multilocus sequence typing [MLST] loci plus 1 locus). We found significant evidence of introgression from X. fastidiosa subsp. fastidiosa in 4 of the loci and, using published data, evidence of IHR in 6 of 9 additional loci. Our data showed that IHR regions in 2 of the 4 loci were inconsistent (12 mismatches) with X. fastidiosa subsp. fastidiosa alleles found in the United States but consistent with alleles from Central America. The other two loci were consistent with alleles from both regions. We propose that the recombinant forms all originated via genomewide recombination of one X. fastidiosa subsp. multiplex ancestor with one X. fastidiosa subsp. fastidiosa donor from Central America that was introduced into the United States but subsequently disappeared. Using all of the available data, 5 plant hosts of the recombinant types were identified, 3 of which also supported non-IHR X. fastidiosa subsp. multiplex, but 2 were unique to recombinant types from blueberry (7 isolates from Georgia, 3 from Florida); and blackberry (1 each from Florida and North Carolina), strongly supporting the hypothesis that IHR facilitated a host shift to blueberry and possibly blackberry.


Asunto(s)
Recombinación Homóloga , Enfermedades de las Plantas/microbiología , Xylella/genética , Alelos , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , Evolución Molecular , Variación Genética , Humanos , Tipificación de Secuencias Multilocus , Homología de Secuencia , Estados Unidos , Xylella/clasificación
12.
Appl Environ Microbiol ; 80(10): 3025-33, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24610840

RESUMEN

Homologous recombination plays an important role in the structuring of genetic variation of many bacteria; however, its importance in adaptive evolution is not well established. We investigated the association of intersubspecific homologous recombination (IHR) with the shift to a novel host (mulberry) by the plant-pathogenic bacterium Xylella fastidiosa. Mulberry leaf scorch was identified about 25 years ago in native red mulberry in the eastern United States and has spread to introduced white mulberry in California. Comparing a sequence of 8 genes (4,706 bp) from 21 mulberry-type isolates to published data (352 isolates representing all subspecies), we confirmed previous indications that the mulberry isolates define a group distinct from the 4 subspecies, and we propose naming the taxon X. fastidiosa subsp. morus. The ancestry of its gene sequences was mixed, with 4 derived from X. fastidiosa subsp. fastidiosa (introduced from Central America), 3 from X. fastidiosa subsp. multiplex (considered native to the United States), and 1 chimeric, demonstrating that this group originated by large-scale IHR. The very low within-type genetic variation (0.08% site polymorphism), plus the apparent inability of native X. fastidiosa subsp. multiplex to infect mulberry, suggests that this host shift was achieved after strong selection acted on genetic variants created by IHR. Sequence data indicate that a single ancestral IHR event gave rise not only to X. fastidiosa subsp. morus but also to the X. fastidiosa subsp. multiplex recombinant group which infects several hosts but is the only type naturally infecting blueberry, thus implicating this IHR in the invasion of at least two novel native hosts, mulberry and blueberry.


Asunto(s)
Recombinación Homóloga , Especificidad del Huésped , Morus/microbiología , Enfermedades de las Plantas/microbiología , Xylella/genética , Datos de Secuencia Molecular , Morus/clasificación , Filogenia , Estados Unidos , Xylella/clasificación , Xylella/fisiología
13.
J Econ Entomol ; 107(2): 483-95, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24772526

RESUMEN

Neutral molecular markers are gene sequences where variants are considered to confer no fitness advantage, such as microsatellites and mitochondrial haplotypes. Several types of neutral marker are easy to develop, cheap to use, and have found extensive application for addressing ecological questions. In biocontrol, these markers are used to simplify identification of cryptic species and of prey remains in predators. Here, we address the potential of neutral molecular markers for determining the relative performance of a "superior" strain of a species after release into an already established conspecific population. We used modeling to show that only under very limited conditions can traditional neutral markers be used to demonstrate that beneficial genetic variation was successfully introgressed into the existing population. However, new population genomic methods do make it possible to track alleles at a large number of loci and consequently make it possible to show if alleles from a superior strain spread in an already established conspecific population.


Asunto(s)
Agentes de Control Biológico , Marcadores Genéticos , Insectos/fisiología , Animales , Biomarcadores , Cruzamientos Genéticos , Aptitud Genética , Ligamiento Genético , Interacciones Huésped-Parásitos , Insectos/genética , Especies Introducidas , Modelos Biológicos
14.
Appl Environ Microbiol ; 79(7): 2189-200, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23354698

RESUMEN

The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 "non-IHR" isolates, 2 minimally recombinant "intermediate" ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): "almond," "peach," and "oak" types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity.


Asunto(s)
Evolución Molecular , Xylella/clasificación , Xylella/genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , Especificidad del Huésped , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Filogenia , Enfermedades de las Plantas/microbiología , Estados Unidos , Xylella/patogenicidad
15.
Plant Dis ; 97(7): 938-951, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30722538

RESUMEN

The polyphagous shot hole borer (PSHB) is an invasive ambrosia beetle that forms a symbiosis with a new, as-yet-undescribed Fusarium sp., together causing Fusarium dieback on avocado and other host plants in California and Israel. In California, PSHB was first reported on black locust in 2003 but there were no records of fungal damage until 2012, when a Fusarium sp. was recovered from the tissues of several backyard avocado trees infested with PSHB in Los Angeles County. The aim of this study was to determine the plant host range of the beetle-fungus complex in two heavily infested botanical gardens in Los Angeles County. Of the 335 tree species observed, 207 (62%), representing 58 plant families, showed signs and symptoms consistent with attack by PSHB. The Fusarium sp. was recovered from 54% of the plant species attacked by PSHB, indicated by the presence of the Fusarium sp. at least at the site of the entry hole. Trees attacked by PSHB included 11 species of California natives, 13 agriculturally important species, and many common street trees. Survey results also revealed 19 tree species that function as reproductive hosts for PSHB. Additionally, approximately a quarter of all tree individuals planted along the streets of southern California belong to a species classified as a reproductive host. These data suggest the beetle-disease complex potentially may establish in a variety of plant communities locally and worldwide.

16.
Appl Environ Microbiol ; 78(13): 4702-14, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22544234

RESUMEN

Documenting the role of novel mutation versus homologous recombination in bacterial evolution, and especially in the invasion of new hosts, is central to understanding the long-term dynamics of pathogenic bacteria. We used multilocus sequence typing (MLST) to study this issue in Xylella fastidiosa subsp. pauca from Brazil, a bacterium causing citrus variegated chlorosis (CVC) and coffee leaf scorch (CLS). All 55 citrus isolates typed (plus one coffee isolate) defined three similar sequence types (STs) dominated by ST11 (85%), while the remaining 22 coffee isolates defined two STs, mainly ST16 (74%). This low level of variation masked unusually large allelic differences (>1% divergence with no intermediates) at five loci (leuA, petC, malF, cysG, and holC). We developed an introgression test to detect whether these large differences were due to introgression via homologous recombination from another X. fastidiosa subspecies. Using additional sequencing around these loci, we established that the seven randomly chosen MLST targets contained seven regions of introgression totaling 2,172 bp of 4,161 bp (52%), only 409 bp (10%) of which were detected by other recombination tests. This high level of introgression suggests the hypothesis that X. fastidiosa subsp. pauca became pathogenic on citrus and coffee (crops cultivated in Brazil for several hundred years) only recently after it gained genetic variation via intersubspecific recombination, facilitating a switch from native hosts. A candidate donor is the subspecies infecting plum in the region since 1935 (possibly X. fastidiosa subsp. multiplex). This hypothesis predicts that nonrecombinant native X. fastidiosa subsp. pauca (not yet isolated) does not cause disease in citrus or coffee.


Asunto(s)
Recombinación Genética , Xylella/clasificación , Xylella/genética , Brasil , Citrus/microbiología , Análisis por Conglomerados , Café/microbiología , ADN Bacteriano/química , ADN Bacteriano/genética , Variación Genética , Genotipo , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Enfermedades de las Plantas/microbiología , Xylella/aislamiento & purificación
17.
Microb Ecol ; 64(2): 537-45, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22450512

RESUMEN

Vertical transmission is the primary route of the endosymbiont Wolbachia for its own spread among invertebrate hosts, but horizontal transmission between different hosts is believed to have occurred multiple times. However, it is not well known how Wolbachia commonly spread among closely related hosts. We focused on the closely related species of the minute pirate bugs belonging to the genus Orius, which are important biological control agents in agricultural crops because they are the most useful natural enemy of various tiny pests, such as thrips. Here, we examined five Orius species (Orius sauteri, Orius nagaii, Orius minutus, Orius strigicollis, and Orius tantillus) from eight geographic localities in Japan for Wolbachia infection. Two distinct strains, wOus1 and wOus2, were detected based on Wolbachia surface protein (wsp) gene sequencing. Furthermore, multilocus sequence typing revealed that each of the strains comprised two variants that differed in a single nucleotide. The overall distribution patterns of the two Wolbachia strains were found to differ among host species: prevalent double infection with wOus1 and wOus2 in O. strigicollis; fixation of single infection with wOus2 in O. nagaii; occurrence of single infection with wOus1 in O. sauteri; prevalence of single infection with wOus1 in O. minutus with an exception in a single population; and lack of Wolbachia infection in O. tantillus. Such differences in the distribution patterns of Wolbachia may reflect the evolutionary history of Wolbachia infection among Orius species and/or ecological and physiological differences among the Orius species that determine the invasiveness and maintenance of the two Wolbachia strains.


Asunto(s)
Evolución Biológica , Flores/parasitología , Transferencia de Gen Horizontal , Heterópteros/microbiología , Simbiosis , Wolbachia/genética , Animales , Clonación Molecular , Heterópteros/clasificación , Japón , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Filogenia , Recombinación Genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Wolbachia/clasificación , Wolbachia/fisiología
18.
Naturwissenschaften ; 99(2): 143-52, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22218612

RESUMEN

Sexually aberrant individuals, displaying both male and female characteristics, are rare in occurrence but are documented throughout the animal kingdom. In parasitoid wasps of the genus Trichogramma, such individuals typically appear as a result of rearing Wolbachia-infected thelytokous wasps at high temperatures. Sexually aberrant Trichogramma have been referred to interchangeably in the literature as gynandromorphs, sexual mosaics and intersexes. However, accurately used, the terms "gynandromorph" and "sexual mosaic" describe an individual composed of a mixture of genetically distinct tissues corresponding to the sexual phenotypes observed, while "intersex" refers to an individual having a uniform genetic constitution but with some tissues exhibiting sexual phenotypes conflicting with the associated genotype. Here, we investigate the heat-induced production of sexually aberrant offspring by thelytokous Trichogramma kaykai. Aberrant individuals were rare, but each was characterized as one of 11 morphotypes ranging from very feminine to very masculine. Overall, the production of aberrant individuals increased with time from the onset of maternal oviposition. However, while the production of males also increased with time, the degree of masculinity of aberrant individuals did not; the different morphotypes appeared to be produced haphazardly. We conclude that the aberrant individuals produced by T. kaykai are actually intersexes and not gynandromorphs. The wasp's close association with Wolbachia and the absence of intersexes in uninfected populations allow us to discuss a possible origin of the condition.


Asunto(s)
Avispas/microbiología , Wolbachia/fisiología , Animales , Trastornos del Desarrollo Sexual/microbiología , Trastornos del Desarrollo Sexual/patología , Femenino , Masculino , Factores de Tiempo , Avispas/anatomía & histología , Avispas/genética
19.
PeerJ ; 10: e13912, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36117539

RESUMEN

Background: Wolbachia bacteria are estimated to occur in more than half of all insect species. In Hymenoptera, Wolbachia often manipulates its host's reproduction to its own advantage. Wolbachia is likely the reason that males are rare in the uniparental Ooencyrtus mirus Triapitsyn & Power (Hymenoptera: Encyrtidae). The likelihood of producing male offspring can be increased by giving mothers a continuous supply of Bagrada hilaris (Burmeister) (Heteroptera: Pentatomidae) host eggs to parasitize for 2-3 weeks, by feeding the parents antibiotics, or by rearing parent wasps at high temperatures; all variables that have been shown to correlate with depleting Wolbachia titers in other organisms. The purpose of the current study was to determine whether thelytoky in O. mirus is due to Wolbachia, and if so, at what time in development the sex change occurs. We also wished to determine if Wolbachia removal results in the production of intersexes, as in some other hymenopterans. Finally, mating behavior was observed to see if and where it breaks down as a result of the species becoming thelytokous. Methods: Females were collected from parental lines of O. mirus reared at 26, 30, 31, 32, 33, 34, and 36 °C. The offspring of these females were reared at 26 °C, and their sex-ratio was determined. In a subsequent experiment, the parental generation was switched between 26 °C and 36 °C during development to narrow down the critical period at which changes occurred that subsequently affected the sex-ratio of their offspring. Results: The sex ratio was male biased in the offspring of O. mirus parents reared at 34 °C and 36 °C (high temperatures), even if the offspring themselves were reared at 26 °C. The constant temperature at which the percentage of males started to increase after two generations was 31 °C (10% males), rising to 39% males at 33 °C, and 100% males at 34 °C and 36 °C. Lasting more than 2 days, the critical period for the change toward a male biased sex ratio was during the second half of the parent's development. Molecular diagnostic assays confirmed that O. mirus females contain Wolbachia and males do not. Examination of preserved males and male-female pairs under a dissecting microscope showed no signs of intersex characters. Observation of the mating behavior of live O. mirus showed that males initiate courtship by drumming their antennae on a female's antennae, but after a few seconds, the females typically turn and walk away. However, a few instances of possible copulation were noted. Conclusions: As hypothesized, the results indicated that thelytoky in O. mirus is likely mediated by Wolbachia bacteria. To maximize the population growth rate without generating males, the best temperature for mass rearing this species is 30 °C.


Asunto(s)
Heterópteros , Avispas , Wolbachia , Animales , Masculino , Femenino , Temperatura , Wolbachia/genética , Razón de Masculinidad , Avispas/microbiología , Reproducción
20.
J Econ Entomol ; 115(6): 1901-1910, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36181761

RESUMEN

The Euwallacea fornicatus species complex (Coleoptera: Curculionidae: Scolytinae: Xyleborini) is a group of four cryptic ambrosia beetle species. Native to Asia, several members of the complex have invaded other continents, where they cause significant economic losses to agricultural crops (e.g., avocado) and natural ecosystems. We were primarily interested in developing management strategies by focusing on the flight behavior of the beetles. Thus, seasonal differences in flight activity were assessed using panel traps baited with a commercial quercivorol lure, placed in infested avocado orchards in Danei, Tainan, Taiwan. Same traps were used to investigate the flight activity of a natural enemy, an undescribed species of the Braconid genus Eucosmophorus sp. Shothole borer species were identified using a DNA-based, high resolution melting assay. Trap data were compared to the predictions of a simple degree-day model, incorporating developmental data and several environmental parameters known to influence flight. Such as the time period representing most of flight activity in a day and temperature-dependent flight propensity. In stark contrast to the degree-day model which predicted the highest emergence, and by extension flight, of shothole borers during spring and summer (May to November), flight activity was actually lowest during these months, and instead, peaked during the winter (October to March). Abundance of the parasitoid wasp closely mirrored flight activity of the shothole borers. The mismatch of trapping and modeling data can have many causes, heavy precipitation and possibly cooperative brood care may suppress the dispersal behavior of the shothole borers during the summer.


Asunto(s)
Ecosistema , Vuelo Animal , Avispas , Gorgojos , Animales , Persea/parasitología , Estaciones del Año , Taiwán , Avispas/fisiología , Gorgojos/parasitología , Vuelo Animal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA