Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
EMBO J ; 39(4): e102363, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31957048

RESUMEN

Navigation of sperm in fluid flow, called rheotaxis, provides long-range guidance in the mammalian oviduct. The rotation of sperm around their longitudinal axis (rolling) promotes rheotaxis. Whether sperm rolling and rheotaxis require calcium (Ca2+ ) influx via the sperm-specific Ca2+ channel CatSper, or rather represent passive biomechanical and hydrodynamic processes, has remained controversial. Here, we study the swimming behavior of sperm from healthy donors and from infertile patients that lack functional CatSper channels, using dark-field microscopy, optical tweezers, and microfluidics. We demonstrate that rolling and rheotaxis persist in CatSper-deficient human sperm. Furthermore, human sperm undergo rolling and rheotaxis even when Ca2+ influx is prevented. Finally, we show that rolling and rheotaxis also persist in mouse sperm deficient in both CatSper and flagellar Ca2+ -signaling domains. Our results strongly support the concept that passive biomechanical and hydrodynamic processes enable sperm rolling and rheotaxis, rather than calcium signaling mediated by CatSper or other mechanisms controlling transmembrane Ca2+ flux.


Asunto(s)
Hidrodinámica , Motilidad Espermática , Espermatozoides/fisiología , Animales , Fenómenos Biomecánicos , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio , Humanos , Masculino , Ratones , Proteínas de Plasma Seminal/genética , Proteínas de Plasma Seminal/metabolismo
2.
EMBO J ; 39(4): e102723, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31880004

RESUMEN

Cilia serve as cellular antennae that translate sensory information into physiological responses. In the sperm flagellum, a single chemoattractant molecule can trigger a Ca2+ rise that controls motility. The mechanisms underlying such ultra-sensitivity are ill-defined. Here, we determine by mass spectrometry the copy number of nineteen chemosensory signaling proteins in sperm flagella from the sea urchin Arbacia punctulata. Proteins are up to 1,000-fold more abundant than the free cellular messengers cAMP, cGMP, H+ , and Ca2+ . Opto-chemical techniques show that high protein concentrations kinetically compartmentalize the flagellum: Within milliseconds, cGMP is relayed from the receptor guanylate cyclase to a cGMP-gated channel that serves as a perfect chemo-electrical transducer. cGMP is rapidly hydrolyzed, possibly via "substrate channeling" from the channel to the phosphodiesterase PDE5. The channel/PDE5 tandem encodes cGMP turnover rates rather than concentrations. The rate-detection mechanism allows continuous stimulus sampling over a wide dynamic range. The textbook notion of signal amplification-few enzyme molecules process many messenger molecules-does not hold for sperm flagella. Instead, high protein concentrations ascertain messenger detection. Similar mechanisms may occur in other small compartments like primary cilia or dendritic spines.


Asunto(s)
Arbacia/fisiología , Quimiotaxis , Proteómica , Transducción de Señal , Animales , Arbacia/ultraestructura , Calcio/metabolismo , Cilios/fisiología , Cilios/ultraestructura , GMP Cíclico/metabolismo , Tomografía con Microscopio Electrónico , Flagelos/fisiología , Flagelos/ultraestructura , Guanilato Ciclasa/metabolismo , Masculino , Espectrometría de Masas , Espermatozoides/fisiología , Espermatozoides/ultraestructura
3.
Biol Chem ; 404(4): 241-254, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36809224

RESUMEN

The Phosphatidylinositol 3-phosphate 5-kinase Type III PIKfyve is the main source for selectively generated phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a known regulator of membrane protein trafficking. PI(3,5)P2 facilitates the cardiac KCNQ1/KCNE1 channel plasma membrane abundance and therewith increases the macroscopic current amplitude. Functional-physical interaction of PI(3,5)P2 with membrane proteins and its structural impact is not sufficiently understood. This study aimed to identify molecular interaction sites and stimulatory mechanisms of the KCNQ1/KCNE1 channel via the PIKfyve-PI(3,5)P2 axis. Mutational scanning at the intracellular membrane leaflet and nuclear magnetic resonance (NMR) spectroscopy identified two PI(3,5)P2 binding sites, the known PIP2 site PS1 and the newly identified N-terminal α-helix S0 as relevant for functional PIKfyve effects. Cd2+ coordination to engineered cysteines and molecular modeling suggest that repositioning of S0 stabilizes the channel s open state, an effect strictly dependent on parallel binding of PI(3,5)P2 to both sites.


Asunto(s)
Canal de Potasio KCNQ1 , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Sitios de Unión , Mutación , Membrana Celular/metabolismo
4.
Anal Biochem ; 657: 114889, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36113549

RESUMEN

1,2-Diacylglycerol lipases (DAGLs) are the most important enzymes for the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG), and their role in various pathophysiological conditions is currently under investigation. We synthesized a new 1,2-diacylglycerol substrate for these enzymes with a fluorogenic 4-(pyren-1-yl)butanoyl residue in sn-2 position. Using the fluorescent substrate, we measured DAGL activity in rat liver S9 fraction and brain microsomes. To this end, 2-acylglycerol release was directly determined via HPLC and fluorescence detection without further sample clean-up. The method was used to evaluate the action of several known DAGL inhibitors. These showed partly significant differences in their inhibitory effect on DAGLs in liver versus brain preparations. The method was verified by measuring the IC50 values for a subset of inhibitors by HPLC and single-quad MS detection using the deuterated natural DAGL substrate 1-stearoyl-2-arachidonoyl-sn-glycerol-d8. DAGL activity could also be measured with the new pyrene-labeled substrate by HPLC and UV instead of fluorescence detection, if larger quantities of the samples were injected into the HPLC system. Furthermore, using intact human sperm, we show that the substrate is also converted by DAGL enzymes in human cells.


Asunto(s)
Endocannabinoides , Lipoproteína Lipasa , Animales , Cromatografía Líquida de Alta Presión , Diglicéridos , Glicéridos , Humanos , Masculino , Pirenos , Ratas , Semen
5.
J Biol Chem ; 295(38): 13181-13193, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32703901

RESUMEN

The sperm-specific Ca2+ channel CatSper (cation channel of sperm) controls the influx of Ca2+ into the flagellum and, thereby, the swimming behavior of sperm. A hallmark of human CatSper is its polymodal activation by membrane voltage, intracellular pH, and oviductal hormones. Whether CatSper is also activated by signaling pathways involving an increase of cAMP and ensuing activation of PKA is, however, a matter of controversy. To shed light on this question, we used kinetic ion-sensitive fluorometry, patch-clamp recordings, and optochemistry to study transmembrane Ca2+ flux and membrane currents in human sperm from healthy donors and from patients that lack functional CatSper channels. We found that human CatSper is neither activated by intracellular cAMP directly nor indirectly by the cAMP/PKA-signaling pathway. Instead, we show that nonphysiological concentrations of cAMP and membrane-permeable cAMP analogs used to mimic the action of intracellular cAMP activate human CatSper from the outside via a hitherto-unknown extracellular binding site. Finally, we demonstrate that the effects of common PKA inhibitors on human CatSper rest predominantly, if not exclusively, on off-target drug actions on CatSper itself rather than on inhibition of PKA. We conclude that the concept of an intracellular cAMP/PKA-activation of CatSper is primarily based on unspecific effects of chemical probes used to interfere with cAMP signaling. Altogether, our findings solve several controversial issues and reveal a novel ligand-binding site controlling the activity of CatSper, which has important bearings on future studies of cAMP and Ca2+ signaling in sperm.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Espermatozoides/metabolismo , Canales de Calcio/genética , AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Humanos , Concentración de Iones de Hidrógeno , Masculino , Espermatozoides/citología
6.
Mol Hum Reprod ; 27(3)2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33561200

RESUMEN

Motile cilia line the efferent ducts of the mammalian male reproductive tract. Several recent mouse studies have demonstrated that a reduced generation of multiple motile cilia in efferent ducts is associated with obstructive oligozoospermia and fertility issues. However, the sole impact of efferent duct cilia dysmotility on male infertility has not been studied so far either in mice or human. Using video microscopy, histological- and ultrastructural analyses, we examined male reproductive tracts of mice deficient for the axonemal motor protein DNAH5: this defect exclusively disrupts the outer dynein arm (ODA) composition of motile cilia but not the ODA composition and motility of sperm flagella. These mice have immotile efferent duct cilia that lack ODAs, which are essential for ciliary beat generation. Furthermore, they show accumulation of sperm in the efferent duct. Notably, the ultrastructure and motility of sperm from these males are unaffected. Likewise, human individuals with loss-of-function DNAH5 mutations present with reduced sperm count in the ejaculate (oligozoospermia) and dilatations of the epididymal head but normal sperm motility, similar to DNAH5 deficient mice. The findings of this translational study demonstrate, in both mice and men, that efferent duct ciliary motility is important for male reproductive fitness and uncovers a novel pathomechanism distinct from primary defects of sperm motility (asthenozoospermia). If future work can identify environmental factors or defects in genes other than DNAH5 that cause efferent duct cilia dysmotility, this will help unravel other causes of oligozoospermia and may influence future practices in genetic and fertility counseling as well as ART.


Asunto(s)
Dineínas Axonemales/metabolismo , Axonema/metabolismo , Cilios/metabolismo , Genitales Masculinos/metabolismo , Motilidad Espermática , Espermatozoides/patología , Animales , Dineínas Axonemales/genética , Axonema/genética , Axonema/ultraestructura , Cilios/genética , Cilios/ultraestructura , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/metabolismo , Trastornos de la Motilidad Ciliar/patología , Predisposición Genética a la Enfermedad , Genitales Masculinos/ultraestructura , Humanos , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Movimiento , Mutación , Oligospermia/genética , Oligospermia/metabolismo , Oligospermia/patología , Fenotipo , Espermatozoides/ultraestructura
7.
Hum Reprod ; 36(10): 2638-2648, 2021 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-34486673

RESUMEN

STUDY QUESTION: Do selective serotonin reuptake inhibitor (SSRI) antidepressants affect the function of human sperm? SUMMARY ANSWER: The SSRI antidepressant Sertraline (e.g. Zoloft) inhibits the sperm-specific Ca2+ channel CatSper and affects human sperm function in vitro. WHAT IS KNOWN ALREADY: In human sperm, CatSper translates changes of the chemical microenvironment into changes of the intracellular Ca2+ concentration ([Ca2+]i) and swimming behavior. CatSper is promiscuously activated by oviductal ligands, but also by synthetic chemicals that might disturb the fertilization process. It is well known that SSRIs have off-target actions on Ca2+, Na+ and K+ channels in somatic cells. Whether SSRIs affect the activity of CatSper is, however, unknown. STUDY DESIGN, SIZE, DURATION: We studied the action of the seven drugs belonging to the most commonly prescribed class of antidepressants, SSRIs, on resting [Ca2+]i and Ca2+ influx via CatSper in human sperm. The SSRI Sertraline was selected for in-depth analysis of its action on steroid-, prostaglandin-, pH- and voltage-activation of human CatSper. Moreover, the action of Sertraline on sperm acrosomal exocytosis and penetration into viscous media was evaluated. PARTICIPANTS/MATERIALS, SETTING, METHODS: The activity of CatSper was investigated in sperm of healthy volunteers, using kinetic Ca2+ fluorimetry and patch-clamp recordings. Acrosomal exocytosis was investigated using Pisum sativum agglutinin and image cytometry. Sperm penetration in viscous media was evaluated using the Kremer test. MAIN RESULTS AND THE ROLE OF CHANCE: Several SSRIs affected [Ca2+]i and attenuated ligand-induced Ca2+ influx via CatSper. In particular, the SSRI Sertraline almost completely suppressed Ca2+ influx via CatSper. Remarkably, the drug was about four-fold more potent to suppress prostaglandin- versus steroid-induced Ca2+ influx. Sertraline also suppressed alkaline- and voltage-activation of CatSper, indicating that the drug directly inhibits the channel. Finally, Sertraline impaired ligand-induced acrosome reaction and sperm penetration into viscous media. LIMITATIONS, REASONS FOR CAUTION: This is an in vitro study. Future studies have to assess the physiological relevance in vivo. WIDER IMPLICATIONS OF THE FINDINGS: The off-target action of Sertraline on CatSper in human sperm might impair the fertilization process. In a research setting, Sertraline may be used to selectively inhibit prostaglandin-induced Ca2+ influx. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Swiss Centre for Applied Human Toxicology (SCAHT), the Département de l'Instruction Publique of the State of Geneva, the German Research Foundation (CRU326), the Interdisciplinary Center for Clinical Research, Münster (IZKF; Str/014/21), the Innovation Fund Denmark (grant numbers 14-2013-4) and the EDMaRC research grant from the Kirsten and Freddy Johansen's Foundation. The authors declare that no conflict of interest could be perceived as prejudicing the impartiality of the research reported. TRIAL REGISTRATION NUMBER: NA.


Asunto(s)
Calcio , Sertralina , Antidepresivos/metabolismo , Antidepresivos/farmacología , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio , Humanos , Masculino , Progesterona/farmacología , Sertralina/metabolismo , Sertralina/farmacología , Motilidad Espermática , Espermatozoides/metabolismo
8.
Cell Physiol Biochem ; 54(2): 321-332, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32259418

RESUMEN

BACKGROUND/AIMS: The cardiac current IKs is carried by the KCNQ1/KCNE1-channel complex. Genetic aberrations that affect the activity of KCNQ1/KCNE1 can lead to the Long QT Syndrome 1 and 5 and, thereby, to a predisposition to sudden cardiac death. This might be prevented by pharmacological modulation of KCNQ1/KCNE1. The prototypic KCNQ1/KCNE1 activator 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) represents a candidate drug. Here, we study the mechanism of DIDS action on KCNQ1/KCNE1. METHODS: Channels were expressed in Xenopus oocytes and iPSC cardiomyocytes. The role of the central S6 region was investigated by alanin-screening of KCNQ1 residues 333-338. DIDS effects were measured by TEVC and MEA. RESULTS: DIDS-action is influenced by the presence of KCNE1 but not by KCNQ1/KCNE1 stochiometry. V334A produces a significant higher increase in current amplitude, whereas deactivation (slowdown) DIDS-sensitivity is affected by residues 334-338. CONCLUSION: We show that the central S6 region serves as a hub for allosteric channel activation by the drug and that DIDS shortens the pseudo QT interval in iPSC cardiomyocytes. The elucidation of the structural and mechanistic underpinnings of the DIDS action on KCNQ1/KCNE1 might allow for a targeted design of DIDS derivatives with improved potency and selectivity.


Asunto(s)
Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Potenciales de Acción/efectos de los fármacos , Canal de Potasio KCNQ1/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/química , Regulación Alostérica , Animales , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/genética , Modelos Moleculares , Mutación , Oocitos/metabolismo , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Dominios Proteicos , Xenopus laevis
9.
EMBO J ; 34(3): 379-92, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25535245

RESUMEN

Sperm guidance is controlled by chemical and physical cues. In many species, Ca(2+) bursts in the flagellum govern navigation to the egg. In Arbacia punctulata, a model system of sperm chemotaxis, a cGMP signaling pathway controls these Ca(2+) bursts. The underlying Ca(2+) channel and its mechanisms of activation are unknown. Here, we identify CatSper Ca(2+) channels in the flagellum of A. punctulata sperm. We show that CatSper mediates the chemoattractant-evoked Ca(2+) influx and controls chemotactic steering; a concomitant alkalization serves as a highly cooperative mechanism that enables CatSper to transduce periodic voltage changes into Ca(2+) bursts. Our results reveal intriguing phylogenetic commonalities but also variations between marine invertebrates and mammals regarding the function and control of CatSper. The variations probably reflect functional and mechanistic adaptations that evolved during the transition from external to internal fertilization.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Quimiotaxis/fisiología , Evolución Molecular , Potenciales de la Membrana/fisiología , Erizos de Mar/metabolismo , Animales , Canales de Calcio/genética , Masculino , Erizos de Mar/genética
10.
J Physiol ; 595(5): 1533-1546, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27859356

RESUMEN

KEY POINTS: In human sperm, proton flux across the membrane is controlled by the voltage-gated proton channel Hv1. We show that sperm harbour both Hv1 and an N-terminally cleaved isoform termed Hv1Sper. The pH-control of Hv1Sper and Hv1 is distinctively different. Hv1Sper and Hv1 can form heterodimers that combine features of both constituents. Cleavage and heterodimerization of Hv1 might represent an adaptation to the specific requirements of pH control in sperm. ABSTRACT: In human sperm, the voltage-gated proton channel Hv1 controls the flux of protons across the flagellar membrane. Here, we show that sperm harbour Hv1 and a shorter isoform, termed Hv1Sper. Hv1Sper is generated from Hv1 by removal of 68 amino acids from the N-terminus by post-translational proteolytic cleavage. The pH-dependent gating of the channel isoforms is distinctly different. In both Hv1 and Hv1Sper, the conductance-voltage relationship is determined by the pH difference across the membrane (∆pH). However, simultaneous changes in intracellular and extracellular pH that leave ΔpH constant strongly shift the activation curve of Hv1Sper but not that of Hv1, demonstrating that cleavage of the N-terminus tunes pH sensing in Hv1. Moreover, we show that Hv1 and Hv1Sper assemble as heterodimers that combine features of both constituents. We suggest that cleavage and heterodimerization of Hv1 represents an adaptation to the specific requirements of pH control in sperm.


Asunto(s)
Activación del Canal Iónico/fisiología , Canales Iónicos/fisiología , Espermatozoides/fisiología , Animales , Línea Celular , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Canales Iónicos/metabolismo , Masculino , Ratones Endogámicos C57BL , Oocitos/fisiología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Mucosa Respiratoria , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Sulfonas/farmacología , Xenopus laevis
11.
Nature ; 471(7338): 382-6, 2011 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-21412338

RESUMEN

In the oviduct, cumulus cells that surround the oocyte release progesterone. In human sperm, progesterone stimulates a Ca(2+) increase by a non-genomic mechanism. The Ca(2+) signal has been proposed to control chemotaxis, hyperactivation and acrosomal exocytosis of sperm. However, the underlying signalling mechanism has remained mysterious. Here we show that progesterone activates the sperm-specific, pH-sensitive CatSper Ca(2+) channel. We found that both progesterone and alkaline pH stimulate a rapid Ca(2+) influx with almost no latency, incompatible with a signalling pathway involving metabotropic receptors and second messengers. The Ca(2+) signals evoked by alkaline pH and progesterone are inhibited by the Ca(v) channel blockers NNC 55-0396 and mibefradil. Patch-clamp recordings from sperm reveal an alkaline-activated current carried by mono- and divalent ions that exhibits all the hallmarks of sperm-specific CatSper Ca(2+) channels. Progesterone substantially enhances the CatSper current. The alkaline- and progesterone-activated CatSper current is inhibited by both drugs. Our results resolve a long-standing controversy over the non-genomic progesterone signalling. In human sperm, either the CatSper channel itself or an associated protein serves as the non-genomic progesterone receptor. The identification of CatSper channel blockers will greatly facilitate the study of Ca(2+) signalling in sperm and help to define further the physiological role of progesterone and CatSper.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Calcio/metabolismo , Progesterona/farmacología , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Alprostadil/farmacología , Bencimidazoles/farmacología , Bloqueadores de los Canales de Calcio/farmacología , AMP Cíclico , Ciclopropanos/farmacología , Conductividad Eléctrica , Humanos , Concentración de Iones de Hidrógeno , Masculino , Mibefradil/farmacología , Naftalenos/farmacología , Técnicas de Placa-Clamp , Progesterona/metabolismo
12.
EMBO J ; 31(7): 1654-65, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22354039

RESUMEN

The sperm-specific CatSper channel controls the intracellular Ca(2+) concentration ([Ca(2+)](i)) and, thereby, the swimming behaviour of sperm. In humans, CatSper is directly activated by progesterone and prostaglandins-female factors that stimulate Ca(2+) influx. Other factors including neurotransmitters, chemokines, and odorants also affect sperm function by changing [Ca(2+)](i). Several ligands, notably odorants, have been proposed to control Ca(2+) entry and motility via G protein-coupled receptors (GPCRs) and cAMP-signalling pathways. Here, we show that odorants directly activate CatSper without involving GPCRs and cAMP. Moreover, membrane-permeable analogues of cyclic nucleotides that have been frequently used to study cAMP-mediated Ca(2+) signalling also activate CatSper directly via an extracellular site. Thus, CatSper or associated protein(s) harbour promiscuous binding sites that can host various ligands. These results contest current concepts of Ca(2+) signalling by GPCR and cAMP in mammalian sperm: ligands thought to activate metabotropic pathways, in fact, act via a common ionotropic mechanism. We propose that the CatSper channel complex serves as a polymodal sensor for multiple chemical cues that assist sperm during their voyage across the female genital tract.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Feromonas/metabolismo , Espermatozoides/metabolismo , Aldehídos/farmacología , Bencimidazoles/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , AMP Cíclico/metabolismo , Ciclopropanos/farmacología , Humanos , Masculino , Mibefradil/farmacología , Naftalenos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Espermatozoides/efectos de los fármacos
13.
Cell Physiol Biochem ; 40(6): 1549-1558, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27997884

RESUMEN

BACKGROUND/AIMS: Acquired as well as inherited channelopathies are disorders that are caused by altered ion channel function. A family of channels whose malfunction is associated with different channelopathies is the Kv7 K+ channel family; and restoration of normal Kv7 channel function by small molecule modulators is a promising approach for treatment of these often fatal diseases. METHODS: Here, we show the modulation of Kv7 channels by the natural compound Rottlerin heterologously expressed in Xenopus laevis oocytes and on iPSC cardiomyocytes overexpressing Kv7.1 channels. RESULTS: We show that currents carried by Kv7.1 (EC50 = 1.48 µM), Kv7.1/KCNE1 (EC50 = 4.9 µM), and Kv7.4 (EC50 = 0.148 µM) are strongly enhanced by the compound, whereas Kv7.2, Kv7.2/Kv7.3, and Kv7.5 are not sensitive to Rottlerin. Studies on Kv7.1/KCNE1 mutants and in silico modelling indicate that Rottlerin binds to the R-L3-activator site. Rottlerin mediated activation of Kv7.1/KCNE1 channels might be a promising approach in long QT syndrome. As a proof of concept, we show that Rottlerin shortens cardiac repolarisation in iPSC-derived cardiomyocytes expressing Kv7.1. CONCLUSION: Rottlerin or an optimized derivative holds a potential as QT interval correcting drug.


Asunto(s)
Acetofenonas/farmacología , Benzopiranos/farmacología , Productos Biológicos/farmacología , Activación del Canal Iónico/efectos de los fármacos , Canal de Potasio KCNQ1/metabolismo , Acetofenonas/química , Animales , Benzopiranos/química , Productos Biológicos/química , Simulación por Computador , Humanos , Células Madre Pluripotentes Inducidas/citología , Canal de Potasio KCNQ1/química , Potenciales de la Membrana/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Dominios Proteicos , Multimerización de Proteína/efectos de los fármacos , Xenopus laevis
14.
EMBO Rep ; 15(7): 758-65, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24820036

RESUMEN

Synthetic endocrine disrupting chemicals (EDCs), omnipresent in food, household, and personal care products, have been implicated in adverse trends in human reproduction, including infertility and increasing demand for assisted reproduction. Here, we study the action of 96 ubiquitous EDCs on human sperm. We show that structurally diverse EDCs activate the sperm-specific CatSper channel and, thereby, evoke an intracellular Ca(2+) increase, a motility response, and acrosomal exocytosis. Moreover, EDCs desensitize sperm for physiological CatSper ligands and cooperate in low-dose mixtures to elevate Ca(2+) levels in sperm. We conclude that EDCs interfere with various sperm functions and, thereby, might impair human fertilization.


Asunto(s)
Disruptores Endocrinos/farmacología , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Acrosoma/metabolismo , Potenciales de Acción/efectos de los fármacos , Unión Competitiva , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Disruptores Endocrinos/química , Exocitosis/efectos de los fármacos , Humanos , Ligandos , Masculino , Unión Proteica , Motilidad Espermática/efectos de los fármacos
16.
PLoS Genet ; 9(12): e1003960, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24339785

RESUMEN

The second messengers cAMP and cGMP activate their target proteins by binding to a conserved cyclic nucleotide-binding domain (CNBD). Here, we identify and characterize an entirely novel CNBD-containing protein called CRIS (cyclic nucleotide receptor involved in sperm function) that is unrelated to any of the other members of this protein family. CRIS is exclusively expressed in sperm precursor cells. Cris-deficient male mice are either infertile due to a lack of sperm resulting from spermatogenic arrest, or subfertile due to impaired sperm motility. The motility defect is caused by altered Ca(2+) regulation of flagellar beat asymmetry, leading to a beating pattern that is reminiscent of sperm hyperactivation. Our results suggest that CRIS interacts during spermiogenesis with Ca(2+)-regulated proteins that--in mature sperm--are involved in flagellar bending.


Asunto(s)
Proteínas Portadoras/genética , AMP Cíclico/genética , Flagelos/genética , Unión Proteica/genética , Espermatogénesis/genética , Animales , Calcio/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Flagelos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Fosforilación , Transducción de Señal/genética , Motilidad Espermática/genética , Espermatozoides/metabolismo
17.
J Clin Invest ; 134(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165034

RESUMEN

The infertility of many couples rests on an enigmatic dysfunction of the man's sperm. To gain insight into the underlying pathomechanisms, we assessed the function of the sperm-specific multisubunit CatSper-channel complex in the sperm of almost 2,300 men undergoing a fertility workup, using a simple motility-based test. We identified a group of men with normal semen parameters but defective CatSper function. These men or couples failed to conceive naturally and upon medically assisted reproduction via intrauterine insemination and in vitro fertilization. Intracytoplasmic sperm injection (ICSI) was, ultimately, required to conceive a child. We revealed that the defective CatSper function was caused by variations in CATSPER genes. Moreover, we unveiled that CatSper-deficient human sperm were unable to undergo hyperactive motility and, therefore, failed to penetrate the egg coat. Thus, our study provides the experimental evidence that sperm hyperactivation is required for human fertilization, explaining the infertility of CatSper-deficient men and the need of ICSI for medically assisted reproduction. Finally, our study also revealed that defective CatSper function and ensuing failure to hyperactivate represents the most common cause of unexplained male infertility known thus far and that this sperm channelopathy can readily be diagnosed, enabling future evidence-based treatment of affected couples.


Asunto(s)
Infertilidad Masculina , Semen , Niño , Humanos , Masculino , Semen/fisiología , Canales de Calcio/genética , Motilidad Espermática/fisiología , Espermatozoides/fisiología , Infertilidad Masculina/terapia , Infertilidad Masculina/genética , Fertilización In Vitro , Fertilización/fisiología
18.
Nat Cell Biol ; 8(10): 1149-54, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16964244

RESUMEN

Eggs attract sperm by chemical factors, a process called chemotaxis. Sperm from marine invertebrates use cGMP signalling to transduce incident chemoattractants into changes in the Ca2+ concentration in the flagellum, which control the swimming behaviour during chemotaxis. The signalling pathway downstream of the synthesis of cGMP by a guanylyl cyclase is ill-defined. In particular, the ion channels that are involved in Ca2+ influx and their mechanisms of gating are not known. Using rapid voltage-sensitive dyes and kinetic techniques, we record the voltage response that is evoked by the chemoattractant in sperm from the sea urchin Arbacia punctulata. We show that the chemoattractant evokes a brief hyperpolarization followed by a sustained depolarization. The hyperpolarization is caused by the opening of K+-selective cyclic-nucleotide-gated (CNG) channels in the flagellum. Ca2+ influx commences at the onset of recovery from hyperpolarization. The voltage threshold of Ca2+ entry indicates the involvement of low-voltage-activated Ca(v) channels. These results establish a model of chemosensory transduction in sperm whereby a cGMP-induced hyperpolarization opens Ca(v) channels by a 'recovery-from-inactivation' mechanism and unveil an evolutionary kinship between transduction mechanisms in sperm and photoreceptors.


Asunto(s)
Señalización del Calcio/fisiología , GMP Cíclico/metabolismo , Activación del Canal Iónico , Canales Iónicos , Potasio/metabolismo , Transducción de Señal , Espermatozoides/metabolismo , Animales , Arbacia/química , Calcio/metabolismo , Quimiotaxis , Guanilato Ciclasa/metabolismo , Masculino
19.
J Pharm Biomed Anal ; 229: 115354, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37003086

RESUMEN

N-Acyl phosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) is the major enzyme for the biosynthesis of the endocannabinoid anandamide. The role of NAPE-PLD in various physiological and pathophysiological conditions is currently under investigation. For example, the enzyme might be involved in the control of neuronal activity, embryonic development and pregnancy, and prostate cancer. We synthesized a novel NAPE-PLD substrate with a fluorogenic pyrene substituent at the N-acyl residue as tool compound for studying this enzyme. As shown by HPLC with fluorescence detection, in rat brain microsomes the substrate was transformed into the expected pyrene-labeled N-acylethanolamine (NAE), but minor amounts of three by-products could also be detected. In the presence of pan-serine hydrolase and secretory phospholipase A2 inhibitors, the generation of these compounds, whose identity was verified using reference substances, was abolished. Based on these results, a method for determining the activity of NAPE-PLD was developed, validated, and applied to evaluate the action of known inhibitors of this enzyme. With human sperm, it was shown that the fluorescent substrate can also be used to study NAPE metabolism in intact cells.


Asunto(s)
Fosfolipasa D , Ratas , Animales , Masculino , Humanos , Fosfolipasa D/química , Fosfolipasa D/metabolismo , Cromatografía Líquida de Alta Presión , Semen/metabolismo , Endocannabinoides
20.
ACS Pharmacol Transl Sci ; 6(1): 115-127, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36654752

RESUMEN

The sperm-specific Ca2+ channel CatSper (cation channel of sperm) controls the intracellular Ca2+ concentration and, thereby, the swimming behavior of sperm from many species. The steroidal ethylenediamine RU1968 (1) represents a well-characterized, potent, and fairly selective cross-species inhibitor of CatSper. Due to its two additional centers of chirality in the amine-bearing side chain, RU1968 is a mixture of diastereomeric pairs of enantiomers and, thus, difficult to synthesize. This has hampered the use of this commercially not available inhibitor as a powerful tool for research. Here, simplifying both structure and synthesis, we introduced novel stereochemically less complex and enantiomerically pure aminomethyl RU1968 analogues lacking the C-21 CH3 moiety. Starting from (+)-estrone, a five-step synthesis was developed comprising a Wittig reaction as the key step, leading to a diastereomerically pure 17ß-configured aldehyde. Subsequent reductive amination yielded diastereomerically and enantiomerically pure amines. Compared to RU1968, the novel ethylenediamine 2d and homologous trimethylenediamine derivative 2e inhibited CatSper with similar and even twofold enhanced potency, respectively. Considering that these aminomethyl analogues are enantiomerically pure and much easier to synthesize than RU1968, we envisage their common use in future studies investigating the physiology of CatSper in sperm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA