Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 586(7829): 417-423, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32999463

RESUMEN

Microglia, the brain's resident macrophages, help to regulate brain function by removing dying neurons, pruning non-functional synapses, and producing ligands that support neuronal survival1. Here we show that microglia are also critical modulators of neuronal activity and associated behavioural responses in mice. Microglia respond to neuronal activation by suppressing neuronal activity, and ablation of microglia amplifies and synchronizes the activity of neurons, leading to seizures. Suppression of neuronal activation by microglia occurs in a highly region-specific fashion and depends on the ability of microglia to sense and catabolize extracellular ATP, which is released upon neuronal activation by neurons and astrocytes. ATP triggers the recruitment of microglial protrusions and is converted by the microglial ATP/ADP hydrolysing ectoenzyme CD39 into AMP; AMP is then converted into adenosine by CD73, which is expressed on microglia as well as other brain cells. Microglial sensing of ATP, the ensuing microglia-dependent production of adenosine, and the adenosine-mediated suppression of neuronal responses via the adenosine receptor A1R are essential for the regulation of neuronal activity and animal behaviour. Our findings suggest that this microglia-driven negative feedback mechanism operates similarly to inhibitory neurons and is essential for protecting the brain from excessive activation in health and disease.


Asunto(s)
Retroalimentación Fisiológica , Microglía/fisiología , Inhibición Neural , Neuronas/fisiología , 5'-Nucleotidasa/metabolismo , Potenciales de Acción , Adenosina/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antígenos CD/metabolismo , Apirasa/metabolismo , Calcio/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/citología , Inhibición Neural/genética , Receptor de Adenosina A1/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Factores de Tiempo
2.
Glia ; 65(12): 2087-2098, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28940645

RESUMEN

The regeneration of oligodendrocytes is a crucial step in recovery from demyelination, as surviving oligodendrocytes exhibit limited structural plasticity and rarely form additional myelin sheaths. New oligodendrocytes arise through the differentiation of platelet-derived growth factor receptor α (PDGFRα) expressing oligodendrocyte progenitor cells (OPCs) that are widely distributed throughout the CNS. Although there has been detailed investigation of the behavior of these progenitors in white matter, recent studies suggest that disease burden in multiple sclerosis (MS) is more strongly correlated with gray matter atrophy. The timing and efficiency of remyelination in gray matter is distinct from white matter, but the dynamics of OPCs that contribute to these differences have not been defined. Here, we used in vivo genetic fate tracing to determine the behavior of OPCs in gray and white matter regions in response to cuprizone-induced demyelination. Our studies indicate that the temporal dynamics of OPC differentiation varies significantly between white and gray matter. While OPCs rapidly repopulate the corpus callosum and mature into CC1 expressing mature oligodendrocytes, OPC differentiation in the cingulate cortex and hippocampus occurs much more slowly, resulting in a delay in remyelination relative to the corpus callosum. The protracted maturation of OPCs in gray matter may contribute to greater axonal pathology and disease burden in MS.


Asunto(s)
Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Inhibidores de la Monoaminooxidasa/toxicidad , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Factores de Edad , Animales , Proteínas Relacionadas con la Autofagia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/patología , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN no Traducido/genética , ARN no Traducido/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Remielinización/efectos de los fármacos , Remielinización/fisiología
3.
J Neurosci ; 35(22): 8626-39, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26041928

RESUMEN

Multiple sclerosis (MS) is a demyelinating disease of the CNS characterized by inflammation and neurodegeneration. Animal models that enable the study of remyelination in the context of ongoing inflammation are greatly needed for the development of novel therapies that target the pathological inhibitory cues inherent to the MS plaque microenvironment. We report the development of an innovative animal model combining cuprizone-mediated demyelination with transfer of myelin-reactive CD4(+) T cells. Characterization of this model reveals both Th1 and Th17 CD4(+) T cells infiltrate the CNS of cuprizone-fed mice, with infiltration of Th17 cells being more efficient. Infiltration correlates with impaired spontaneous remyelination as evidenced by myelin protein expression, immunostaining, and ultrastructural analysis. Electron microscopic analysis further reveals that demyelinated axons are preserved but reduced in caliber. Examination of the immune response contributing to impaired remyelination highlights a role for peripheral monocytes with an M1 phenotype. This study demonstrates the development of a novel animal model that recapitulates elements of the microenvironment of the MS plaque and reveals an important role for T cells and peripheral monocytes in impairing endogenous remyelination in vivo. This model could be useful for testing putative MS therapies designed to enhance remyelination in the setting of active inflammation, and may also facilitate modeling the pathophysiology of denuded axons, which has been a challenge in rodents because they typically remyelinate very quickly.


Asunto(s)
Sistema Nervioso Central/patología , Cuprizona/toxicidad , Enfermedades Desmielinizantes/terapia , Inhibidores de la Monoaminooxidasa/toxicidad , Vaina de Mielina/metabolismo , Células Th17/fisiología , Traslado Adoptivo , Animales , Polaridad Celular/efectos de los fármacos , Células Cultivadas , Sistema Nervioso Central/ultraestructura , Enfermedades Desmielinizantes/inducido químicamente , Modelos Animales de Enfermedad , Adyuvante de Freund/toxicidad , Interleucina-17/metabolismo , Antígenos Comunes de Leucocito/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Monocitos/patología , Monocitos/ultraestructura , Proteínas de la Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/toxicidad , Infiltración Neutrófila , Fragmentos de Péptidos/toxicidad , Regeneración/efectos de los fármacos , Células Th17/ultraestructura , Factores de Tiempo
4.
Nat Neurosci ; 21(8): 1049-1060, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30038282

RESUMEN

The rapid elimination of dying neurons and nonfunctional synapses in the brain is carried out by microglia, the resident myeloid cells of the brain. Here we show that microglia clearance activity in the adult brain is regionally regulated and depends on the rate of neuronal attrition. Cerebellar, but not striatal or cortical, microglia exhibited high levels of basal clearance activity, which correlated with an elevated degree of cerebellar neuronal attrition. Exposing forebrain microglia to apoptotic cells activated gene-expression programs supporting clearance activity. We provide evidence that the polycomb repressive complex 2 (PRC2) epigenetically restricts the expression of genes that support clearance activity in striatal and cortical microglia. Loss of PRC2 leads to aberrant activation of a microglia clearance phenotype, which triggers changes in neuronal morphology and behavior. Our data highlight a key role of epigenetic mechanisms in preventing microglia-induced neuronal alterations that are frequently associated with neurodegenerative and psychiatric diseases.


Asunto(s)
Encéfalo/fisiología , Epigénesis Genética/fisiología , Microglía/fisiología , Animales , Apoptosis/genética , Muerte Celular/genética , Cerebelo/citología , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Femenino , Regulación de la Expresión Génica/genética , Activación de Macrófagos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Neostriado/citología , Neostriado/fisiología , Neostriado/ultraestructura , Neuronas/fisiología , Neuronas/ultraestructura , Complejo Represivo Polycomb 2/genética , Convulsiones/genética , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA