Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 631(8021): 645-653, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987596

RESUMEN

Platelet homeostasis is essential for vascular integrity and immune defence1,2. Although the process of platelet formation by fragmenting megakaryocytes (MKs; thrombopoiesis) has been extensively studied, the cellular and molecular mechanisms required to constantly replenish the pool of MKs by their progenitor cells (megakaryopoiesis) remains unclear3,4. Here we use intravital imaging to track the cellular dynamics of megakaryopoiesis over days. We identify plasmacytoid dendritic cells (pDCs) as homeostatic sensors that monitor the bone marrow for apoptotic MKs and deliver IFNα to the MK niche triggering local on-demand proliferation and maturation of MK progenitors. This pDC-dependent feedback loop is crucial for MK and platelet homeostasis at steady state and under stress. pDCs are best known for their ability to function as vigilant detectors of viral infection5. We show that virus-induced activation of pDCs interferes with their function as homeostatic sensors of megakaryopoiesis. Consequently, activation of pDCs by SARS-CoV-2 leads to excessive megakaryopoiesis. Together, we identify a pDC-dependent homeostatic circuit that involves innate immune sensing and demand-adapted release of inflammatory mediators to maintain homeostasis of the megakaryocytic lineage.


Asunto(s)
COVID-19 , Células Dendríticas , Homeostasis , Megacariocitos , Trombopoyesis , Células Dendríticas/inmunología , Células Dendríticas/citología , Animales , Megacariocitos/citología , Megacariocitos/inmunología , Ratones , COVID-19/inmunología , COVID-19/virología , Masculino , Femenino , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Interferón-alfa/metabolismo , Inmunidad Innata , Plaquetas/inmunología , Plaquetas/citología , Humanos , Apoptosis , Ratones Endogámicos C57BL , Médula Ósea/inmunología , Linaje de la Célula , Proliferación Celular , Retroalimentación Fisiológica
2.
Nature ; 616(7958): 836-842, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37020028

RESUMEN

The origin recognition complex (ORC) is essential for initiation of eukaryotic chromosome replication as it loads the replicative helicase-the minichromosome maintenance (MCM) complex-at replication origins1. Replication origins display a stereotypic nucleosome organization with nucleosome depletion at ORC-binding sites and flanking arrays of regularly spaced nucleosomes2-4. However, how this nucleosome organization is established and whether this organization is required for replication remain unknown. Here, using genome-scale biochemical reconstitution with approximately 300 replication origins, we screened 17 purified chromatin factors from budding yeast and found that the ORC established nucleosome depletion over replication origins and flanking nucleosome arrays by orchestrating the chromatin remodellers INO80, ISW1a, ISW2 and Chd1. The functional importance of the nucleosome-organizing activity of the ORC was demonstrated by orc1 mutations that maintained classical MCM-loader activity but abrogated the array-generation activity of ORC. These mutations impaired replication through chromatin in vitro and were lethal in vivo. Our results establish that ORC, in addition to its canonical role as the MCM loader, has a second crucial function as a master regulator of nucleosome organization at the replication origin, a crucial prerequisite for efficient chromosome replication.


Asunto(s)
Cromatina , Complejo de Reconocimiento del Origen , Origen de Réplica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Replicación del ADN , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Complejo de Reconocimiento del Origen/química , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Mol Cell ; 81(8): 1841-1853.e4, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33651987

RESUMEN

In a first step of DNA double-strand break (DSB) repair by homologous recombination, DNA ends are resected such that single-stranded DNA (ssDNA) overhangs are generated. ssDNA is specifically bound by RPA and other factors, which constitutes a ssDNA-domain on damaged chromatin. The molecular organization of this ssDNA and the adjacent dsDNA domain is crucial during DSB signaling and repair. However, data regarding the presence of nucleosomes, the most basic chromatin components, in the ssDNA domain have been contradictory. Here, we use site-specific induction of DSBs and chromatin immunoprecipitation followed by strand-specific sequencing to analyze in vivo binding of key DSB repair and signaling proteins to either the ssDNA or dsDNA domain. In the case of nucleosomes, we show that recently proposed ssDNA nucleosomes are not a major, persistent species, but that nucleosome eviction and DNA end resection are intrinsically coupled. These results support a model of separated dsDNA-nucleosome and ssDNA-RPA domains during DSB repair.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina/métodos , Reparación del ADN/genética , ADN de Cadena Simple/genética , ADN/genética , Nucleosomas/genética , Roturas del ADN de Doble Cadena , Recombinación Homóloga/genética
4.
Genes Dev ; 35(13-14): 1055-1070, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34140353

RESUMEN

The dosage compensation complex (DCC) of Drosophila identifies its X-chromosomal binding sites with exquisite selectivity. The principles that assure this vital targeting are known from the D. melanogaster model: DCC-intrinsic specificity of DNA binding, cooperativity with the CLAMP protein, and noncoding roX2 RNA transcribed from the X chromosome. We found that in D. virilis, a species separated from melanogaster by 40 million years of evolution, all principles are active but contribute differently to X specificity. In melanogaster, the DCC subunit MSL2 evolved intrinsic DNA-binding selectivity for rare PionX sites, which mark the X chromosome. In virilis, PionX motifs are abundant and not X-enriched. Accordingly, MSL2 lacks specific recognition. Here, roX2 RNA plays a more instructive role, counteracting a nonproductive interaction of CLAMP and modulating DCC binding selectivity. Remarkably, roX2 triggers a stable chromatin binding mode characteristic of DCC. Evidently, X-specific regulation is achieved by divergent evolution of protein, DNA, and RNA components.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Compensación de Dosificación (Genética) , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Cromosomas Sexuales/metabolismo , Factores de Transcripción/metabolismo , Cromosoma X/genética , Cromosoma X/metabolismo
5.
Mol Cell ; 77(3): 501-513.e7, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31837996

RESUMEN

The histone chaperone FACT and histone H2B ubiquitination (H2Bub) facilitate RNA polymerase II (Pol II) passage through chromatin, yet it is not clear how they cooperate mechanistically. We used genomics, genetic, biochemical, and microscopic approaches to dissect their interplay in Schizosaccharomyces pombe. We show that FACT and H2Bub globally repress antisense transcripts near the 5' end of genes and inside gene bodies, respectively. The accumulation of these transcripts is accompanied by changes at genic nucleosomes and Pol II redistribution. H2Bub is required for FACT activity in genic regions. In the H2Bub mutant, FACT binding to chromatin is altered and its association with histones is stabilized, which leads to the reduction of genic nucleosomes. Interestingly, FACT depletion globally restores nucleosomes in the H2Bub mutant. Moreover, in the absence of Pob3, the FACT Spt16 subunit controls the 3' end of genes. Furthermore, FACT maintains nucleosomes in subtelomeric regions, which is crucial for their compaction.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Factores de Elongación Transcripcional/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Histonas/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Nucleosomas/metabolismo , Unión Proteica , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/genética , Ubiquitinación
6.
PLoS Biol ; 22(4): e3002575, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683844

RESUMEN

Muscles undergo developmental transitions in gene expression and alternative splicing that are necessary to refine sarcomere structure and contractility. CUG-BP and ETR-3-like (CELF) family RNA-binding proteins are important regulators of RNA processing during myogenesis that are misregulated in diseases such as Myotonic Dystrophy Type I (DM1). Here, we report a conserved function for Bruno 1 (Bru1, Arrest), a CELF1/2 family homolog in Drosophila, during early muscle myogenesis. Loss of Bru1 in flight muscles results in disorganization of the actin cytoskeleton leading to aberrant myofiber compaction and defects in pre-myofibril formation. Temporally restricted rescue and RNAi knockdown demonstrate that early cytoskeletal defects interfere with subsequent steps in sarcomere growth and maturation. Early defects are distinct from a later requirement for bru1 to regulate sarcomere assembly dynamics during myofiber maturation. We identify an imbalance in growth in sarcomere length and width during later stages of development as the mechanism driving abnormal radial growth, myofibril fusion, and the formation of hollow myofibrils in bru1 mutant muscle. Molecularly, we characterize a genome-wide transition from immature to mature sarcomere gene isoform expression in flight muscle development that is blocked in bru1 mutants. We further demonstrate that temporally restricted Bru1 rescue can partially alleviate hypercontraction in late pupal and adult stages, but it cannot restore myofiber function or correct structural deficits. Our results reveal the conserved nature of CELF function in regulating cytoskeletal dynamics in muscle development and demonstrate that defective RNA processing due to misexpression of CELF proteins causes wide-reaching structural defects and progressive malfunction of affected muscles that cannot be rescued by late-stage gene replacement.


Asunto(s)
Citoesqueleto , Vuelo Animal , Desarrollo de Músculos , Proteínas de Unión al ARN , Sarcómeros , Animales , Empalme Alternativo/genética , Citoesqueleto/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Vuelo Animal/fisiología , Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos/genética , Músculos/metabolismo , Miofibrillas/metabolismo , Empalme del ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Sarcómeros/metabolismo
7.
Mol Cell ; 72(4): 661-672.e4, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30392927

RESUMEN

Regular successions of positioned nucleosomes, or phased nucleosome arrays (PNAs), are predominantly known from transcriptional start sites (TSSs). It is unclear whether PNAs occur elsewhere in the genome. To generate a comprehensive inventory of PNAs for Drosophila, we applied spectral analysis to nucleosome maps and identified thousands of PNAs throughout the genome. About half of them are not near TSSs and are strongly enriched for an uncharacterized sequence motif. Through genome-wide reconstitution of physiological chromatin in Drosophila embryo extracts, we uncovered the molecular basis of PNA formation. We identified Phaser, an unstudied zinc finger protein that positions nucleosomes flanking the motif. It also revealed how the global activity of the chromatin remodelers CHRAC/ACF, together with local barrier elements, generates islands of regular phasing throughout the genome. Our work demonstrates the potential of chromatin assembly by embryo extracts as a powerful tool to reconstitute chromatin features on a global scale in vitro.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Drosophila melanogaster/genética , Nucleosomas/genética , Animales , Cromatina/fisiología , Ensamble y Desensamble de Cromatina/fisiología , Mapeo Cromosómico/métodos , Drosophila/genética , Histonas , Ratones , Nucleosomas/fisiología , Sitio de Iniciación de la Transcripción/fisiología
8.
Proc Natl Acad Sci U S A ; 120(16): e2210047120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37040405

RESUMEN

CD8+ T cells are crucial for the clearance of viral infections. During the acute phase, proinflammatory conditions increase the amount of circulating phosphatidylserine+ (PS) extracellular vesicles (EVs). These EVs interact especially with CD8+ T cells; however, it remains unclear whether they can actively modulate CD8+ T cell responses. In this study, we have developed a method to analyze cell-bound PS+ EVs and their target cells in vivo. We show that EV+ cell abundance increases during viral infection and that EVs preferentially bind to activated, but not naive, CD8+ T cells. Superresolution imaging revealed that PS+ EVs attach to clusters of CD8 molecules on the T cell surface. Furthermore, EV-binding induces antigen (Ag)-specific TCR signaling and increased nuclear translocation of the transcription factor Nuclear factor of activated T-cells (NFATc1) in vivo. EV-decorated but not EV-free CD8+ T cells are enriched for gene signatures associated with T-cell receptor signaling, early effector differentiation, and proliferation. Our data thus demonstrate that PS+ EVs provide Ag-specific adjuvant effects to activated CD8+ T cells in vivo.


Asunto(s)
Vesículas Extracelulares , Virosis , Humanos , Linfocitos T CD8-positivos , Fosfatidilserinas/metabolismo , Vesículas Extracelulares/metabolismo , Virosis/metabolismo , Diferenciación Celular
9.
J Biol Chem ; 300(2): 105648, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219816

RESUMEN

Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ribosome speed in cells is widely unknown. In this study, we utilized a timed ribosome runoff approach, along with proteomics and transmission electron microscopy, to investigate global translation kinetics in cells. We found that ribosome speeds vary among various cell types, such as astrocytes, induced pluripotent human stem cells, human neural stem cells, and human and rat neurons. Of all cell types studied, mature cortical neurons exhibit the highest rate of translation. This finding is particularly remarkable because mature cortical neurons express the eukaryotic elongation factor 2 (eEF2) at lower levels than other cell types. Neurons solve this conundrum by inactivating a fraction of their ribosomes. As a result, the increase in eEF2 levels leads to a reduction of inactive ribosomes and an enhancement of active ones. Processes that alter the demand for active ribosomes, like neuronal excitation, cause increased inactivation of redundant ribosomes in an eEF2-dependent manner. Our data suggest a novel regulatory mechanism in which neurons dynamically inactivate ribosomes to facilitate translational remodeling. These findings have important implications for developmental brain disorders characterized by, among other things, aberrant translation.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Animales , Humanos , Ratas , Neuronas/metabolismo , Procesamiento Proteico-Postraduccional , Ribosomas/metabolismo , Ratones , Ratones Endogámicos C57BL
10.
Nucleic Acids Res ; 51(22): 12303-12324, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37956271

RESUMEN

Stochastic origin activation gives rise to significant cell-to-cell variability in the pattern of genome replication. The molecular basis for heterogeneity in efficiency and timing of individual origins is a long-standing question. Here, we developed Methylation Accessibility of TArgeted Chromatin domain Sequencing (MATAC-Seq) to determine single-molecule chromatin accessibility of four specific genomic loci. MATAC-Seq relies on preferential modification of accessible DNA by methyltransferases combined with Nanopore-Sequencing for direct readout of methylated DNA-bases. Applying MATAC-Seq to selected early-efficient and late-inefficient yeast replication origins revealed large heterogeneity of chromatin states. Disruption of INO80 or ISW2 chromatin remodeling complexes leads to changes at individual nucleosomal positions that correlate with changes in their replication efficiency. We found a chromatin state with an accessible nucleosome-free region in combination with well-positioned +1 and +2 nucleosomes as a strong predictor for efficient origin activation. Thus, MATAC-Seq identifies the large spectrum of alternative chromatin states that co-exist on a given locus previously masked in population-based experiments and provides a mechanistic basis for origin activation heterogeneity during eukaryotic DNA replication. Consequently, our single-molecule chromatin accessibility assay will be ideal to define single-molecule heterogeneity across many fundamental biological processes such as transcription, replication, or DNA repair in vitro and ex vivo.


Asunto(s)
Origen de Réplica , Saccharomyces cerevisiae , Cromatina/genética , ADN , Replicación del ADN , Nucleosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
Blood ; 140(10): 1104-1118, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35878001

RESUMEN

T-cell-recruiting bispecific molecule therapy has yielded promising results in patients with hematologic malignancies; however, resistance and subsequent relapse remains a major challenge. T-cell exhaustion induced by persistent antigen stimulation or tonic receptor signaling has been reported to compromise outcomes of T-cell-based immunotherapies. The impact of continuous exposure to bispecifics on T-cell function, however, remains poorly understood. In relapsed/refractory B-cell precursor acute lymphoblastic leukemia patients, 28-day continuous infusion with the CD19xCD3 bispecific molecule blinatumomab led to declining T-cell function. In an in vitro model system, mimicking 28-day continuous infusion with the half-life-extended CD19xCD3 bispecific AMG 562, we identified hallmark features of exhaustion arising over time. Continuous AMG 562 exposure induced progressive loss of T-cell function (day 7 vs day 28 mean specific lysis: 88.4% vs 8.6%; n = 6; P = .0003). Treatment-free intervals (TFIs), achieved by AMG 562 withdrawal, were identified as a powerful strategy for counteracting exhaustion. TFIs induced strong functional reinvigoration of T cells (continuous vs TFI-specific lysis on day 14: 34.9% vs 93.4%; n = 6; P < .0001) and transcriptional reprogramming. Furthermore, use of a TFI led to improved T-cell expansion and tumor control in vivo. Our data demonstrate the relevance of T-cell exhaustion in bispecific antibody therapy and highlight that T cells can be functionally and transcriptionally rejuvenated with TFIs. In view of the growing number of bispecific molecules being evaluated in clinical trials, our findings emphasize the need to consider and evaluate TFIs in application schedules to improve clinical outcomes.


Asunto(s)
Anticuerpos Biespecíficos , Antineoplásicos , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Antígenos CD19 , Antineoplásicos/uso terapéutico , Humanos , Inmunoterapia/métodos , Linfoma de Células B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Linfocitos T
12.
PLoS Biol ; 19(9): e3001377, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34491983

RESUMEN

Forming an embryo from a zygote poses an apparent conflict for epigenetic regulation. On the one hand, the de novo induction of cell fate identities requires the establishment and subsequent maintenance of epigenetic information to harness developmental gene expression. On the other hand, the embryo depends on cell proliferation, and every round of DNA replication dilutes preexisting histone modifications by incorporation of new unmodified histones into chromatin. Here, we investigated the possible relationship between the propagation of epigenetic information and the developmental cell proliferation during Xenopus embryogenesis. We systemically inhibited cell proliferation during the G1/S transition in gastrula embryos and followed their development until the tadpole stage. Comparing wild-type and cell cycle-arrested embryos, we show that the inhibition of cell proliferation is principally compatible with embryo survival and cellular differentiation. In parallel, we quantified by mass spectrometry the abundance of a large set of histone modification states, which reflects the developmental maturation of the embryonic epigenome. The arrested embryos developed abnormal stage-specific histone modification profiles (HMPs), in which transcriptionally repressive histone marks were overrepresented. Embryos released from the cell cycle block during neurulation reverted toward normality on morphological, molecular, and epigenetic levels. These results suggest that the cell cycle block by HUA alters stage-specific HMPs. We propose that this influence is strong enough to control developmental decisions, specifically in cell populations that switch between resting and proliferating states such as stem cells.


Asunto(s)
Epigénesis Genética , Código de Histonas , Xenopus laevis/embriología , Animales , Afidicolina/farmacología , Ciclo Celular , Proliferación Celular/efectos de los fármacos , Embrión no Mamífero/embriología , Inhibidores Enzimáticos/farmacología , Hidroxiurea/farmacología
13.
Mol Cell ; 61(2): 305-14, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26799765

RESUMEN

The carboxy-terminal domain (CTD) of RNA polymerase II (Pol II) consists of heptad repeats with the consensus motif Y1-S2-P3-T4-S5-P6-S7. Dynamic phosphorylation of the CTD coordinates Pol II progression through the transcription cycle. Here, we use genetic and mass spectrometric approaches to directly detect and map phosphosites along the entire CTD. We confirm phosphorylation of CTD residues Y1, S2, T4, S5, and S7 in mammalian and yeast cells. Although specific phosphorylation signatures dominate, adjacent CTD repeats can be differently phosphorylated, leading to a high variation of coexisting phosphosites in mono- and di-heptad CTD repeats. Inhibition of CDK9 kinase specifically reduces S2 phosphorylation levels within the CTD.


Asunto(s)
ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/metabolismo , Humanos , Mamíferos , Espectrometría de Masas , Datos de Secuencia Molecular , Biblioteca de Péptidos , Fosforilación , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Secuencias Repetitivas de Aminoácido , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
14.
Proteomics ; 23(9): e2200179, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36571325

RESUMEN

Data-independent acquisition (DIA) of tandem mass spectrometry spectra has emerged as a promising technology to improve coverage and quantification of proteins in complex mixtures. The success of DIA experiments is dependent on the quality of spectral libraries used for data base searching. Frequently, these libraries need to be generated by labor and time intensive data dependent acquisition (DDA) experiments. Recently, several algorithms have been published that allow the generation of theoretical libraries by an efficient prediction of retention time and intensity of the fragment ions. Sequential windowed acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) is a DIA method that can be applied at an unprecedented speed, but the fragmentation spectra suffer from a lower quality than data acquired on Orbitrap instruments. To reliably generate theoretical libraries that can be used in SWATH experiments, we developed deep-learning for SWATH analysis (dpSWATH), to improve the sensitivity and specificity of data generated by Q-TOF mass spectrometers. The theoretical library built by dpSWATH allowed us to increase the identification rate of proteins compared to traditional or library-free methods. Based on our analysis we conclude that dpSWATH is a superior prediction framework for SWATH-MS measurements than other algorithms based on Orbitrap data.


Asunto(s)
Aprendizaje Profundo , Espectrometría de Masas en Tándem/métodos , Proteínas , Algoritmos , Bases de Datos Factuales
15.
EMBO J ; 38(11)2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31015336

RESUMEN

Chromatin is a highly regulated environment, and protein association with chromatin is often controlled by post-translational modifications and the corresponding enzymatic machinery. Specifically, SUMO-targeted ubiquitin ligases (STUbLs) have emerged as key players in nuclear quality control, genome maintenance, and transcription. However, how STUbLs select specific substrates among myriads of SUMOylated proteins on chromatin remains unclear. Here, we reveal a remarkable co-localization of the budding yeast STUbL Slx5/Slx8 and ubiquitin at seven genomic loci that we term "ubiquitin hotspots". Ubiquitylation at these sites depends on Slx5/Slx8 and protein turnover on the Cdc48 segregase. We identify the transcription factor-like Ymr111c/Euc1 to associate with these sites and to be a critical determinant of ubiquitylation. Euc1 specifically targets Slx5/Slx8 to ubiquitin hotspots via bipartite binding of Slx5 that involves the Slx5 SUMO-interacting motifs and an additional, novel substrate recognition domain. Interestingly, the Euc1-ubiquitin hotspot pathway acts redundantly with chromatin modifiers of the H2A.Z and Rpd3L pathways in specific stress responses. Thus, our data suggest that STUbL-dependent ubiquitin hotspots shape chromatin during stress adaptation.


Asunto(s)
Adaptación Fisiológica , Cromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Adaptación Fisiológica/genética , Sitios de Unión , Ensamble y Desensamble de Cromatina/genética , Genoma Fúngico , Organismos Modificados Genéticamente , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteolisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Estrés Fisiológico/genética , Sumoilación , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
16.
PLoS Pathog ; 17(10): e1009742, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34614036

RESUMEN

Disease manifestations in COVID-19 range from mild to severe illness associated with a dysregulated innate immune response. Alterations in function and regeneration of dendritic cells (DCs) and monocytes may contribute to immunopathology and influence adaptive immune responses in COVID-19 patients. We analyzed circulating DC and monocyte subsets in 65 hospitalized COVID-19 patients with mild/moderate or severe disease from acute illness to recovery and in healthy controls. Persisting reduction of all DC subpopulations was accompanied by an expansion of proliferating Lineage-HLADR+ cells lacking DC markers. Increased frequency of CD163+ CD14+ cells within the recently discovered DC3 subpopulation in patients with more severe disease was associated with systemic inflammation, activated T follicular helper cells, and antibody-secreting cells. Persistent downregulation of CD86 and upregulation of programmed death-ligand 1 (PD-L1) in conventional DCs (cDC2 and DC3) and classical monocytes associated with a reduced capacity to stimulate naïve CD4+ T cells correlated with disease severity. Long-lasting depletion and functional impairment of DCs and monocytes may have consequences for susceptibility to secondary infections and therapy of COVID-19 patients.


Asunto(s)
COVID-19/inmunología , Células Dendríticas/inmunología , Regeneración/inmunología , SARS-CoV-2/inmunología , Adulto , Antígenos CD/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , COVID-19/patología , Células Dendríticas/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Monocitos/patología , Receptor de Muerte Celular Programada 1/inmunología
17.
Mol Cell ; 59(1): 75-88, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26051178

RESUMEN

Histone variants are emerging as key regulatory molecules in cancer. We report a unique role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. H2A.Z.2 is highly expressed in metastatic melanoma, correlates with decreased patient survival, and is required for cellular proliferation. Our integrated genomic analyses reveal that H2A.Z.2 controls the transcriptional output of E2F target genes in melanoma cells. These genes are highly expressed and display a distinct signature of H2A.Z occupancy. We identify BRD2 as an H2A.Z-interacting protein, levels of which are also elevated in melanoma. We further demonstrate that H2A.Z.2-regulated genes are bound by BRD2 and E2F1 in an H2A.Z.2-dependent manner. Importantly, H2A.Z.2 deficiency sensitizes melanoma cells to chemotherapy and targeted therapies. Collectively, our findings implicate H2A.Z.2 as a mediator of cell proliferation and drug sensitivity in malignant melanoma, holding translational potential for novel therapeutic strategies.


Asunto(s)
Resistencia a Antineoplásicos/genética , Factor de Transcripción E2F1/genética , Histonas/genética , Melanoma/genética , Proteínas Serina-Treonina Quinasas/genética , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular/genética , Factor de Transcripción E2F1/metabolismo , Células HeLa , Histonas/biosíntesis , Humanos , Melanocitos/citología , Melanoma/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Puntos de Control de la Fase S del Ciclo Celular/genética , Análisis de Secuencia de ARN , Factores de Transcripción , Activación Transcripcional
18.
Nucleic Acids Res ; 49(6): 3217-3241, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33675667

RESUMEN

Epstein-Barr virus (EBV), a herpes virus also termed HHV 4 and the first identified human tumor virus, establishes a stable, long-term latent infection in human B cells, its preferred host. Upon induction of EBV's lytic phase, the latently infected cells turn into a virus factory, a process that is governed by EBV. In the lytic, productive phase, all herpes viruses ensure the efficient induction of all lytic viral genes to produce progeny, but certain of these genes also repress the ensuing antiviral responses of the virally infected host cells, regulate their apoptotic death or control the cellular transcriptome. We now find that EBV causes previously unknown massive and global alterations in the chromatin of its host cell upon induction of the viral lytic phase and prior to the onset of viral DNA replication. The viral initiator protein of the lytic cycle, BZLF1, binds to >105 binding sites with different sequence motifs in cellular chromatin in a concentration dependent manner implementing a binary molar switch probably to prevent noise-induced erroneous induction of EBV's lytic phase. Concomitant with DNA binding of BZLF1, silent chromatin opens locally as shown by ATAC-seq experiments, while previously wide-open cellular chromatin becomes inaccessible on a global scale within hours. While viral transcripts increase drastically, the induction of the lytic phase results in a massive reduction of cellular transcripts and a loss of chromatin-chromatin interactions of cellular promoters with their distal regulatory elements as shown in Capture-C experiments. Our data document that EBV's lytic cycle induces discrete early processes that disrupt the architecture of host cellular chromatin and repress the cellular epigenome and transcriptome likely supporting the efficient de novo synthesis of this herpes virus.


Asunto(s)
Cromatina/virología , Regulación de la Expresión Génica , Herpesvirus Humano 4/fisiología , Transactivadores/metabolismo , Transcriptoma , Sitios de Unión , Línea Celular , Cromatina/química , Cromatina/metabolismo , ADN/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos
19.
Circ Res ; 127(6): 811-823, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32546048

RESUMEN

RATIONALE: Arterial inflammation manifested as atherosclerosis is the leading cause of mortality worldwide. Genome-wide association studies have identified a prominent role of HDAC (histone deacetylase)-9 in atherosclerosis and its clinical complications including stroke and myocardial infarction. OBJECTIVE: To determine the mechanisms linking HDAC9 to these vascular pathologies and explore its therapeutic potential for atheroprotection. METHODS AND RESULTS: We studied the effects of Hdac9 on features of plaque vulnerability using bone marrow reconstitution experiments and pharmacological targeting with a small molecule inhibitor in hyperlipidemic mice. We further used 2-photon and intravital microscopy to study endothelial activation and leukocyte-endothelial interactions. We show that hematopoietic Hdac9 deficiency reduces lesional macrophage content while increasing fibrous cap thickness thus conferring plaque stability. We demonstrate that HDAC9 binds to IKK (inhibitory kappa B kinase)-α and ß, resulting in their deacetylation and subsequent activation, which drives inflammatory responses in both macrophages and endothelial cells. Pharmacological inhibition of HDAC9 with the class IIa HDAC inhibitor TMP195 attenuates lesion formation by reducing endothelial activation and leukocyte recruitment along with limiting proinflammatory responses in macrophages. Transcriptional profiling using RNA sequencing revealed that TMP195 downregulates key inflammatory pathways consistent with inhibitory effects on IKKß. TMP195 mitigates the progression of established lesions and inhibits the infiltration of inflammatory cells. Moreover, TMP195 diminishes features of plaque vulnerability and thereby enhances plaque stability in advanced lesions. Ex vivo treatment of monocytes from patients with established atherosclerosis reduced the production of inflammatory cytokines including IL (interleukin)-1ß and IL-6. CONCLUSIONS: Our findings identify HDAC9 as a regulator of atherosclerotic plaque stability and IKK activation thus providing a mechanistic explanation for the prominence of HDAC9 as a vascular risk locus in genome-wide association studies. Its therapeutic inhibition may provide a potent lever to alleviate vascular inflammation. Graphical Abstract: A graphical abstract is available for this article.


Asunto(s)
Arterias/enzimología , Aterosclerosis/enzimología , Histona Desacetilasas/metabolismo , Quinasa I-kappa B/metabolismo , Placa Aterosclerótica , Proteínas Represoras/metabolismo , Acetilación , Anciano , Anciano de 80 o más Años , Animales , Arterias/efectos de los fármacos , Arterias/patología , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/patología , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/enzimología , Células Endoteliales/patología , Activación Enzimática , Femenino , Fibrosis , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Humanos , Quinasa I-kappa B/genética , Mediadores de Inflamación/metabolismo , Rodamiento de Leucocito , Macrófagos/enzimología , Macrófagos/patología , Masculino , Ratones Noqueados para ApoE , Persona de Mediana Edad , Monocitos/enzimología , Monocitos/patología , Unión Proteica , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Transducción de Señal
20.
Nature ; 537(7619): 244-248, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27580037

RESUMEN

The rules defining which small fraction of related DNA sequences can be selectively bound by a transcription factor are poorly understood. One of the most challenging tasks in DNA recognition is posed by dosage compensation systems that require the distinction between sex chromosomes and autosomes. In Drosophila melanogaster, the male-specific lethal dosage compensation complex (MSL-DCC) doubles the level of transcription from the single male X chromosome, but the nature of this selectivity is not known. Previous efforts to identify X-chromosome-specific target sequences were unsuccessful as the identified MSL recognition elements lacked discriminative power. Therefore, additional determinants such as co-factors, chromatin features, RNA and chromosome conformation have been proposed to refine targeting further. Here, using an in vitro genome-wide DNA binding assay, we show that recognition of the X chromosome is an intrinsic feature of the MSL-DCC. MSL2, the male-specific organizer of the complex, uses two distinct DNA interaction surfaces-the CXC and proline/basic-residue-rich domains-to identify complex DNA elements on the X chromosome. Specificity is provided by the CXC domain, which binds a novel motif defined by DNA sequence and shape. This motif characterizes a subclass of MSL2-binding sites, which we name PionX (pioneering sites on the X) as they appeared early during the recent evolution of an X chromosome in D. miranda and are the first chromosomal sites to be bound during de novo MSL-DCC assembly. Our data provide the first, to our knowledge, documented molecular mechanism through which the dosage compensation machinery distinguishes the X chromosome from an autosome. They highlight fundamental principles in the recognition of complex DNA elements by protein that will have a strong impact on many aspects of chromosome biology.


Asunto(s)
Compensación de Dosificación (Genética)/genética , Drosophila melanogaster/genética , Complejos Multiproteicos/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Cromosoma X/genética , Secuencias de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Evolución Molecular , Femenino , Genoma de los Insectos/genética , Masculino , Complejos Multiproteicos/química , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Especificidad por Sustrato , Factores de Transcripción/metabolismo , Cromosoma X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA