Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Small ; 19(20): e2207095, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36793159

RESUMEN

Liquid crystalline polymers are attractive materials for untethered miniature soft robots. When they contain azo dyes, they acquire light-responsive actuation properties. However, the manipulation of such photoresponsive polymers at the micrometer scale remains largely unexplored. Here, uni- and bidirectional rotation and speed control of polymerized azo-containing chiral liquid crystalline photonic microparticles powered by light is reported. The rotation of these polymer particles is first studied in an optical trap experimentally and theoretically. The micro-sized polymer particles respond to the handedness of a circularly polarized trapping laser due to their chirality and exhibit uni- and bidirectional rotation depending on their alignment within the optical tweezers. The attained optical torque causes the particles to spin with a rotation rate of several hertz. The angular speed can be controlled by small structural changes, induced by ultraviolet (UV) light absorption. After switching off the UV illumination, the particle recovers its rotation speed. The results provide evidence of uni- and bidirectional motion and speed control in light-responsive polymer particles and offer a new way to devise light-controlled rotary microengines at the micrometer scale.

2.
Electrophoresis ; 44(3-4): 417-430, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36412554

RESUMEN

Understanding the adsorption of polymers onto particles is crucial for many technological and biomedical applications. Even though polymer adsorption on particles is a dynamic process, most experimental techniques can only study the adsorption indirectly, in equilibrium and on the ensemble level. New analysis methods are required to overcome these limitations. We investigated the use of single-particle electrophoresis to study the adsorption kinetics of cationic polymers onto anionic particles and compared the resulting data to a theoretical model. In this approach, the electrophoretic mobility of single polystyrene (PS) particles, exposed to different concentrations of poly(2-guanidinoethyl methacrylate), was measured as a function of time. The polymer adsorption leads to an electrophoretic mobility change of the PS particle over time, from the initial negative value to a positive value at equilibrium. By fitting the kinetics data to the Langmuir model, the adsorption rate, desorption rate and equilibrium constant were determined. Finally, the adsorption kinetics of several other polymers was investigated. This showed that the presented technique enables direct analysis and comparison of the kinetics of polymer adsorption on the single-particle level.


Asunto(s)
Modelos Teóricos , Polímeros , Adsorción , Electroforesis , Cationes
3.
Entropy (Basel) ; 25(11)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37998184

RESUMEN

The field of quantum gravity struggles with several problems related to time, quantum measurement, nonlocality, and realism. To address these issues, this study develops a 4+1 formalism featuring a flat 4D spacetime evolving with a second form of time, τ, worldlines that locally conserve momentum, and a hypersurface representing the present. As a function of τ, worldlines can spatially readjust and influences can travel backward or forward in the time dimension along these worldlines, offering a physical mechanism for retrocausality. Three theoretical models are presented, elucidating how nonlocality in an EPR experiment, the arrival time problem, and superposition in a Mach-Zehnder interferometer can be understood within this 4+1 framework. These results demonstrate that essential quantum phenomena can be reproduced in the 4+1 formalism while upholding the principles of realism, locality, and determinism at a fundamental level. Additionally, there is no measurement or collapse problem, and a natural explanation for the quantum-to-classical transition is obtained. Furthermore, observations of a 4D block universe and of the flow of time can be simultaneously understood. With these properties, the presented 4+1 formalism lays an interesting foundation for a quantum gravity theory based on intuitive principles and compatible with our observation of time.

4.
Electrophoresis ; 42(16): 1623-1635, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34028056

RESUMEN

The electrophoretic mobility of micron-scale particles is of crucial importance in applications related to pharmacy, electronic ink displays, printing, and food technology as well as in fundamental studies in these fields. Particle mobility measurements are often limited in accuracy because they are based on ensemble averages and because a correction for electroosmosis needs to be made based on a model. Single-particle approaches are better suited for examining polydisperse samples, but existing implementations either require multiple measurements to take the effect of electroosmosis into account or are limited in accuracy by short measurement times. In this work, accurate characterization of monodisperse and polydisperse samples is achieved by measuring the electrophoretic mobility on a particle-to-particle basis while suppressing electroosmosis. Electroosmosis can be suppressed by measuring in the middle of a microchannel while applying an AC voltage with a sufficiently high frequency. An accurate measurement of the electrophoretic mobility is obtained by analyzing the oscillating particle motion for 1.5s per particle with a high-speed camera measuring at 850Hz , synchronized to the applied electric field. Attention is paid to take into account the effect of the rolling shutter and the non-uniform sampling in order to obtain the accurate amplitude and phase of the electrophoretic mobility. The accuracy of method is experimentally verified and compared with a commercial apparatus for polystyrene microspheres in water. The method is further demonstrated on a range of particle materials and particle sizes and for a mixture of positively and negatively charged particles.


Asunto(s)
Electroósmosis , Electroforesis , Microesferas , Tamaño de la Partícula , Poliestirenos
5.
Soft Matter ; 17(11): 3254, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33725058

RESUMEN

Correction for 'Electrokinetics and behavior near the interface of colloidal particles in non-polar dispersions' by Manoj Prasad et al., Soft Matter, 2017, 13, 5604-5612, DOI: .

6.
Phys Chem Chem Phys ; 23(12): 7504, 2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33876110

RESUMEN

Correction for 'Space charge limited release of charged inverse micelles in non-polar liquids' by Manoj Prasad et al., Phys. Chem. Chem. Phys., 2016, 18, 19289-19298, DOI: .

7.
Langmuir ; 36(23): 6521-6530, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32441944

RESUMEN

The adsorption of charged inverse micelles at the electrode-liquid interface has an important effect on field screening and on the voltage drop over diffuse double layers. Recently, we analyzed the behavior of inverse micelles in a nonpolar liquid close to this electrode-liquid interface. For the fluorocarbon/surfactant system under study, we are in the limit of slow adsorption and negligible desorption of inverse micelles on the electrodes. Upon applying a voltage step, this results in a measurable Stern layer buildup in the time range of hours clearly distinguishable from the diffuse double layer buildup, which happens in less than 1 s. This Stern layer buildup manifests itself by a shift in the voltage drop from the diffuse double layer to the Stern layer until the voltage drop over the Stern layers reaches the applied voltage, leaving a zero bulk field without the diffuse double layer. New measurements of the transients of Stern layer buildup show that the buildup of charges in the Stern layer is more complex. We explain the observed transient behavior by introducing an asymmetry in the adsorption rate of charged inverse micelles. We provide an equivalent electrical network, an analytical solution to explain the behavior in more detail, and simulations within the diffuse double layer limit for a range of adsorption rates.

8.
Opt Express ; 25(21): 25853-25866, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-29041248

RESUMEN

We demonstrate the use of low spatial and temporal coherence holography microscopy, based on the Lorenz-Mie model, using the standard tungsten-halogen lamp present in an inverted microscope. An optical model is put forward to incorporate the effect of spectral width and different incidence angles of the incident light determined by the aperture at the back focal plane of the condenser lens. The model is validated for 899 nm diameter polystyrene microspheres in glycerol, giving a resolution of 0.4% for the index of refraction and 2.2% for the diameter of the particles.

9.
Soft Matter ; 13(33): 5604-5612, 2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28737178

RESUMEN

The electrokinetics and charging of nonpolar colloidal dispersions subjected to a voltage are investigated by electric current and optical measurements. From electric current measurements in response to an alternating triangular voltage with a peak value of a few hundred volts, we find that polystyrene toner particles are compacted near the electrodes and their charge increases by more than a factor of 20. The important increase of charge is interpreted by a mechanism in which counter charges, which are originally at the particle surface, are desorbed. Optical measurements performed under a dc voltage of the order of a few hundred volts demonstrate that the charge of the particles can again decrease or even be inverted. These phenomena are attributed to the movement of counter charged species from the interface layers onto the surface of the particles. The findings of this study are relevant for electrophoretic displays and liquid toner printing.

10.
Langmuir ; 32(23): 5796-801, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27231768

RESUMEN

Over the last few years, the electrodynamics of charged inverse micelles (CIMs) in nonpolar liquids and the generation mechanism and properties of newly generated CIMs have been studied extensively for the model system of polyisobutylene succinimide in dodecane. However, the newly generated CIMs, which accumulate at the electrodes when a continuous voltage is applied, behave differently compared to the regular CIMs present in equilibrium in the absence of a field. In this work, we use transient current measurements to investigate the behavior of the newly generated CIMs when the field is reduced to zero or reversed. We demonstrate that the newly generated CIMs do not participate in the diffuse double layer near the electrode formed by the regular CIMs but form an interface layer at the electrode surface. A fraction of the newly generated negative CIMs can be released from this interface layer when the field there becomes zero. The findings of this study provide a better understanding of fundamental processes in nonpolar liquids and are relevant for applications such as electronic ink displays and liquid toner printing.

11.
Phys Chem Chem Phys ; 18(28): 19289-98, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27374418

RESUMEN

Charged inverse micelles (CIMs) generated during a continuous polarizing voltage between electrodes in the model system of polyisobutylene succinimide in dodecane do not populate a diffuse double layer like CIMs present in equilibrium (regular CIMs), but instead end up in interface layers. When the applied voltage is reversed abruptly after a continuous polarizing voltage step, two peaks are observed in the transient current. The first peak is due to the release of regular CIMs from the diffuse double layers formed during the polarizing voltage step, which is understood on the basis of the Poisson-Nernst-Planck equations. The second peak is due to the release of a small fraction of generated negative CIMs from the interface layer. A model based on space charge limited release of the generated negative CIMs from the interface layer is presented and the results of the model are compared with several types of measurements. For the situation in which the bulk is deprived of regular CIMs and neutral inverse micelles, the results of the model are in agreement with the experimental results. However, for the situation in which regular CIMs and neutral inverse micelles are present, the model shows discrepancies with the experiment for high voltages and high charge contents. These discrepancies are attributed to electrohydrodynamic flow caused by local variations in the electric field at the vicinity of the electrodes, which occur during the reversal voltage. Also the long term decrease of the amount of released generated CIMs is studied and it is found that the presence of regular CIMs and neutral inverse micelles speeds up the decrease. This study provides a deeper insight in the electrodynamics of CIMs and is relevant for various applications in non-polar liquids.

12.
Electrophoresis ; 36(17): 2102-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25963750

RESUMEN

Electric fields offer a variety of functionalities to Lab-on-a-Chip devices. The use of these fields often results in significant Joule heating, affecting the overall performance of the system. Precise knowledge of the temperature profile inside a microfluidic device is necessary to evaluate the implications of heat dissipation. This article demonstrates how an optically trapped microsphere can be used as a temperature probe to monitor Joule heating in these devices. The Brownian motion of the bead at room temperature is compared with the motion when power is dissipated in the system. This gives an estimate of the temperature increase at a specific location in a microfluidic channel. We demonstrate this method with solutions of different ionic strengths, and establish a precision of 0.9 K and an accuracy of 15%. Furthermore, it is demonstrated that transient heating processes can be monitored with this technique, albeit with a limited time resolution.


Asunto(s)
Calor , Técnicas Analíticas Microfluídicas/métodos , Microesferas , Diseño de Equipo , Técnicas Analíticas Microfluídicas/instrumentación , Movimiento (Física) , Pinzas Ópticas
13.
Langmuir ; 31(40): 10939-45, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26375733

RESUMEN

Aerosol OT (AOT) is a commonly used surfactant and charging agent in nonpolar liquids. Properties such as the conductivity of AOT suspensions in nonpolar liquids and the behavior of charged AOT inverse micelles at interfaces have been studied recently, but still little is known about the generation dynamics of charged AOT inverse micelles. In this article, the generation dynamics of charged AOT inverse micelles in dodecane are investigated with transient current measurements. At low applied voltages, the generation rate is sufficiently fast to maintain the equilibrium concentration of charged inverse micelles, such that the current scales proportionally with the applied voltage. However, above a threshold voltage the current becomes limited by the generation of charged inverse micelles. Al2O3-coated electrodes are used to achieve these high-voltage current measurements while reducing surface generation currents. The dependency of the resulting generation-limited currents with the micelle concentration and the liquid volume is compatible with a bulk disproportionation mechanism. The measured currents are analyzed using a model based on drift, generation, and recombination of charged inverse micelles and the corresponding generation and recombination rates of charged AOT inverse micelles have been determined.

14.
Opt Express ; 22(20): 24635-45, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25322038

RESUMEN

We use Fourier-Bessel Image Decomposition (FBID) of microscopy images to investigate the size, refractive index and 3-dimensional position of individual colloidal microspheres. With measurements of monodisperse polystyrene and poly(methyl methacrylate) particles we achieve a resolution of 1% in size and 0.2% in refractive index for a single image which is sufficient for accurate in situ characterization of polydisperse colloids. Also the binding of avidin molecules to individual biotinylated polystyrene particles is resolved. Finally, the FBID method offers a straightforward approach to 3-dimensional out-of-focus tracking. Here, the z-position of a freely diffusing particle is calculated by applying the statistics of Brownian motion to its set of Fourier-Bessel coefficients.

15.
Langmuir ; 30(41): 12138-43, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25255418

RESUMEN

Transient current measurements are used to characterize a wide variety of charge carriers in nonpolar liquids. The transient current method allows us to obtain both the concentration and mobility of charge carriers and therefore also the hydrodynamic radius using Stokes' law. In this article, five different surfactants in dodecane are investigated: OLOA11K, Solsperse13940, Span80, Span85, and AOT. We show that different types of currents are observed depending on the size of the inverse micelles. For large inverse micelles such as for OLOA11K, Solsperse13940, and Span80, the measurement of the transient current is straightforward because of the low steady-state current level. However, for small inverse micelles such as AOT and Span85, the current from the generation of charges is much larger such that high voltages, a small distance between the electrodes, and dielectric coatings on the electrodes are required to measure the signal related to the initially present charged inverse micelles. The estimated hydrodynamic radii of AOT and Span85, the two smallest inverse micelles, are in good agreement with the values reported in the literature. The comparison of the transient currents with simulations indicates that the dynamics of the charge transport are well-understood.

16.
ACS Nano ; 17(22): 22952-22959, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37787115

RESUMEN

100 years ago, in 1923, the Nobel prize in physics was awarded for measurement of the unit charge. In addition to a profound impact on contemporary physics, this discovery has reshaped our understanding of charge-based interactions in chemistry and biology, ranging from oxidation and ionization to protein folding and metabolism. In a liquid, the discrete nature of the electric charge becomes prominent at the nanoscale when a charge carrier is exchanged between a molecule or a nanoparticle and the surrounding medium. However, our ability to observe the dynamics of such interactions at the level of a single elementary charge is limited due to the abundance of ions in water. Here, we report on the observation of single binding-unbinding events with elementary charge resolution at the surface of a nanoparticle suspended in water. Discrete steps in the electrical charge are revealed by analyzing the motion of optically trapped nanoparticles under the influence of an applied sinusoidal electric field. The measurements are sufficiently fast and long to observe individual (dis)charging events that occur on average every 3 s. Our results offer prospective routes for studying the dynamics of diverse chemical and biological phenomena on the nanoscale with elementary charge resolution.

17.
Phys Rev Lett ; 108(1): 016101, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22304271

RESUMEN

By measuring the stable charge on oil drops in air, Millikan demonstrated the discrete nature of electric charge. We extend his approach to the charge on solid-liquid interfaces, and focus on the dynamics of the discrete fluctuations. Our measurements are accurate and fast enough to observe changes of one elementary charge. Experiments over thousands of seconds yield information about the fast dynamics of electrochemical reactions, relevant for physicochemical and biological systems. As an example, we study (dis)charging processes on colloidal particles in a nonpolar liquid.

18.
Langmuir ; 27(17): 10386-91, 2011 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-21728309

RESUMEN

Surfactants such as Aerosol OT (AOT) are commonly used to stabilize and electrically charge nonpolar colloids in devices such as electronic ink displays. The electrical behavior of such devices is strongly influenced by the presence of charged inverse micelles, formed by excess surfactant that does not cover the particles. The presence of charged inverse micelles results in increased conductivity of the solution, affecting both the energy consumption of the device and its switching characteristics. In this work, we use transient current measurements to investigate the electrical properties of suspensions of the surfactant Aerosol OT in dodecane. No particles are added, to isolate the effect of excess surfactant. The measured currents upon application of a voltage step are found to be exponentially decaying, and can be described by an analytical model based on an equivalent electric circuit. This behavior is physically interpreted, first by the high generation rate of charged inverse micelles giving the suspension resistor like properties, and second by the buildup of layers of charged inverse micelles at both electrodes, acting as capacitors. The model explains the measurements over a large range of surfactant concentrations, applied voltages, and device thicknesses.


Asunto(s)
Alcanos/química , Ácido Dioctil Sulfosuccínico/química , Micelas , Tensoactivos/química , Interacciones Hidrofóbicas e Hidrofílicas , Movimiento (Física) , Tamaño de la Partícula , Electricidad Estática , Propiedades de Superficie , Factores de Tiempo
19.
Nanomaterials (Basel) ; 11(3)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803391

RESUMEN

Semiconductor nanoparticles (SNPs), such as quantum dots (QDs) and core/shell nanoparticles, have proven to be promising candidates for the development of next-generation technologies, including light-emitting diodes (LEDs), liquid crystal displays (LCDs) and solar concentrators. Typically, these applications use a sub-micrometer-thick film of SNPs to realize photoluminescence. However, our current knowledge on how this thin SNP layer affects the optical efficiency remains incomplete. In this work, we demonstrate how the thickness of the photoluminescent layer governs the direction of the emitted light. Our theoretical and experimental results show that the emission is fully outcoupled for sufficiently thin films (monolayer of SNPs), whereas for larger thicknesses (larger than one tenth of the wavelength) an important contribution propagates along the film that acts as a planar waveguide. These findings serve as a guideline for the smart design of diverse QD-based systems, ranging from LEDs, where thinner layers of SNPs maximize the light outcoupling, to luminescent solar concentrators, where a thicker layer of SNPs will boost the efficiency of light concentration.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(1 Pt 1): 011502, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19257037

RESUMEN

Transient currents of electrolytes in response to a voltage step can reveal a lot about the behavior of charges present in an electrolyte. In this paper, electrolytes with high ionic strength are considered. In the limit of small voltage steps, the interpretation is straightforward as the equations describing the transient can be linearized. However, when high ion concentrations and voltage steps of the order of kT/q are considered, we find higher-order effects that occur simultaneously with the diffuse double layer charging. In this case, the diffuse double layer and the transient diffusion layer are coupled because of the screening of the field, leading to a -32 power law for the transient current.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA