Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Fish Biol ; 93(2): 250-262, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29935002

RESUMEN

The Baffin Bay estuary is a hypersaline system in the Gulf of Mexico that supports an important recreational and commercial fishery for black drum Pogonias cromis, a benthic predator. Seasonal measurements of water quality variables, benthic macrofauna densities and biomass, and determination of P. cromis food sources using stomach-content and stable-isotope analyses were carried out to determine how P. cromis food sources change with water quality and how this may affect P. cromis diet. Gut-content analysis indicated P. cromis selectively consumed bivalves Mulinia lateralis and Anomalocardia auberiana. Isotope compositions demonstrated that P. cromis relied on these benthic food resources produced in the Baffin Bay estuary year-round. Biomass and densities of these bivalves were influenced by changes in water quality variables, particularly salinity and dissolved oxygen. Thus, this paper demonstrates the relationship between water quality variables, benthic macrofauna, and their use as food resources by a carnivorous fish species, and emphasizes the need for integrated assessments when studying the effects of water quality on ecosystem function. Holistic approaches such as these can provide important information for management and conservation of fishery resources and can improve predictions of ecosystem response to climate variability.


Asunto(s)
Dieta , Ecosistema , Estuarios , Perciformes , Calidad del Agua , Animales , Biomasa , Isótopos de Carbono/análisis , Contenido Digestivo , Golfo de México , Isótopos de Nitrógeno/análisis
2.
PLoS One ; 19(3): e0298394, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38451937

RESUMEN

Atlantic tarpon (Megalops atlanticus) are capable of long-distance migrations (hundreds of kilometers) but also exhibit resident behaviors in estuarine and coastal habitats. The aim of this study was to characterize the spatial distribution of juvenile tarpon and identify migration pathways of adult tarpon in the northern Gulf of Mexico. Spatial distribution of juvenile tarpon was investigated using gillnet data collected by Texas Parks and Wildlife Department (TPWD) over the past four decades. Generalized additive models (GAMs) indicated that salinity and water temperature played a significant role in tarpon presence, with tarpon occurrences peaking in the fall and increasing over the past four decades in this region. Adult tarpon caught off Texas (n = 40) and Louisiana (n = 4) were tagged with acoustic transmitters to characterize spatial and temporal trends in their movements and migrations. Of the 44 acoustic transmitters deployed, 18 of the individuals were detected (n = 16 west of the Mississippi River Delta and n = 2 east of the Mississippi River Delta). Tarpon tagged west of the Mississippi River Delta off Texas migrated south in the fall and winter into areas of south Texas and potentially into Mexico, while individuals tagged east of the delta migrated into Florida during the same time period, suggesting the presence of two unique migratory contingents or subpopulations in this region. An improved understanding of the habitat requirements and migratory patterns of tarpon inhabiting the Gulf of Mexico is critically needed by resource managers to assess the vulnerability of each contingent to fishing pressure, and this information will guide multi-state and multi-national conservation efforts to rebuild and sustain tarpon populations.


Asunto(s)
Ecosistema , Peces , Humanos , Animales , Golfo de México , Animales Salvajes , Movimiento
3.
PLoS One ; 18(2): e0281441, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36780489

RESUMEN

The practice of catch and release fishing is common among anglers but has been shown to cause unintended mortalities in some species. Current post-release mortality estimates used in coastal shark stock assessments are typically derived from boat-based shark fisheries, which differ from shore-based operations that expose sharks to potentially more stressful environmental and handling conditions. Recreational post-release mortality rates in shore-based fisheries must be quantified to improve stock assessment models and to create guidelines that protect species from overexploitation. Here, we partnered with experienced anglers acting as citizen scientists to deploy pop-up satellite archival transmitting tags (PSAT, n = 22) and acceleration data loggers (ADLs, n = 22). on four commonly caught sharks including the blacktip shark (Carcharhinus limbatus, n = 11), bull shark (Carcharhinus leucas, n = 14), tiger shark (Galeocerdo cuvier, n = 6), and great hammerheads (Sphyrna mokarran, n = 2). Mortality occurred within minutes to hours post-release. If evidence of mortality occurred after normal diving behavior had been re-established for 10 days, then the mortality was considered natural and not related to the catch-and-release process. Post-release mortality estimates ranged from 0% for bull and tiger sharks to 45.5% for blacktip sharks. Of the two great hammerheads, one died within 30 minutes post-release while the other exhibited mortality characteristics 14 days after release. Moribund blacktip sharks experienced on average 3.4-4.9°C warmer water compared with survivors. Recovery periods were estimated for survivors of each species and were highly variable, differing based on duration of tag deployment. High variability in responses to capture and release between species demonstrates the need for species-specific assessments of post-release mortality in shore-based recreational fisheries.


Asunto(s)
Explotaciones Pesqueras , Tiburones , Animales , Texas , Alimentos Marinos , Tiburones/fisiología
4.
PLoS One ; 17(6): e0269397, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35657921

RESUMEN

Southern Flounder (Paralichthys lethostigma) populations are declining in the Gulf of Mexico basin. This is particularly true in Texas, where this unique and culturally important fishery has been in decline since the 1980s despite increasingly stringent regulatory measures. Current angler-intercept creel surveys used to estimate recreational flounder harvest levels are conducted during daylight hours and do not account for the high levels of nighttime flounder gigging (spearing) activity, a popular and efficient harvest method for this fishery. There are legitimate scientific and logistical concerns that have prevented the use of wide-spread nighttime creel surveys to monitor the flounder gigging fishery in the past, however this has made accurate catch and effort estimates difficult to obtain. Given the concern about this economically important fishery's status, we adopted a unique approach utilizing social media to provide unprecedented information into this fishery's impact during periods that are not traditionally monitored. Specifically, we reconstructed seasonal flounder harvest and effort metrics stemming from the nighttime recreational guided flounder gigging sector over 2.6 years using guided flounder gigging charter photo archives publicly available through Facebook. These metrics show large average client party sizes, large trip harvests, and near-perfect bag limit efficiencies. Temporal trends indicated peak recreational guided flounder gigging effort and harvest occurs during the summer months, a time not traditionally associated with flounder gigging. The addition of nighttime guided-gigging recreational harvest estimates from this study to traditional daytime harvest estimates and commercial harvest estimates resulted in total annual harvest estimates nearly two times greater than current estimates. Overall, this study demonstrates the high pressure guided-gigging charters are placing on Texas' flounder fishery and illustrates the critical need for additional information on the nighttime recreational flounder fishery for both guided and private gigging anglers. Moreover, our results also demonstrate the usefulness of mining social media platforms to capture catch and effort data that are otherwise unavailable.


Asunto(s)
Lenguado , Medios de Comunicación Sociales , Animales , Explotaciones Pesqueras , Humanos , Estaciones del Año , Texas
5.
PLoS One ; 15(7): e0234868, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32667920

RESUMEN

The tiger shark (Galeocerdo cuvier) is globally distributed with established coastal and open-ocean movement patterns in many portions of its range. While all life stages of tiger sharks are known to occur in the Gulf of Mexico (GoM), variability in habitat use and movement patterns over ontogeny have never been quantified in this large marine ecosystem. To address this data gap we fitted 56 tiger sharks with Smart Position and Temperature transmitting tags between 2010 and 2018 and examined seasonal and spatial distribution patterns across the GoM. Additionally, we analyzed overlap of core habitats (i.e., 50% kernel density estimates) among individuals relative to large benthic features (oil and gas platforms, natural banks, bathymetric breaks). Our analyses revealed significant ontogenetic and seasonal differences in distribution patterns as well as across-shelf (i.e., regional) and sex-linked variability in movement rates. Presumably sub-adult and adult sharks achieved significantly higher movement rates and used off-shelf deeper habitats at greater proportions than juvenile sharks, particularly during the fall and winter seasons. Further, female maximum rate of movement was higher than males when accounting for size. Additionally, we found evidence of core regions encompassing the National Oceanographic and Atmospheric Administration designated Habitat Areas of Particular Concern (i.e., shelf-edge banks) during cooler months, particularly by females, as well as 2,504 oil and gas platforms. These data provide a baseline for future assessments of environmental impacts, such as climate variability or oil spills, on tiger shark movements and distribution in the region. Future research may benefit from combining alternative tracking tools, such as acoustic telemetry and genetic approaches, which can facilitate long-term assessment of the species' movement dynamics and better elucidate the ecological significance of the core habitats identified here.


Asunto(s)
Migración Animal/fisiología , Demografía/métodos , Tiburones/crecimiento & desarrollo , Animales , Ecosistema , Femenino , Golfo de México , Estadios del Ciclo de Vida/fisiología , Masculino , Tiburones/metabolismo , Tiburones/fisiología
6.
PLoS One ; 14(12): e0226782, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31856212

RESUMEN

Involving citizen scientists in research has become increasingly popular in natural resource management and allows for an increased research effort at low cost, distribution of scientific information to relevant audiences, and meaningful public engagement. Scientists engaging fishing tournament participants as citizen scientists represent ideal scenarios for testing citizen science initiatives. For example, the Texas Shark Rodeo has begun shifting to conservation-oriented catch-and-release practices, which provides a unique opportunity to collect data on a large scale for extended periods of time, particularly through tagging large numbers of sharks for very little cost compared to a directed scientific study. However, critics are somewhat skeptical of citizen science due to the potential for lack of rigor in data collection and validation. A major management concern for shark fisheries is the ability of anglers to identify species. We tested some of the assumptions and value of citizen-collected data by cross-verifying species identification. Specifically, the purpose of this study was to evaluate the accuracy of shark species identifications made by anglers fishing in the Texas Shark Rodeo using photographs that were submitted as a requirement for tournament participation. Using a confusion matrix, we determined that anglers correctly identified 97.2% of all shark catches submitted during the Texas Shark Rodeo from 2014-2018; however, smaller sharks and certain species, including blacknose and spinner sharks, were more difficult to identify than others. Most commonly confused with blacktip sharks, spinner sharks were most commonly identified incorrectly (76.1% true positive rate [TPR]) followed by blacknose (86.8% TPR), finetooth (88.0% TPR), and Atlantic sharpnose sharks (93.8% TPR). This study demonstrated that citizen scientists have the ability to identify sharks with relatively low error. This is important for science and management, as these long-term datasets with relatively wide geographic scope could potentially be incorporated into future assessments of sharks in the Gulf of Mexico.


Asunto(s)
Ciencia Ciudadana/normas , Tiburones/fisiología , Animales , Ciencia Ciudadana/métodos , Exactitud de los Datos , Humanos , Tiburones/clasificación
7.
Integr Environ Assess Manag ; 15(4): 544-564, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30908815

RESUMEN

Over the past century, the environment of the Gulf of Mexico has been significantly altered and impaired by extensive human activities. A national commitment to restore the Gulf was finally initiated in response to the unprecedented Deepwater Horizon oil spill in 2010. Consequently, there is a critical need for an assessment framework and associated set of indicators that can characterize the health and sustainability of an ecosystem having the scale and complexity of the Gulf. The assessment framework presented here was developed as an integration of previous ecological risk- and environmental management-based frameworks for assessing ecosystem health. It was designed to identify the natural and anthropogenic drivers, pressures, and stressors impinging on ecosystems and ecosystem services, and the ecological conditions that result, manifested as effects on valued ecosystem components. Four types of societal and ecological responses are identified: reduction of pressures and stressors, remediation of existing stressors, active ecosystem restoration, and natural ecological recovery. From this conceptual framework are derived the specific indicators to characterize ecological condition and progress toward achieving defined ecological health and sustainability goals. Additionally, the framework incorporates a hierarchical structure to communicate results to a diversity of audiences, from research scientists to environmental managers and decision makers, with the level of detail or aggregation appropriate for each targeted audience. Two proof-of-concept studies were conducted to test this integrated assessment and decision framework, a prototype Texas Coastal Ecosystems Report Card, and a pilot study on enhancing rookery islands in the Mission-Aransas Reserve, Texas, USA. This Drivers-Pressures-Stressors-Condition-Responses (DPSCR4 ) conceptual framework is a comprehensive conceptual model of the coupled human-ecological system. Much like its predecessor, the ecological risk assessment framework, the DPSCR4 conceptual framework can be tailored to different scales of complexity, different ecosystem types with different stress regimes, and different environmental settings. Integr Environ Assess Manag 2019;15:544-564. © 2019 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Monitoreo del Ambiente/métodos , Animales , Aves , Golfo de México , Comportamiento de Nidificación , Océanos y Mares , Proyectos Piloto , Prueba de Estudio Conceptual , Texas
8.
Sci Rep ; 9(1): 1663, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30733508

RESUMEN

The timing and extent of international crossings by billfishes, tunas, and sharks in the Cuba-Mexico-United States (U.S.) triangle was investigated using electronic tagging data from eight species that resulted in >22,000 tracking days. Transnational movements of these highly mobile marine predators were pronounced with varying levels of bi- or tri-national population connectivity displayed by each species. Billfishes and tunas moved throughout the Gulf of Mexico and all species investigated (blue marlin, white marlin, Atlantic bluefin tuna, yellowfin tuna) frequently crossed international boundaries and entered the territorial waters of Cuba and/or Mexico. Certain sharks (tiger shark, scalloped hammerhead) displayed prolonged periods of residency in U.S. waters with more limited displacements, while whale sharks and to a lesser degree shortfin mako moved through multiple jurisdictions. The spatial extent of associated movements was generally associated with their differential use of coastal and open ocean pelagic ecosystems. Species with the majority of daily positions in oceanic waters off the continental shelf showed the greatest tendency for transnational movements and typically traveled farther from initial tagging locations. Several species converged on a common seasonal movement pattern between territorial waters of the U.S. (summer) and Mexico (winter).


Asunto(s)
Migración Animal/fisiología , Ecosistema , Perciformes/fisiología , Dinámica Poblacional , Tiburones/fisiología , Atún/fisiología , Animales , Cuba , México , Océanos y Mares , Estados Unidos
9.
PLoS One ; 10(5): e0126354, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25954943

RESUMEN

Artificial structures are the dominant complex marine habitat type along the northwestern Gulf of Mexico (GOM) shelf. These habitats can consist of a variety of materials, but in this region are primarily comprised of active and reefed oil and gas platforms. Despite being established for several decades, the fish communities inhabiting these structures remain poorly investigated. Between 2012 and 2013 we assessed fish communities at 15 sites using remotely operated vehicles (ROVs). Fish assemblages were quantified from standing platforms and an array of artificial reef types (Liberty Ships and partially removed or toppled platforms) distributed over the Texas continental shelf. The depth gradient covered by the surveys (30-84 m) and variability in structure density and relief also permitted analyses of the effects of these characteristics on fish richness, diversity, and assemblage composition. ROVs captured a variety of species inhabiting these reefs from large transient piscivores to small herbivorous reef fishes. While structure type and relief were shown to influence species richness and community structure, major trends in species composition were largely explained by the bottom depth where these structures occurred. We observed a shift in fish communities and relatively high diversity at approximately 60 m bottom depth, confirming trends observed in previous studies of standing platforms. This depth was also correlated with some of the largest Red Snapper captured on supplementary vertical longline surveys. Our work indicates that managers of artificial reefing programs (e.g., Rigs-to-Reefs) in the GOM should carefully consider the ambient environmental conditions when designing reef sites. For the Texas continental shelf, reefing materials at a 50-60 m bottom depth can serve a dual purpose of enhancing diving experiences and providing the best potential habitat for relatively large Red Snapper.


Asunto(s)
Arrecifes de Coral , Peces/fisiología , Animales , Golfo de México , Análisis Multivariante , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA