Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mol Cell ; 77(5): 1066-1079.e9, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31902667

RESUMEN

Naturally occurring or drug-induced DNA-protein crosslinks (DPCs) interfere with key DNA transactions if not repaired in a timely manner. The unique family of DPC-specific proteases Wss1/SPRTN targets DPC protein moieties for degradation, including stabilized topoisomerase-1 cleavage complexes (Top1ccs). Here, we describe that the efficient DPC disassembly requires Ddi1, another conserved predicted protease in Saccharomyces cerevisiae. We found Ddi1 in a genetic screen of the tdp1 wss1 mutant defective in Top1cc processing. Ddi1 is recruited to a persistent Top1cc-like DPC lesion in an S phase-dependent manner to assist in the eviction of crosslinked protein from DNA. Loss of Ddi1 or its putative protease activity hypersensitizes cells to DPC trapping agents independently from Wss1 and 26S proteasome, implying its broader role in DPC repair. Among the potential Ddi1 targets, we found the core component of Pol II and show that its genotoxin-induced degradation is impaired in ddi1. We propose that the Ddi1 protease contributes to DPC proteolysis.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Animales , ADN Nucleotidiltransferasas/genética , ADN Nucleotidiltransferasas/metabolismo , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Proteolisis , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Células Sf9 , Spodoptera , Transcripción Genética
2.
EMBO J ; 42(13): e113609, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37144685

RESUMEN

DNA-protein crosslinks (DPCs) pose a serious threat to genome stability. The yeast proteases Wss1, 26S proteasome, and Ddi1 are safeguards of genome integrity by acting on a plethora of DNA-bound proteins in different cellular contexts. The AAA ATPase Cdc48/p97 is known to assist Wss1/SPRTN in clearing DNA-bound complexes; however, its contribution to DPC proteolysis remains unclear. Here, we show that the Cdc48 adaptor Ubx5 is detrimental in yeast mutants defective in DPC processing. Using an inducible site-specific crosslink, we show that Ubx5 accumulates at persistent DPC lesions in the absence of Wss1, which prevents their efficient removal from the DNA. Abolishing Cdc48 binding or complete loss of Ubx5 suppresses sensitivity of wss1∆ cells to DPC-inducing agents by favoring alternate repair pathways. We provide evidence for cooperation of Ubx5-Cdc48 and Wss1 in the genotoxin-induced degradation of RNA polymerase II (RNAPII), a described candidate substrate of Wss1. We propose that Ubx5-Cdc48 assists Wss1 for proteolysis of a subset of DNA-bound proteins. Together, our findings reveal a central role for Ubx5 in DPC clearance and repair.


Asunto(s)
Reparación del ADN , Saccharomyces cerevisiae , ADN/metabolismo , Daño del ADN , Endopeptidasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas
3.
PLoS Genet ; 18(10): e1010432, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36215302

RESUMEN

Pervasive transcription of eukaryotic genomes generates non-coding transcripts with regulatory potential. We examined the effects of non-coding antisense transcription on the regulation of expression of the yeast PHO5 gene, a paradigmatic case for gene regulation through promoter chromatin remodeling. A negative role for antisense transcription at the PHO5 gene locus was demonstrated by leveraging the level of overlapping antisense transcription through specific mutant backgrounds, expression from a strong promoter in cis, and use of the CRISPRi system. Furthermore, we showed that enhanced elongation of PHO5 antisense leads to a more repressive chromatin conformation at the PHO5 gene promoter, which is more slowly remodeled upon gene induction. The negative effect of antisense transcription on PHO5 gene transcription is mitigated upon inactivation of the histone deacetylase Rpd3, showing that PHO5 antisense RNA acts via histone deacetylation. This regulatory pathway leads to Rpd3-dependent decreased recruitment of the RSC chromatin remodeling complex to the PHO5 gene promoter upon induction of antisense transcription. Overall, the data in this work reveal an additional level in the complex regulatory mechanism of PHO5 gene expression by showing antisense transcription-mediated repression at the level of promoter chromatin structure remodeling.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Histonas/genética , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Cromatina/genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , ARN sin Sentido/genética , Transcripción Genética , Regulación Fúngica de la Expresión Génica
4.
Nucleic Acids Res ; 50(8): 4515-4528, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35474134

RESUMEN

Eukaryotic genomes are pervasively transcribed by RNA polymerase II (RNAPII), and transcription of long non-coding RNAs often overlaps with coding gene promoters. This might lead to coding gene repression in a process named Transcription Interference (TI). In Saccharomyces cerevisiae, TI is mainly driven by antisense non-coding transcription and occurs through re-shaping of promoter Nucleosome-Depleted Regions (NDRs). In this study, we developed a genetic screen to identify new players involved in Antisense-Mediated Transcription Interference (AMTI). Among the candidates, we found the HIR histone chaperone complex known to be involved in de novo histone deposition. Using genome-wide approaches, we reveal that HIR-dependent histone deposition represses the promoters of SAGA-dependent genes via antisense non-coding transcription. However, while antisense transcription is enriched at promoters of SAGA-dependent genes, this feature is not sufficient to define the mode of gene regulation. We further show that the balance between HIR-dependent nucleosome incorporation and transcription factor binding at promoters directs transcription into a SAGA- or TFIID-dependent regulation. This study sheds light on a new connection between antisense non-coding transcription and the nature of coding transcription initiation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Regulación Fúngica de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética
5.
Nat Rev Mol Cell Biol ; 12(6): 377-84, 2011 06.
Artículo en Inglés | MEDLINE | ID: mdl-21602906

RESUMEN

The cell nucleus is an intricate organelle that coordinates multiple activities that are associated with DNA replication and gene expression. In all eukaryotes, it stores the genetic information and the machineries that control the production of mature and export-competent messenger ribonucleoproteins (mRNPs), a multistep process that is regulated in a spatial and temporal manner. Recent studies suggest that post-translational modifications play a part in coordinating the co-transcriptional assembly, remodelling and export of mRNP complexes through nuclear pores, adding a new level of regulation to the process of gene expression.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ribonucleoproteínas/metabolismo , Replicación del ADN , Expresión Génica , Regulación de la Expresión Génica , Humanos , Poro Nuclear/metabolismo , Procesamiento Proteico-Postraduccional , ARN Polimerasa II , Saccharomyces cerevisiae
6.
Cell ; 135(2): 308-21, 2008 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-18957205

RESUMEN

During transcription, proteins assemble sequentially with nascent RNA to generate a messenger ribonucleoprotein particle (mRNP). The THO complex and its associated Sub2p helicase are functionally implicated in both transcription and mRNP biogenesis but their precise function remains elusive. We show here that THO/Sub2p mutation leads to the accumulation of a stalled intermediate in mRNP biogenesis that contains nuclear pore components and polyadenylation factors in association with chromatin. Microarray analyses of genomic loci that are aberrantly docked to the nuclear pore in mutants allowed the identification of approximately 400 novel validated target genes that require THO /Sub2p for efficient expression. Our data strongly suggests that the THO complex/Sub2p function is required to coordinate events leading to the acquisition of export competence at a step that follows commitment to 3'-processing.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Poro Nuclear/metabolismo , Procesamiento de Término de ARN 3' , Transporte de ARN , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Adenosina Trifosfatasas/genética , Cromatina/metabolismo , Proteínas de Choque Térmico/genética , Mutación , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Nucleosomas/metabolismo , ARN Polimerasa II/metabolismo , ARN de Hongos/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
7.
Genome Res ; 28(12): 1882-1893, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30401734

RESUMEN

In eukaryotic organisms, replication initiation follows a temporal program. Among the parameters that regulate this program in Saccharomyces cerevisiae, chromatin structure has been at the center of attention without considering the contribution of transcription. Here, we revisit the replication initiation program in the light of widespread genomic noncoding transcription. We find that noncoding RNA transcription termination in the vicinity of autonomously replicating sequences (ARSs) shields replication initiation from transcriptional readthrough. Consistently, high natural nascent transcription correlates with low ARS efficiency and late replication timing. High readthrough transcription is also linked to increased nucleosome occupancy and high levels of H3K36me3. Moreover, forcing ARS readthrough transcription promotes these chromatin features. Finally, replication initiation defects induced by increased transcriptional readthrough are partially rescued in the absence of H3K36 methylation. Altogether, these observations indicate that natural noncoding transcription into ARSs influences replication initiation through chromatin regulation.


Asunto(s)
Cromatina/genética , Replicación del ADN , Regulación de la Expresión Génica , ARN no Traducido , Acetilación , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , Nucleosomas/metabolismo , ARN Mensajero/genética , Origen de Réplica , Saccharomyces cerevisiae/genética , Transcripción Genética
8.
Mol Cell ; 51(6): 807-18, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24074957

RESUMEN

Transcription activation of some yeast genes correlates with their repositioning to the nuclear pore complex (NPC). The NPC-bound Mlp1 and Mlp2 proteins have been shown to associate with the GAL1 gene promoter and to maintain Ulp1, a key SUMO protease, at the NPC. Here, we show that the release of Ulp1 from the NPC increases the kinetics of GAL1 derepression, whereas artificial NPC anchoring of Ulp1 in the Δmlp1/2 strain restores normal GAL1 regulation. Moreover, artificial tethering of the Ulp1 catalytic domain to the GAL1 locus enhances the derepression kinetics. Our results also indicate that Ulp1 modulates the sumoylation state of Tup1 and Ssn6, two regulators of glucose-repressed genes, and that a loss of Ssn6 sumoylation correlates with an increase in GAL1 derepression kinetics. Altogether, our data highlight a role for the NPC-associated SUMO protease Ulp1 in regulating the sumoylation of gene-bound transcription regulators, positively affecting transcription kinetics in the context of the NPC.


Asunto(s)
Cisteína Endopeptidasas/genética , Galactoquinasa/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transcripción Genética , Galactoquinasa/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilación , Activación Transcripcional
9.
Bioessays ; 41(11): e1900043, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31577043

RESUMEN

RNA polymerase II (RNAP II) non-coding transcription is now known to cover almost the entire eukaryotic genome, a phenomenon referred to as pervasive transcription. As a consequence, regions previously thought to be non-transcribed are subject to the passage of RNAP II and its associated proteins for histone modification. This is the case for the nucleosome-depleted regions (NDRs), which provide key sites of entry into the chromatin for proteins required for the initiation of coding gene transcription and DNA replication. In this review, recent data on the effects of pervasive transcription through NDRs are summarized and a model is proposed to explain how RNAP II-driven transcription is able to modify the nucleosomes flanking the NDRs, leading to nucleosome repositioning and NDR closure. Even though much of the mechanistic detail underlying these events remains to be elucidated, such a model provides a basis to explain how non-coding transcription through NDRs can regulate the initiation of coding gene expression and DNA replication.


Asunto(s)
Cromatina/genética , Replicación del ADN/genética , Expresión Génica/genética , Nucleosomas/genética , ARN no Traducido/genética , Transcripción Genética/genética , Humanos , ARN Polimerasa II/genética
10.
Curr Genet ; 66(1): 63-71, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31292684

RESUMEN

The mRNA export adaptor Yra1 is essential in S. cerevisiae, and conserved from yeast to human (ALY/REF). It is well characterized for its function during transcription elongation, 3' processing and mRNA export. Recently, different studies linked Yra1 to genome stability showing that Yra1 overexpression causes DNA Double Strand Breaks through DNA:RNA hybrids stabilization, and that Yra1 depletion affects DSB repair. However, the mechanisms through which Yra1 contributes to genome stability maintenance are not fully understood. Interestingly, our results showed that the Yra1 C-box domain is required for Yra1 recruitment to an HO-induced irreparable DSB following extensive resection, and that it is essential to repair an HO-induced reparable DSB. Furthermore, we defined that the C-box domain of Yra1 plays a crucial role in DSB repair through homologous recombination but not through non-homologous end joining. Future studies aim at deciphering the mechanism by which Yra1 contributes to DSB repair by searching for Yra1 partners important for this process. This review focuses on the functional complexity of the Yra1 protein, not only summarizing its role in mRNA biogenesis but also emphasizing its auto-regulation and implication in genome integrity either through DNA:RNA hybrids stabilization or DNA double strand break repair in S. cerevisiae.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Regulación Fúngica de la Expresión Génica , Inestabilidad Genómica , Intrones , Proteínas Nucleares/genética , Unión Proteica , Estructuras R-Loop , ARN Mensajero/biosíntesis , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Genes Dev ; 24(17): 1927-38, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20810649

RESUMEN

The evolutionarily conserved mRNA export receptor Mex67/NXF1 associates with mRNAs through its adaptor, Yra1/REF, allowing mRNA ribonucleoprotein (mRNP) exit through nuclear pores. However, alternate adaptors should exist, since Yra1 is dispensable for mRNA export in Drosophila and Caenorhabditis elegans. Here we report that Mex67 interacts directly with Nab2, an essential shuttling mRNA-binding protein required for export. We further show that Yra1 enhances the interaction between Nab2 and Mex67, and becomes dispensable in cells overexpressing Nab2 or Mex67. These observations appoint Nab2 as a potential adaptor for Mex67, and define Yra1/REF as a cofactor stabilizing the adaptor-receptor interaction. Importantly, Yra1 ubiquitination by the E3 ligase Tom1 promotes its dissociation from mRNP before export. Finally, loss of perinuclear Mlp proteins suppresses the growth defects of Tom1 and Yra1 ubiquitination mutants, suggesting that Tom1-mediated dissociation of Yra1 from Nab2-bound mRNAs is part of a surveillance mechanism at the pore, ensuring export of mature mRNPs only.


Asunto(s)
ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Regulación Fúngica de la Expresión Génica , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
13.
Genes Dev ; 23(13): 1534-45, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19571181

RESUMEN

Homology-dependent gene silencing, a phenomenon described as cosuppression in plants, depends on siRNAs. We provide evidence that in Saccharomyces cerevisiae, which is missing the RNAi machinery, protein coding gene cosuppression exists. Indeed, introduction of an additional copy of PHO84 on a plasmid or within the genome results in the cosilencing of both the transgene and the endogenous gene. This repression is transcriptional and position-independent and requires trans-acting antisense RNAs. Antisense RNAs induce transcriptional gene silencing both in cis and in trans, and the two pathways differ by the implication of the Hda1/2/3 complex. We also show that trans-silencing is influenced by the Set1 histone methyltransferase, which promotes antisense RNA production. Finally we show that although antisense-mediated cis-silencing occurs in other genes, trans-silencing so far depends on features specific to PHO84. All together our data highlight the importance of noncoding RNAs in mediating RNAi-independent transcriptional gene silencing.


Asunto(s)
Regulación Fúngica de la Expresión Génica , ARN sin Sentido/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Supresión Genética/genética , Proteínas de Unión al ADN/metabolismo , Dosificación de Gen/genética , Silenciador del Gen , Histona Desacetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina , Simportadores de Protón-Fosfato/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
14.
Chromosoma ; 124(1): 45-56, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25171917

RESUMEN

Increasing evidence indicates that besides promoters, enhancers, and epigenetic modifications, nuclear organization is another parameter contributing to optimal control of gene expression. Although differences between species exist, the influence of gene positioning on expression seems to be a conserved feature from yeast to Drosophila and mammals. The nuclear periphery is one of the nuclear compartments implicated in gene regulation. It consists of the nuclear envelope (NE) and the nuclear pore complexes (NPC), which have distinct roles in the control of gene expression. The NPC has recently been shown to tether proteins involved in the sumoylation pathway. Here, we will focus on the importance of gene positioning and NPC-linked sumoylation/desumoylation in transcription regulation. We will mainly discuss observations made in the yeast Saccharomyces cerevisiae model system and highlight potential parallels in metazoan species.


Asunto(s)
Regulación de la Expresión Génica , Poro Nuclear/fisiología , Sumoilación , Transcripción Genética , Animales , Orden Génico , Poro Nuclear/genética , Saccharomyces cerevisiae/genética
15.
Nucleic Acids Res ; 42(7): 4348-62, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24497191

RESUMEN

Most genomes, including yeast Saccharomyces cerevisiae, are pervasively transcribed producing numerous non-coding RNAs, many of which are unstable and eliminated by nuclear or cytoplasmic surveillance pathways. We previously showed that accumulation of PHO84 antisense RNA (asRNA), in cells lacking the nuclear exosome component Rrp6, is paralleled by repression of sense transcription in a process dependent on the Hda1 histone deacetylase (HDAC) and the H3K4 histone methyl transferase Set1. Here we investigate this process genome-wide and measure the whole transcriptome of various histone modification mutants in a Δrrp6 strain using tiling arrays. We confirm widespread occurrence of potentially antisense-dependent gene regulation and identify three functionally distinct classes of genes that accumulate asRNAs in the absence of Rrp6. These classes differ in whether the genes are silenced by the asRNA and whether the silencing is HDACs and histone methyl transferase-dependent. Among the distinguishing features of asRNAs with regulatory potential, we identify weak early termination by Nrd1/Nab3/Sen1, extension of the asRNA into the open reading frame promoter and dependence of the silencing capacity on Set1 and the HDACs Hda1 and Rpd3 particularly at promoters undergoing extensive chromatin remodelling. Finally, depending on the efficiency of Nrd1/Nab3/Sen1 early termination, asRNA levels are modulated and their capability of silencing is changed.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Histonas/metabolismo , ARN sin Sentido/metabolismo , Saccharomyces cerevisiae/genética , Terminación de la Transcripción Genética , N-Metiltransferasa de Histona-Lisina/fisiología , Simportadores de Protón-Fosfato/genética , ARN sin Sentido/biosíntesis , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología
16.
Nature ; 457(7232): 1033-7, 2009 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-19169243

RESUMEN

Genome-wide pervasive transcription has been reported in many eukaryotic organisms, revealing a highly interleaved transcriptome organization that involves hundreds of previously unknown non-coding RNAs. These recently identified transcripts either exist stably in cells (stable unannotated transcripts, SUTs) or are rapidly degraded by the RNA surveillance pathway (cryptic unstable transcripts, CUTs). One characteristic of pervasive transcription is the extensive overlap of SUTs and CUTs with previously annotated features, which prompts questions regarding how these transcripts are generated, and whether they exert function. Single-gene studies have shown that transcription of SUTs and CUTs can be functional, through mechanisms involving the generated RNAs or their generation itself. So far, a complete transcriptome architecture including SUTs and CUTs has not been described in any organism. Knowledge about the position and genome-wide arrangement of these transcripts will be instrumental in understanding their function. Here we provide a comprehensive analysis of these transcripts in the context of multiple conditions, a mutant of the exosome machinery and different strain backgrounds of Saccharomyces cerevisiae. We show that both SUTs and CUTs display distinct patterns of distribution at specific locations. Most of the newly identified transcripts initiate from nucleosome-free regions (NFRs) associated with the promoters of other transcripts (mostly protein-coding genes), or from NFRs at the 3' ends of protein-coding genes. Likewise, about half of all coding transcripts initiate from NFRs associated with promoters of other transcripts. These data change our view of how a genome is transcribed, indicating that bidirectionality is an inherent feature of promoters. Such an arrangement of divergent and overlapping transcripts may provide a mechanism for local spreading of regulatory signals-that is, coupling the transcriptional regulation of neighbouring genes by means of transcriptional interference or histone modification.


Asunto(s)
Regulación Fúngica de la Expresión Génica/genética , Regiones Promotoras Genéticas/genética , ARN de Hongos/genética , Saccharomyces cerevisiae/genética , Transcripción Genética/genética , Perfilación de la Expresión Génica , Genes Fúngicos/genética , Genes Sobrepuestos/genética , Genoma Fúngico/genética , Modelos Genéticos , Nucleosomas , Estabilidad del ARN/genética , ARN no Traducido/genética , Saccharomyces cerevisiae/clasificación , Proteínas de Saccharomyces cerevisiae/genética
17.
DNA Repair (Amst) ; 139: 103691, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38744091

RESUMEN

The ATP-dependent molecular chaperone Cdc48 (in yeast) and its human counterpart p97 (also known as VCP), are essential for a variety of cellular processes, including the removal of DNA-protein crosslinks (DPCs) from the DNA. Growing evidence demonstrates in the last years that Cdc48/p97 is pivotal in targeting ubiquitinated and SUMOylated substrates on chromatin, thereby supporting the DNA damage response. Along with its cofactors, notably Ufd1-Npl4, Cdc48/p97 has emerged as a central player in the unfolding and processing of DPCs. This review introduces the detailed structure, mechanism and cellular functions of Cdc48/p97 with an emphasis on the current knowledge of DNA-protein crosslink repair pathways across several organisms. The review concludes by discussing the potential therapeutic relevance of targeting p97 in DPC repair.


Asunto(s)
Reparación del ADN , Proteínas de Saccharomyces cerevisiae , Proteína que Contiene Valosina , Proteína que Contiene Valosina/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Daño del ADN , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Animales , Péptidos y Proteínas de Señalización Intracelular
18.
Biochim Biophys Acta ; 1819(6): 521-30, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22240387

RESUMEN

The production of mature and export competent mRNP (mRNA ribonucleoprotein) complexes depends on a series of highly coordinated processing reactions. RNA polymerase II (RNAPII) plays a central role in this process by mediating the sequential recruitment of mRNA maturation and export factors to transcribing genes, thereby establishing a strong functional link between transcription and export through nuclear pore complexes (NPC). Growing evidence indicates that post-translational modifications participate in the dynamic association of processing and export factors with mRNAs ensuring that the transitions and rearrangements undergone by the mRNP occur at the right time and place. This review mainly focuses on the role of ubiquitin conjugation in controlling mRNP assembly and quality control from transcription down to export through the NPC. It emphasizes the central role of ubiquitylation in organizing the chronology of events along this highly dynamic pathway. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.


Asunto(s)
Poro Nuclear , ARN Mensajero , Ribonucleoproteínas , Ubiquitina , Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Poro Nuclear/genética , Poro Nuclear/metabolismo , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transporte de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Transcripción Genética , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinación/genética
19.
FEBS Lett ; 597(22): 2833-2850, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37805446

RESUMEN

Two related post-translational modifications, the covalent linkage of Ubiquitin and the Small Ubiquitin-related MOdifier (SUMO) to lysine residues, play key roles in the regulation of both DNA repair pathway choice and transcription. Whereas ubiquitination is generally associated with proteasome-mediated protein degradation, the impact of sumoylation has been more mysterious. In the cell nucleus, sumoylation effects are largely mediated by the relocalization of the modified targets, particularly in response to DNA damage. This is governed in part by the concentration of SUMO protease at nuclear pores [Melchior, F et al. (2003) Trends Biochem Sci 28, 612-618; Ptak, C and Wozniak, RW (2017) Adv Exp Med Biol 963, 111-126]. We review here the roles of sumoylation in determining genomic locus positioning relative to the nuclear envelope and to nuclear pores, to facilitate repair and regulate transcription.


Asunto(s)
Poro Nuclear , Ubiquitina , Poro Nuclear/genética , Poro Nuclear/metabolismo , Ubiquitina/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Reparación del ADN , Ubiquitinación , Sumoilación
20.
J Cell Sci ; 123(Pt 12): 1989-99, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20519581

RESUMEN

It is now well established that the position of a gene within the nucleus can influence the level of its activity. So far, special emphasis has been placed on the nuclear envelope (NE) as a transcriptionally silent nuclear sub-domain. Recent work, however, indicates that peripheral localization is not always associated with repression, but rather fulfills a dual function in gene expression. In particular, in the yeast Saccharomyces cerevisiae, a large number of highly expressed genes and activated inducible genes preferentially associate with nuclear pore complexes (NPCs), a process that is mediated by transient interactions between the transcribed locus and the NPC. Recent studies aimed at unraveling the molecular basis of this mechanism have revealed that maintenance of genes at the NPC involves multiple tethers at different steps of gene expression. These observations are consistent with tight interconnections between transcription, mRNA processing and export into the cytoplasm, and highlight a role for the NPC in promoting and orchestrating the gene expression process. In this Commentary, we discuss the factors involved in active gene anchoring to the NPC and the diverse emerging roles of the NPC environment in promoting gene expression, focusing on yeast as a model organism.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA