Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 15(6): e1008196, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31173582

RESUMEN

Covalent intermolecular cross-linking of collagen is essential for tissue stability. Recent studies have demonstrated that cyclophilin B (CypB), an endoplasmic reticulum (ER)-resident peptidyl-prolyl cis-trans isomerase, modulates lysine (Lys) hydroxylation of type I collagen impacting cross-linking chemistry. However, the extent of modulation, the molecular mechanism and the functional outcome in tissues are not well understood. Here, we report that, in CypB null (KO) mouse skin, two unusual collagen cross-links lacking Lys hydroxylation are formed while neither was detected in wild type (WT) or heterozygous (Het) mice. Mass spectrometric analysis of type I collagen showed that none of the telopeptidyl Lys was hydroxylated in KO or WT/Het mice. Hydroxylation of the helical cross-linking Lys residues was almost complete in WT/Het but was markedly diminished in KO. Lys hydroxylation at other sites was also lower in KO but to a lesser extent. A key glycosylation site, α1(I) Lys-87, was underglycosylated while other sites were mostly overglycosylated in KO. Despite these findings, lysyl hydroxylases and glycosyltransferase 25 domain 1 levels were significantly higher in KO than WT/Het. However, the components of ER chaperone complex that positively or negatively regulates lysyl hydroxylase activities were severely reduced or slightly increased, respectively, in KO. The atomic force microscopy-based nanoindentation modulus were significantly lower in KO skin than WT. These data demonstrate that CypB deficiency profoundly affects Lys post-translational modifications of collagen likely by modulating LH chaperone complexes. Together, our study underscores the critical role of CypB in Lys modifications of collagen, cross-linking and mechanical properties of skin.


Asunto(s)
Ciclofilinas/química , Lisina/química , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/química , Piel/enzimología , Animales , Colágeno Tipo I/biosíntesis , Colágeno Tipo I/genética , Ciclofilinas/genética , Ciclofilinas/ultraestructura , Retículo Endoplásmico/química , Retículo Endoplásmico/enzimología , Glicosilación , Heterocigoto , Hidroxilación , Lisina/genética , Espectrometría de Masas , Ratones , Ratones Noqueados , Microscopía de Fuerza Atómica , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procesamiento Proteico-Postraduccional/genética , Piel/química
2.
Biochemistry ; 58(50): 5040-5051, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31726007

RESUMEN

Glycosylation in type I collagen occurs as O-linked galactosyl- (G-) lesser and glucosylgalactosyl-hydroxylysine (GG-Hyl); however, its biological significance is still not well understood. To investigate the function of this modification in bone, we have generated preosteoblast MC3T3-E1 (MC)-derived clones, short hairpin (Sh) clones, in which Glt25d1 gene expression was stably suppressed. In Sh clones, the GLT25D1 protein levels were markedly diminished in comparison to controls (MC and those transfected with the empty vector). In Sh collagen, levels of both G- and GG-Hyl were significantly diminished with a concomitant increase in the level of free-Hyl. In addition, the level of immature divalent cross-links significantly diminished while the level of the mature trivalent cross-link increased. As determined by mass spectrometric analysis, seven glycosylation sites were identified in type I collagen and the most predominant site was at the helical cross-linking site, α1-87. At all of the glycosylation sites, the relative levels of G- and GG-Hyl were markedly diminished, i.e., by ∼50-75%, in Sh collagen, and at five of these sites, the level of Lys hydroxylation was significantly increased. The collagen fibrils in Sh clones were larger, and mineralization was impaired. These results indicate that GLT25D1 catalyzes galactosylation of Hyl throughout the type I collagen molecule and that this modification may regulate maturation of collagen cross-linking, fibrillogenesis, and mineralization.


Asunto(s)
Colágeno Tipo I/metabolismo , Galactosiltransferasas/metabolismo , Fenotipo , Células 3T3 , Animales , Biocatálisis , Colágeno Tipo I/química , Glicosilación , Lisina/metabolismo , Ratones
3.
J Proteome Res ; 16(8): 2914-2923, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28696707

RESUMEN

Cyclophilin B (CypB) is an endoplasmic reticulum-resident protein that regulates collagen folding, and also contributes to prolyl 3-hydroxylation (P3H) and lysine (Lys) hydroxylation of collagen. In this study, we characterized dentin type I collagen in CypB null (KO) mice, a model of recessive osteogenesis imperfecta type IX, and compared to those of wild-type (WT) and heterozygous (Het) mice. Mass spectrometric analysis demonstrated that the extent of P3H in KO collagen was significantly diminished compared to WT/Het. Lys hydroxylation in KO was significantly diminished at the helical cross-linking sites, α1/α2(I) Lys-87 and α1(I) Lys-930, leading to a significant increase in the under-hydroxylated cross-links and a decrease in fully hydroxylated cross-links. The extent of glycosylation of hydroxylysine residues was, except α1(I) Lys-87, generally higher in KO than WT/Het. Some of these molecular phenotypes were distinct from other KO tissues reported previously, indicating the dentin-specific control mechanism through CypB. Histological analysis revealed that the width of predentin was greater and irregular, and collagen fibrils were sparse and significantly smaller in KO than WT/Het. These results indicate a critical role of CypB in dentin matrix formation, suggesting a possible association between recessive osteogenesis imperfecta and dentin defects that have not been clinically detected.


Asunto(s)
Colágeno Tipo I , Ciclofilinas/deficiencia , Dentina/ultraestructura , Animales , Colágeno Tipo I/ultraestructura , Ciclofilinas/fisiología , Dentina/patología , Matriz Extracelular/patología , Matriz Extracelular/ultraestructura , Glicosilación , Hidroxilación , Lisina/metabolismo , Espectrometría de Masas , Ratones , Ratones Noqueados , Osteogénesis Imperfecta , Procolágeno-Prolina Dioxigenasa/metabolismo , Procesamiento Proteico-Postraduccional
4.
J Biol Chem ; 291(18): 9501-12, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-26934917

RESUMEN

Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1-3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation.


Asunto(s)
Colágeno Tipo I/química , Lisina/química , Animales , Colágeno/química , Ciclofilinas/metabolismo , Hidroxilación , Tendones/metabolismo
5.
Sci Rep ; 8(1): 7022, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29728612

RESUMEN

We have reported that recombinant biglycan (BGN) core protein accelerates bone formation in vivo by enhancing bone morphogenetic protein (BMP)-2 function. The purpose of the present study was to identify the specific domain ("effector") within the BGN core protein that facilitates BMP-2 osteogenic function. Thus, we generated various recombinant and synthetic peptides corresponding to several domains of BGN, and tested their effects on BMP-2 functions in vitro. The results demonstrated that the leucine-rich repeats 2-3 domain (LRR2-3) of BGN significantly enhanced the BMP-2 induced Smad1/5/9 phosphorylation, osteogenic gene expression, and alkaline phosphatase activity in myogenic C2C12 cells. Furthermore, addition of LRR2-3 to osteoblastic MC3T3-E1 cells accelerated in vitro mineralization without compromising the quality of the mineral and matrix. These data indicate that LRR2-3 is, at least in part, responsible for BGN's ability to enhance BMP-2 osteogenic function, and it could be useful for bone tissue regeneration.


Asunto(s)
Biglicano/metabolismo , Proteína Morfogenética Ósea 2/metabolismo , Osteogénesis , Dominios y Motivos de Interacción de Proteínas , Animales , Biglicano/química , Proteína Morfogenética Ósea 2/química , Proteína Morfogenética Ósea 2/genética , Calcificación Fisiológica , Línea Celular , Células Cultivadas , Ratones , Modelos Moleculares , Osteogénesis/genética , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA