Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38271484

RESUMEN

Accurate approaches for quantifying muscle fibers are essential in biomedical research and meat production. In this study, we address the limitations of existing approaches for hematoxylin and eosin-stained muscle fibers by manually and semiautomatically labeling over 660 000 muscle fibers to create a large dataset. Subsequently, an automated image segmentation and quantification tool named MyoV is designed using mask regions with convolutional neural networks and a residual network and feature pyramid network as the backbone network. This design enables the tool to allow muscle fiber processing with different sizes and ages. MyoV, which achieves impressive detection rates of 0.93-0.96 and precision levels of 0.91-0.97, exhibits a superior performance in quantification, surpassing both manual methods and commonly employed algorithms and software, particularly for whole slide images (WSIs). Moreover, MyoV is proven as a powerful and suitable tool for various species with different muscle development, including mice, which are a crucial model for muscle disease diagnosis, and agricultural animals, which are a significant meat source for humans. Finally, we integrate this tool into visualization software with functions, such as segmentation, area determination and automatic labeling, allowing seamless processing for over 400 000 muscle fibers within a WSI, eliminating the model adjustment and providing researchers with an easy-to-use visual interface to browse functional options and realize muscle fiber quantification from WSIs.


Asunto(s)
Aprendizaje Profundo , Humanos , Animales , Ratones , Procesamiento de Imagen Asistido por Computador/métodos , Fibras Musculares Esqueléticas , Redes Neurales de la Computación , Algoritmos
2.
BMC Genomics ; 25(1): 638, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926812

RESUMEN

BACKGROUND: The breeding of layers emphasizes the continual selection of egg-related traits, such as egg production, egg quality and eggshell, which enhance their productivity and meet the demand of market. As the breeding process continued, the genomic homozygosity of layers gradually increased, resulting in the emergence of runs of homozygosity (ROH). Therefore, ROH analysis can be used in conjunction with other methods to detect selection signatures and identify candidate genes associated with various important traits in layer breeding. RESULTS: In this study, we generated whole-genome sequencing data from 686 hens in a Rhode Island Red population that had undergone fifteen consecutive generations of intensive artificial selection. We performed a genome-wide ROH analysis and utilized multiple methods to detect signatures of selection. A total of 141,720 ROH segments were discovered in whole population, and most of them (97.35%) were less than 3 Mb in length. Twenty-three ROH islands were identified, and they overlapped with some regions bearing selection signatures, which were detected by the De-correlated composite of multiple signals methods (DCMS). Sixty genes were discovered and functional annotation analysis revealed the possible roles of them in growth, development, immunity and signaling in layers. Additionally, two-tailed analyses including DCMS and ROH for 44 phenotypes of layers were conducted to find out the genomic differences between subgroups of top and bottom 10% phenotype of individuals. Combining the results of GWAS, we observed that regions significantly associated with traits also exhibited selection signatures between the high and low subgroups. We identified a region significantly associated with egg weight near the 25 Mb region of GGA 1, which exhibited selection signatures and has higher genomic homozygosity in the low egg weight subpopulation. This suggests that the region may be play a role in the decline in egg weight. CONCLUSIONS: In summary, through the combined analysis of ROH, selection signatures, and GWAS, we identified several genomic regions that associated with the production traits of layers, providing reference for the study of layer genome.


Asunto(s)
Pollos , Homocigoto , Selección Genética , Animales , Pollos/genética , Genómica/métodos , Cruzamiento , Fenotipo , Polimorfismo de Nucleótido Simple , Femenino , Secuenciación Completa del Genoma , Genoma , Estudio de Asociación del Genoma Completo
3.
BMC Biol ; 21(1): 52, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36882743

RESUMEN

BACKGROUND: Embryonic diapause (dormancy) is a state of temporary arrest of embryonic development that is triggered by unfavorable conditions and serves as an evolutionary strategy to ensure reproductive survival. Unlike maternally-controlled embryonic diapause in mammals, chicken embryonic diapause is critically dependent on the environmental temperature. However, the molecular control of diapause in avian species remains largely uncharacterized. In this study, we evaluated the dynamic transcriptomic and phosphoproteomic profiles of chicken embryos in pre-diapause, diapause, and reactivated states. RESULTS: Our data demonstrated a characteristic gene expression pattern in effects on cell survival-associated and stress response signaling pathways. Unlike mammalian diapause, mTOR signaling is not responsible for chicken diapause. However, cold stress responsive genes, such as IRF1, were identified as key regulators of diapause. Further in vitro investigation showed that cold stress-induced transcription of IRF1 was dependent on the PKC-NF-κB signaling pathway, providing a mechanism for proliferation arrest during diapause. Consistently, in vivo overexpression of IRF1 in diapause embryos blocked reactivation after restoration of developmental temperatures. CONCLUSIONS: We concluded that embryonic diapause in chicken is characterized by proliferation arrest, which is the same with other spices. However, chicken embryonic diapause is strictly correlated with the cold stress signal and mediated by PKC-NF-κB-IRF1 signaling, which distinguish chicken diapause from the mTOR based diapause in mammals.


Asunto(s)
Diapausa , FN-kappa B , Animales , Embrión de Pollo , Femenino , Pollos/genética , Transducción de Señal , Temperatura , Serina-Treonina Quinasas TOR
4.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000258

RESUMEN

Currently, there is a dearth of in-depth analysis and research on the impact of canthaxanthin on the production performance, egg quality, physical characteristics, and offspring health of laying hens. Furthermore, the metabolic mechanism of cantharidin in the body remains unclear. Therefore, to solve the above issues in detail, our study was conducted with a control group (C group), a low-dose canthaxanthin group (L group), and a high-dose canthaxanthin group (H group), each fed for a period of 40 days. Production performance was monitored during the experiment, in which L and H groups showed a significant increase in ADFI. Eggs were collected for quality analysis, revealing no significant differences in qualities except for yolk color (YC). The YC of the C group almost did not change, ranging from 6.08 to 6.20; however, the trend in YC change in other groups showed an initial intense increase, followed by a decrease, and eventually reached dynamic equilibrium. By detecting the content of canthaxanthin in the yolk, the YC change trend was found to be correlated with canthaxanthin levels in the yolk. The content of unsaturated fatty acid increased slightly in L and H groups. Following the incubation period, the physical characteristics and blood biochemical indices of chicks were evaluated. It was observed that the shank color of chicks in the L and H groups was significantly higher than that in the C group at birth. However, by the 35th day, there were no significant differences in shank color among the three groups. Further investigation into the metabolic mechanism involving canthaxanthin revealed that the substance underwent incomplete metabolism upon entering the body, resulting in its accumulation as well as metabolic by-product accumulation in the yolk. In summary, this study highlighted the importance of understanding canthaxanthin's role in production performance, egg quality, and offspring health, providing valuable insights for breeders to optimize feeding strategies.


Asunto(s)
Cantaxantina , Pollos , Yema de Huevo , Animales , Cantaxantina/metabolismo , Femenino , Yema de Huevo/metabolismo , Yema de Huevo/química , Huevos/análisis , Alimentación Animal/análisis , Dieta/veterinaria , Suplementos Dietéticos
5.
Mol Biol Evol ; 39(4)2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35325213

RESUMEN

The gene numbers and evolutionary rates of birds were assumed to be much lower than those of mammals, which is in sharp contrast to the huge species number and morphological diversity of birds. It is, therefore, necessary to construct a complete avian genome and analyze its evolution. We constructed a chicken pan-genome from 20 de novo assembled genomes with high sequencing depth, and identified 1,335 protein-coding genes and 3,011 long noncoding RNAs not found in GRCg6a. The majority of these novel genes were detected across most individuals of the examined transcriptomes but were seldomly measured in each of the DNA sequencing data regardless of Illumina or PacBio technology. Furthermore, different from previous pan-genome models, most of these novel genes were overrepresented on chromosomal subtelomeric regions and microchromosomes, surrounded by extremely high proportions of tandem repeats, which strongly blocks DNA sequencing. These hidden genes were proved to be shared by all chicken genomes, included many housekeeping genes, and enriched in immune pathways. Comparative genomics revealed the novel genes had 3-fold elevated substitution rates than known ones, updating the knowledge about evolutionary rates in birds. Our study provides a framework for constructing a better chicken genome, which will contribute toward the understanding of avian evolution and the improvement of poultry breeding.


Asunto(s)
Pollos , Genoma , Animales , Pollos/genética , Genómica , Mamíferos/genética , Análisis de Secuencia de ADN
6.
Appl Microbiol Biotechnol ; 107(24): 7601-7620, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37792060

RESUMEN

Blood biochemical indicators play a crucial role in assessing an individual's overall health status and metabolic function. In this study, we measured five blood biochemical indicators, including total cholesterol (CHOL), low-density lipoprotein cholesterol (LDL-CH), triglycerides (TG), high-density lipoprotein cholesterol (HDL-CH), and blood glucose (BG), as well as 19 growth traits of 206 male chickens. By integrating host whole-genome information and 16S rRNA sequencing of the duodenum, jejunum, ileum, cecum, and feces microbiota, we assessed the contributions of host genetics and gut microbiota to blood biochemical indicators and their interrelationships. Our results demonstrated significant negative phenotypic and genetic correlations (r = - 0.20 ~ - 0.67) between CHOL and LDL-CH with growth traits such as body weight, abdominal fat content, muscle content, and shin circumference. The results of heritability and microbiability indicated that blood biochemical indicators were jointly regulated by host genetics and gut microbiota. Notably, the heritability of HDL-CH was estimated to be 0.24, while the jejunal microbiability for BG and TG reached 0.45 and 0.23. Furthermore, by conducting genome-wide association study (GWAS) with the single-nucleotide polymorphism (SNPs), insertion/deletion (indels), and structural variation (SV), we identified RAP2C, member of the RAS oncogene family (RAP2C), dedicator of cytokinesis 11 (DOCK11), neurotensin (NTS) and BOP1 ribosomal biogenesis factor (BOP1) as regulators of HDL-CH, and glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5), dihydrodiol dehydrogenase (DHDH), and potassium voltage-gated channel interacting protein 1 (KCNIP1) as candidate genes of BG. Moreover, our findings suggest that cecal RF39 and Clostridia_UCG_014 may be linked to the regulation of CHOL, and jejunal Streptococcaceae may be involved in the regulation of TG. Additionally, microbial GWAS results indicated that the presence of gut microbiota was under host genetic regulation. Our findings provide valuable insights into the complex interaction between host genetics and microbiota in shaping the blood biochemical profile of chickens. KEY POINTS: • Multiple candidate genes were identified for the regulation of CHOL, HDL-CH, and BG. • RF39, Clostridia_UCG_014, and Streptococcaceae were implicated in CHOL and TG modulation. • The composition of gut microbiota is influenced by host genetics.


Asunto(s)
Microbioma Gastrointestinal , Masculino , Animales , Pollos , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Estudio de Asociación del Genoma Completo , Triglicéridos/metabolismo , Colesterol/metabolismo
7.
BMC Genomics ; 23(1): 761, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411402

RESUMEN

BACKGROUND: Protoporphyrin IX (Pp IX) is the primary pigment for brown eggshells. However, the regulatory mechanisms directing Pp IX synthesis, transport, and genetic regulation during eggshell calcification in chickens remain obscure. In this study, we investigated the mechanism of brown eggshell formation at different times following oviposition, using White Leghorn hens (WS group), Rhode Island Red light brown eggshell line hens (LBS group) and Rhode Island Red dark brown eggshell line hens (DBS group). RESULTS: At 4, 16 and 22 h following oviposition, Pp IX concentrations in LBS and DBS groups were significantly higher in shell glands than in liver (P < 0.05). Pp IX concentrations in shell glands of LBS and DBS groups at 16 and 22 h following oviposition were significantly higher than WS group (P < 0.05). In comparative transcriptome analysis, δ-aminolevulinate synthase 1 (ALAS1), solute carrier family 25 member 38 (SLC25A38), ATP binding cassette subfamily G member 2 (ABCG2) and feline leukemia virus subgroup C cellular receptor 1 (FLVCR1), which were associated with Pp IX synthesis, were identified as differentially expressed genes (DEGs). RT-qPCR results showed that the expression level of ALAS1 in shell glands was significantly higher in DBS group than in WS group at 16 and 22 h following oviposition (P < 0.05). In addition, four single nucleotide polymorphisms (SNPs) in ALAS1 gene that were significantly associated with eggshell brownness were identified. By identifying the differential metabolites in LBS and DBS groups, we found 11-hydroxy-E4-neuroprostane in shell glands and 15-dehydro-prostaglandin E1(1-) and prostaglandin G2 2-glyceryl ester in uterine fluid were related to eggshell pigment secretion. CONCLUSIONS: In this study, the regulatory mechanisms of eggshell brownness were studied comprehensively by different eggshell color and time following oviposition. Results show that Pp IX is synthesized de novo and stored in shell gland, and ALAS1 is a key gene regulating Pp IX synthesis in the shell gland. We found three transporters in Pp IX pathway and three metabolites in shell glands and uterine fluid that may influence eggshell browning.


Asunto(s)
Pollos , Cáscara de Huevo , Animales , Femenino , Cáscara de Huevo/metabolismo , Pollos/genética , Huevos , Pigmentación , 5-Aminolevulinato Sintetasa/metabolismo
8.
Genet Sel Evol ; 54(1): 41, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35659242

RESUMEN

BACKGROUND: Duration of fertility (DF) is an important economic trait in poultry production because it has a strong effect on chick output. Various criteria or traits to assess DF on individual hens have been reported but they are affected by many nongenetic factors. Thus, a reliable definition and associated genetic parameters are needed. Because egg production is also vital in chicken breeding, knowledge of the relationship between DF and laying performance is needed for designing selection programs. METHODS: We used five traits that consider both fertility and embryonic livability to delineate DF. Phenotypic and genetic analyses were completed for 2094 hens, with measurements of DF at 35 and 60 weeks of age and hatching egg production at 400 days of age (HEP400). The selection differentials for DF and HEP400 were evaluated. RESULTS: DF is largely independent of the number of oviposited eggs in the peak laying period but both egg production and DF naturally decline with age. The heritability of the five DF traits ranged from 0.11 to 0.13 at 35 weeks of age and increased slightly in the later laying period, ranging from 0.14 to 0.17 (except for efficient duration, time between insemination and the first unhatched egg). Estimates of the genetic correlation for a given trait measured at the two ages were moderate (0.37-0.44), except for efficient duration. However, number of viable embryos depends strongly on egg production. Estimates of genetic correlations of fertility duration day (FDD) at both ages with HEP were weak. Selection for FDD improved DF but without a significant change in laying performance. Selection for increased HEP400 did not contribute to DF improvement. CONCLUSIONS: Although estimates of heritability of the five traits related to DF were low, selection to improve DF based on any one of them is possible. Among these, FDD is an effective selection criterion when the eggs are collected for approximately two weeks after insemination. The best selection procedure for DF improvement would involve multiple measurements at various ages. FDD is independent of laying performance and can be incorporated into a breeding program with egg production to improve reproductive efficiency.


Asunto(s)
Pollos , Huevos , Animales , Pollos/genética , Femenino , Fertilidad/genética , Oviposición/genética , Fenotipo , Carácter Cuantitativo Heredable
9.
Int J Mol Sci ; 23(17)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36077516

RESUMEN

The basic units of skeletal muscle in all vertebrates are multinucleate myofibers, which are formed from the fusion of mononuclear myoblasts during the embryonic period. In order to understand the regulation of embryonic muscle development, we selected four chicken breeds, namely, Cornish (CN), White Plymouth Rock (WPR), White Leghorn (WL), and Beijing-You Chicken (BYC), for evaluation of their temporal expression patterns of known key regulatory genes (Myomaker, MYOD, and MSTN) during pectoral muscle (PM) and thigh muscle (TM) development. The highest expression level of Myomaker occurred from embryonic days E13 to E15 for all breeds, indicating that it was the crucial stage of myoblast fusion. Interestingly, the fast-growing CN showed the highest gene expression level of Myomaker during the crucial stage. The MYOD gene expression at D1 was much higher, implying that MYOD might have an important role after hatching. Histomorphology of PM and TM suggested that the myofibers was largely complete at E17, which was speculated to have occurred because of the expression increase in MSTN and the expression decrease in Myomaker. Our research contributes to lay a foundation for the study of myofiber development during the embryonic period in different chicken breeds.


Asunto(s)
Pollos , Desarrollo de Músculos , Animales , Pollos/genética , Desarrollo Embrionario/genética , Genes Reguladores , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo
10.
BMC Genomics ; 22(1): 786, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34727889

RESUMEN

BACKGROUND: Eggshell is a bio-ceramic material comprising columnar calcite (CaCO3) crystals and organic proteinaceous matrix. The size, shape and orientation of the CaCO3 crystals influence the microstructural properties of chicken eggshells. However, the genetic architecture underlying eggshell crystal polymorphism remains to be elucidated. RESULTS: The integral intensity of the nine major diffraction peaks, total integral intensity and degree of orientation of the crystals were measured followed by a genome-wide association study in 839 F2 hens. The results showed that the total integral intensity was positively correlated with the eggshell strength, eggshell thickness, eggshell weight, mammillary layer thickness and effective layer thickness. The SNP-based heritabilities of total integral intensity and degree of orientation were 0.23 and 0.06, respectively. The 621 SNPs located in the range from 55.6 to 69.1 Mb in GGA1 were significantly associated with TA. PLCZ1, ABCC9, ITPR2, KCNJ8, CACNA1C and IAPP, which are involved in the biological process of regulating cytosolic calcium ion concentration, can be suggested as key genes regulating the total integral intensity. CONCLUSIONS: The findings greatly advance the understanding of the genetic basis underlying the crystal ultrastructure of eggshell quality and thus will have practical significance in breeding programs for improving eggshell quality.


Asunto(s)
Pollos , Cáscara de Huevo , Animales , Pollos/genética , Huevos , Femenino , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
11.
BMC Microbiol ; 21(1): 290, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686130

RESUMEN

BACKGROUND: Poultry is the major reservoir of Campylobacter that contributes to human campylobacteriosis and threatens food safety. Litter contact has been linked to Campylobacter colonization, but the gut microecological impact underlying this link remains not fully clear. Here, we sought to investigate the impact of the gut microecology on the presence of Campylobacter by examining the microbiota in the duodenum, jejunum, ileum, ceca, and feces from chickens raised on commercial litter and in individual cages at 0-57 days of age. RESULTS: Through litter contact, the presence of Campylobacter was found to benefit from microecological competition among Lactobacillus, Helicobacter, and genera that are halotolerant and aerobic or facultatively anaerobic in the upper intestine, such as Corynebacterium and Brachybacterium. The presence was also promoted by the increased abundance in obligate anaerobic fermentation microbes, especially members of the orders Clostridiales and Bacteroidales. The longitudinal analysis supported the vertical or pseudo-vertical transmission but suggested that colonization might occur immensely at 7-28 days of age. We observed a host genetic effect on the gut microecology, which might lead to increased heterogeneity of the microecological impact on Campylobacter colonization. CONCLUSIONS: The findings advance the understanding of the gut microecological impact on Campylobacter presence in the chicken gut under conditions of litter contact and suggest that manipulations of the gut microecology, as well as the microbes identified in the Campylobacter association networks, might be important for the development of intervention strategies.


Asunto(s)
Crianza de Animales Domésticos/métodos , Campylobacter/aislamiento & purificación , Pollos/microbiología , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Tracto Gastrointestinal/anatomía & histología , Interacciones Microbianas
12.
BMC Genet ; 20(1): 67, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31412760

RESUMEN

BACKGROUND: Egg production is the most economically-important trait in layers as it directly influences benefits of the poultry industry. To better understand the genetic architecture of egg production, we measured traits including age at first egg (AFE), weekly egg number (EN) from onset of laying eggs to 80 weeks which was divided into five stage (EN1: from onset of laying eggs to 23 weeks, EN2: from 23 to 37 weeks, EN3: from 37 to 50 weeks, EN4: from 50 to 61 weeks, EN5: from 61 to 80 weeks) based on egg production curve and total egg number across the whole laying period (Total-EN). Then we performed genome-wide association studies (GWAS) in 1078 Rhode Island Red hens using a linear mixed model. RESULTS: Estimates of pedigree and SNP-based genetic parameter showed that AFE and EN1 exhibited high heritability (0.51 ± 0.09, 0.53 ± 0.08), while the h2 for EN in other stages varied from low (0.07 ± 0.04) to moderate (0.24 ± 0.07) magnitude. Subsequently, seven univariate GWAS for AFE and ENs were carried out independently, from which a total of 161 candidate SNPs located on GGA1, GGA2, GGA5, GGA6, GGA9 and GGA24 were identified. Thirteen SNP located on GGA6 were associated with AFE and an interesting gene PRLHR that may affect AFE through regulating oxytocin secretion in chickens. Sixteen genome-wide significant SNPs associated with EN3 were in a strong linkage disequilibrium (LD) region spanning from 117.87 Mb to 118.36 Mb on GGA1 and the most significant SNP (rs315777735) accounted for 3.57% of phenotypic variance. Genes POLA1, PDK3, PRDX4 and APOO identified by annotating sixteen genome-wide significant SNPs can be considered as candidates associated with EN3. Unfortunately, our study did not find any candidate gene for the total egg number. CONCLUSIONS: Findings in our study could provide promising genes and SNP markers to improve egg production performance based on marker-assisted breeding selection, while further functional validation is still needed in other populations.


Asunto(s)
Pollos/genética , Huevos , Estudio de Asociación del Genoma Completo , Genoma , Fenotipo , Reproducción/genética , Animales , Biología Computacional/métodos , Estudio de Asociación del Genoma Completo/métodos , Desequilibrio de Ligamiento , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable
13.
Proteomics ; 17(17-18)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28771958

RESUMEN

To uncover a diversity of genetic and biological unknowns, a comprehensive and comparative proteomic analysis is performed on egg albumen of domestic chicken, duck, goose, turkey, quail, and pigeon with tandem mass tags quantification technology. In this study, a total of 148, 138, 150, 162, 183, and 179 proteins are identified in egg albumen of the above six species, respectively. Venn plots, PCA, and cluster analysis all reveal the highest similarity of protein composition between duck and goose (≈75%). Additionally, the six species have 52 proteins detected in common in the egg albumen. As revealed by GO and pathway analyses, the plausible functions of these highly conserved proteins are to provide a secure environment and prevent the early death of embryonic cells. Species-specific proteins such as haptoglobin in pigeon, serpin-like protein HMSD in duck, and ovodefensin in chicken are also screened and are likely associated with species-dependent biological processes. Furthermore, Enzyme Code analysis indicated egg albumen have abundant enzyme activity, with hydrolases accounting for more than half of the total enzymes. This study is the first to provide the proteome profiles of egg albumen for the major poultry species, which will be instructive for the understanding of species-specific biological problems with egg albumen.


Asunto(s)
Albúminas/metabolismo , Proteínas Aviares/metabolismo , Aves/metabolismo , Animales , Aves/clasificación , Proteínas del Huevo/metabolismo , Proteoma/metabolismo , Proteómica , Especificidad de la Especie
14.
BMC Genomics ; 18(1): 699, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28877683

RESUMEN

BACKGROUND: Efficient use of feed resources for farm animals is a critical concern in animal husbandry. Numerous genetic and nutritional studies have been conducted to investigate feed efficiency during the regular laying cycle of chickens. However, by prolonging the laying period of layers, the performance of feed utilization in the late-laying period becomes increasingly important. In the present study, we measured daily feed intake (FI), residual feed intake (RFI) and feed conversion ratio (FCR) of 808 hens during 81-82 weeks of age to evaluate genetic properties and then used a genome-wide association study (GWAS) to reveal the genetic determinants. RESULTS: The heritability estimates for the investigated traits were medium and between 0.15 and 0.28 in both pedigree- and genomic-based estimates, whereas the genetic correlations among these traits were high and ranged from 0.49 to 0.90. Three genome-wide significant SNPs located on chromosome 1 (GGA1) were detected for FCR. Linkage disequilibrium (LD) and conditional GWA analysis indicated that these 3 SNPs were highly correlated with one another, located at 13.55-45.16 Kb upstream of gga-miR-15a. Results of quantitative real-time polymerase chain reaction (qRT-PCR) analysis in liver tissue showed that the expression of gga-miR-15a was significantly higher in the high FCR birds than that in the medium or low FCR birds. Bioinformatics analysis further revealed that gga-mir-15a could act on many target genes, such as forkhead box O1 (FOXO1) that is involved in the insulin-signaling pathway, which influences nutrient metabolism in many organisms. Additionally, some suggestively significant variants, located on GGA3 and GGA9, were identified to associate with FI and RFI. CONCLUSIONS: This GWA analysis was conducted on feed intake and efficiency traits for chickens and was innovative for application in the late laying period. Our findings can be used as a reference in the genomic breeding programs for increasing the efficiency performance of old hens and to improve our understanding of the molecular determinants for feed efficiency.


Asunto(s)
Pollos/genética , Pollos/metabolismo , Estudio de Asociación del Genoma Completo , MicroARNs/genética , Alimentación Animal , Animales , Regulación de la Expresión Génica , Desequilibrio de Ligamiento , Fenotipo
15.
Yi Chuan ; 39(11): 1102-1111, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29254927

RESUMEN

Brown eggs are popular in many countries, and consumers regard eggshell brownness as an important indicator of egg quality. Brown eggshell color is controlled by polygene. However, the responsible genes and detailed molecular mechanisms regulating eggshell brownness have not been defined. In the present study, we applied the RNA-seq technology to analyze the transcriptome data of the shell gland epithelium of hens and investigated the candidate genes associated with eggshell brownness. The results indicated that 8461 genes were expressed in the shell gland epithelium, of which 34 genes were differentially expressed in hens laying dark vs. light brown eggs. Functional analysis revealed that two genes, ovotransferrin (TF) and heat-shock protein 70 (HSP70), as well as the oxidative phosphorylation pathway were involved in the synthesis and transport of protoporphyrin Ⅸ, which might influence the formation of eggshell brownness and result in different shades of brown.


Asunto(s)
Pollos/genética , Cáscara de Huevo , Genes Reguladores/fisiología , Transcriptoma , Animales , Color , Conalbúmina/fisiología , Proteínas HSP70 de Choque Térmico/fisiología , Protoporfirinas/metabolismo , Análisis de Secuencia de ARN
16.
BMC Genomics ; 16: 565, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26228268

RESUMEN

BACKGROUND: Eggshell is subject to quality loss with aging process of laying hens, and damaged eggshells result in economic losses of eggs. However, the genetic architecture underlying the dynamic eggshell quality remains elusive. Here, we measured eggshell quality traits, including eggshell weight (ESW), eggshell thickness (EST) and eggshell strength (ESS) at 11 time points from onset of laying to 72 weeks of age and conducted comprehensive genome-wide association studies (GWAS) in 1534 F2 hens derived from reciprocal crosses between White Leghorn (WL) and Dongxiang chickens (DX). RESULTS: ESWs at all ages exhibited moderate SNP-based heritability estimates (0.30 ~ 0.46), while the estimates for EST (0.21 ~ 0.31) and ESS (0.20 ~ 0.27) were relatively low. Eleven independent univariate genome-wide screens for each trait totally identified 1059, 1026 and 1356 significant associations with ESW, EST and ESS, respectively. Most significant loci were in a region spanning from 57.3 to 71.4 Mb of chromosome 1 (GGA1), which together account for 8.4 ~ 16.5% of the phenotypic variance for ESW from 32 to 72 weeks of age, 4.1 ~ 6.9% and 2.95 ~ 16.1% for EST and ESS from 40 to 72 weeks of age. According to linkage disequilibrium (LD) and conditional analysis, the significant SNPs in this region were in extremely strong linkage disequilibrium status. Ultimately, two missense SNPs in GGA1 and one in GGA4 were considered as promising loci on three independent genes including ITPR2, PIK3C2G, and NCAPG. The homozygotes of advantageously effective alleles on PIK3C2G and ITPR2 possessed the best eggshell quality and could partly counteract the negative effect of aging process. NCAPG had certain effect on eggshell quality for young hens. CONCLUSIONS: Identification of the promising region as well as potential candidate genes will greatly advance our understanding of the genetic basis underlying dynamic eggshell quality and has the practical significance in breeding program for the improvement of eggshell quality, especially at the later part of laying cycle.


Asunto(s)
Pollos/genética , Cáscara de Huevo/crecimiento & desarrollo , Huevos , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo/genética , Alelos , Animales , Peso Corporal/genética , Femenino , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple
17.
BMC Genomics ; 16: 746, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26438435

RESUMEN

BACKGROUND: As a major economic trait in chickens, egg weight (EW) receives widespread interests in breeding, production and consumption. However, limited information is available for underlying genetic architecture of longitudinal trend in EW. Herein, we measured EWs at nine time points from onset of laying to 60 week of age, and conducted comprehensive genome-wide association studies (GWAS) in 1,534 F2 hens derived from reciprocal crosses between White Leghorn and Dongxiang chickens. RESULTS: Egg weights at all ages except the first egg weight (FEW) exhibited high SNP-based heritability estimates (0.47~0.60). Strong pair-wise genetic correlations (0.77~1.00) were found among all EWs. Nine separate univariate genome-wide screens suggested 73 signals showing significant associations with longitudinal EWs. After multivariate and conditional analyses, four variants on three chromosomes remained independent contributions. The minor alleles at two loci exerted consistent and positive substitution effects on EWs, and other two were negative. The four loci together accounted for 3.84 % of the phenotypic variance for FEW and 7.29~11.06 % for EWs from 32 to 60 week of age. We obtained five candidate genes, of which NCAPG harbors a non-synonymous SNP (rs14491030) causing a valine-to-alanine amino-acid substitution. Genome partitioning analysis indicated a strong linear correlation between the variance explained by each chromosome and its length, which provided evidence that EW follows a highly polygenic nature of inheritance. CONCLUSIONS: Identification of significant genetic causes that together implicate EWs at different ages will greatly advance our understanding of the genetic basis behind longitudinal EWs, and would be helpful to illuminate the future breeding direction on how to select desired egg size.


Asunto(s)
Huevos , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Alelos , Animales , Pollos , Estudios de Asociación Genética , Variación Genética , Genómica , Genotipo , Anotación de Secuencia Molecular , Fenotipo , Polimorfismo de Nucleótido Simple
18.
Genet Sel Evol ; 47: 82, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26475174

RESUMEN

BACKGROUND: Feed contributes to over 60 % of the total production costs in the poultry industry. Increasing feed costs prompt geneticists to include feed intake and efficiency as selection goals in breeding programs. In the present study, we used an F2 chicken population in a genome-wide association study (GWAS) to detect potential genetic variants and candidate genes associated with daily feed intake (FI) and feed efficiency, including residual feed intake (RFI) and feed conversion ratio (FCR). METHODS: A total of 1534 F2 hens from a White Leghorn and Dongxiang reciprocal cross were phenotyped for feed intake and efficiency between 37 and 40 weeks (FI1, RFI1, and FCR1) and between 57 and 60 weeks (FI2, RFI2, and FCR2), and genotyped using the chicken 600 K single nucleotide polymorphism (SNP) genotyping array. Univariate, bivariate, and conditional genome-wide association studies (GWAS) were performed with GEMMA, a genome-wide efficient mixed model association algorithm. The statistical significance threshold for association was inferred by the simpleM method. RESULTS: We identified eight genomic regions that each contained at least one genetic variant that showed a significant association with FI. Genomic regions on Gallus gallus (GGA) chromosome 4 coincided with known quantitative trait loci (QTL) that affect feed intake of layers. Of particular interest, eight SNPs on GGA1 in the region between 169.23 and 171.55 Mb were consistently associated with FI in both univariate and bivariate GWAS, which explained 3.72 and 2.57 % of the phenotypic variance of FI1 and FI2, respectively. The CAB39L gene can be considered as a promising candidate for FI1. For RFI, a haplotype block on GGA27 harbored a significant SNP associated with RFI2. The major allele of rs315135692 was favorable for a lower RFI, with a phenotypic difference of 3.35 g/day between opposite homozygous genotypes. Strong signals on GGA1 were detected in the bivariate GWAS for FCR. CONCLUSIONS: The results demonstrated the polygenic nature of feed intake. GWAS identified novel variants and confirmed a QTL that was previously reported for feed intake in chickens. Genetic variants associated with feed efficiency may be used in genomic breeding programs to select more efficient layers.


Asunto(s)
Pollos/fisiología , Estudio de Asociación del Genoma Completo/métodos , Algoritmos , Animales , Pollos/genética , Ingestión de Alimentos , Femenino , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Selección Artificial
19.
Poult Sci ; 103(6): 103744, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652945

RESUMEN

Sperm competition and cryptic female choice (CFC) are 2 significant mechanisms of postcopulatory sexual selection that greatly impact fertilization success in various species. Despite extensive research has conducted on sperm competition and the evolution of sperm traits in internal fertilization, our understanding of the female preferences in selecting sperm is still limited. Here, we aimed to investigate the characteristics of CFC in chickens by utilizing artificial insemination with mixed semen to control for variations in male fertilization success caused by female perception of male quality and mating order. Our results revealed that the offspring from multiple-mated females exhibited mixed paternity. Although the males had an equal number of viable sperm, 1 male consistently exhibited a 15% higher success rate on average, regardless of whether the insemination was performed with fresh or diluted semen. This result suggested that this male demonstrates superior performance in sperm competition, and exhibited a potential advantage in fertilization success. While the dominant male generally made a greater genetic contribution to most offspring, the degree of this advantage varied greatly, ranging from 11.11 to 75%. Furthermore, our study provided evidence of female preferences influenced the precedence of sperm from certain males over others. Interestingly, this bias is not consistently observed among all individuals, as offspring derived from some females were predominantly sired by an overall disadvantaged male while others were predominantly by a different disadvantaged male. Overall, these results underscored the complex processes involved in sperm selection and emphasized the importance of females in sexual selection theory.


Asunto(s)
Pollos , Inseminación Artificial , Preferencia en el Apareamiento Animal , Animales , Femenino , Pollos/fisiología , Pollos/genética , Masculino , Inseminación Artificial/veterinaria , Preferencia en el Apareamiento Animal/fisiología , Fertilización , Paternidad , Espermatozoides/fisiología
20.
J Anim Sci Biotechnol ; 15(1): 91, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38961455

RESUMEN

BACKGROUND: Broilers stand out as one of the fastest-growing livestock globally, making a substantial contribution to animal meat production. However, the molecular and epigenetic mechanisms underlying the rapid growth and development of broiler chickens are still unclear. This study aims to explore muscle development patterns and regulatory networks during the postnatal rapid growth phase of fast-growing broilers. We measured the growth performance of Cornish (CC) and White Plymouth Rock (RR) over a 42-d period. Pectoral muscle samples from both CC and RR were randomly collected at day 21 after hatching (D21) and D42 for RNA-seq and ATAC-seq library construction. RESULTS: The consistent increase in body weight and pectoral muscle weight across both breeds was observed as they matured, with CC outpacing RR in terms of weight at each stage of development. Differential expression analysis identified 398 and 1,129 genes in the two dimensions of breeds and ages, respectively. A total of 75,149 ATAC-seq peaks were annotated in promoter, exon, intron and intergenic regions, with a higher number of peaks in the promoter and intronic regions. The age-biased genes and breed-biased genes of RNA-seq were combined with the ATAC-seq data for subsequent analysis. The results spotlighted the upregulation of ACTC1 and FDPS at D21, which were primarily associated with muscle structure development by gene cluster enrichment. Additionally, a noteworthy upregulation of MUSTN1, FOS and TGFB3 was spotted in broiler chickens at D42, which were involved in cell differentiation and muscle regeneration after injury, suggesting a regulatory role of muscle growth and repair. CONCLUSIONS: This work provided a regulatory network of postnatal broiler chickens and revealed ACTC1 and MUSTN1 as the key responsible for muscle development and regeneration. Our findings highlight that rapid growth in broiler chickens triggers ongoing muscle damage and subsequent regeneration. These findings provide a foundation for future research to investigate the functional aspects of muscle development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA