Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
EMBO J ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261664

RESUMEN

In preparation for a potential pregnancy, the endometrium of the uterus changes into a temporary structure called the decidua. Senescent decidual stromal cells (DSCs) are enriched in the decidua during decidualization, but the underlying mechanisms of this process remain unclear. Here, we performed single-cell RNA transcriptomics on ESCs and DSCs and found that cell senescence during decidualization is accompanied by increased levels of the branched-chain amino acid (BCAA) transporter SLC3A2. Depletion of leucine, one of the branched-chain amino acids, from cultured media decreased senescence, while high leucine diet resulted in increased senescence and high rates of embryo loss in mice. BCAAs induced senescence in DSCs via the p38 MAPK pathway. In contrast, TNFSF14+ decidual natural killer (dNK) cells were found to inhibit DSC senescence by interacting with its ligand TNFRSF14. As in mice fed high-leucine diets, both mice with NK cell depletion and Tnfrsf14-deficient mice with excessive uterine senescence experienced adverse pregnancy outcomes. Further, we found excessive uterine senescence, SLC3A2-mediated BCAA intake, and insufficient TNFRSF14 expression in the decidua of patients with recurrent spontaneous abortion. In summary, this study suggests that dNK cells maintain senescence homeostasis of DSCs via TNFSF14/TNFRSF14, providing a potential therapeutic strategy to prevent DSC senescence-associated spontaneous abortion.

2.
J Am Chem Soc ; 145(6): 3682-3695, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36727591

RESUMEN

With easily accessible and operator-friendly reagents, shelf-stable ortho-methoxycarbonylethynylphenyl thioglycosides were efficiently prepared. Based on these MCEPT glycoside donors, a novel glycosylation protocol featuring mild and catalytic promotion conditions with Au(I) or Cu(II) complexes, expanded substrate scope encompassing challenging donors and acceptors and clinically used pharmaceuticals, and versatility in various strategies for highly efficient synthesis of glycosides has been established. The practicality of the MCEPT glycosylation protocol was fully exhibited by highly efficient and scalable synthesis of surface polysaccharide subunits of Acinetobacter baumannii via latent-active, reagent-controlled divergent orthogonal one-pot and orthogonal one-pot strategies. The underlying reaction mechanism was investigated systematically through control reactions, leading to the isolation and characterization of the vital catalyst species in MCEPT glycosylation, the benzothiophen-3-yl-gold(I) complex. Based on the results obtained both from control reactions and from studies leading to the glycosylation protocol establishment, an operative mechanism was proposed and the effect of the vital catalyst species reactivity on the results of metal-catalyzed alkyne-containing donor-involved glycosylation was disclosed. Moreover, the mechanism for C-glycosylation side product formation from ortho-(substituted)ethynylphenyl thioglycoside donors with electron-donating substituents was also illuminated.

3.
Angew Chem Int Ed Engl ; 62(33): e202306971, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37327196

RESUMEN

Herein, we described the first synthesis of the pentasaccharide and decasaccharide of the A. baumannii ATCC 17961 O-antigen for developing a synthetic carbohydrate-based vaccine against A. baumannii infection. The efficient synthesis of the rare sugar 2,3-diacetamido-glucuronate was achieved using our recently introduced organocatalytic glycosylation method. We found, for the first time, that long-range levulinoyl group participation via a hydrogen bond can result in a significantly improved ß-selectivity in glycosylations. This solves the stereoselectivity problem of highly branched galactose acceptors. The proposed mechanism was supported by control experiments and DFT computations. Benefiting from the long-range levulinoyl group participation strategy, the pentasaccharide donor and acceptor were obtained via an efficient [2+1+2] one-pot glycosylation method and were used for the target decasaccharide synthesis.


Asunto(s)
Carbohidratos , Antígenos O , Antígenos O/química , Carbohidratos/química , Oligosacáridos/química , Glicosilación , Galactosa
4.
J Org Chem ; 85(17): 11449-11464, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32786627

RESUMEN

By turning on or switching off the directing effect of the C3-OH-located o-diphenylphosphanylbenzoyl (o-DPPB) group in glycals, a reagent-controlled protocol for divergent and regio- and stereoselective syntheses of C-glycosides has been established. In particular, the silence of the directing effect of o-DPPB was achieved by the introduction of a ZnCl2 additive, which is operationally simple and efficient. The flexibility of the novel protocol was exhibited not only by the easy access of both α- and ß-C-glycosides but also by the versatility of the obtained formal Ferrier rearrangement products, which can be easily derivatized to various C-glycoside analogues owing to the embedded multifunctionalities.

5.
J Org Chem ; 85(24): 15857-15871, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-32281375

RESUMEN

The total synthesis of rebaudioside S, a minor steviol glycoside from the leaves of Stevia rebaudiana, was investigated via a modular strategy, culminating not only in the first and highly efficient synthesis of Reb-S and analogues thereof but also in the revision of the originally proposed structure. The modular strategy dictated the application of C2-branched disaccharide Yu donors to forge C-13 steviol glycosidic linkages, posing considerable challenges in stereoselectivity control. Through systematic investigations, the effect of the internal glycosidic linkage configuration on the glycosylation stereoselectivity of 1,2-linked disaccharide donors was disclosed, and the intensified solvent effect by the 4,6-O-benzylidene protecting group was also observed with glucosyl donors. Through the orchestrated application of these favorable effects, the stereoselectivity problems were exquisitely tackled.

6.
Org Biomol Chem ; 18(43): 8834-8838, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33103171

RESUMEN

An efficient and practical approach for the synthesis of 3-indolyl-C-Δ1,2-glycosides through a palladium-catalyzed annulation/C-glycosylation sequence of o-alkynylanilines with 1-iodoglycals has been developed. This methodology has a wide scope of substrates and gives access to 3-indolyl-C-Δ1,2-glycosides in high yields. Furthermore, the product obtained here exhibits a high utility for further transformations.

7.
J Org Chem ; 84(14): 9344-9352, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31264870

RESUMEN

A convenient and straightforward synthesis of diverse 2-C-alkenyl-glycosides through a palladium-catalyzed cross-coupling reaction between 2-iodoglycals and N-tosylhydrazones has been developed. Further transformation of 2-C-branched sugars by Diels-Alder reactions provided oxadecalins in good yields.

8.
Org Biomol Chem ; 18(1): 108-126, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31799547

RESUMEN

With easily available monosaccharides and steviol as starting materials, the first total synthesis of rebaudioside R with a xylosyl core in the C13-OH linked sugar chain was accomplished via two distinct approaches. The first approach features the stepwise installation of branch-sugar residues via an order of C2-OH first and then C3-OH of the xylosyl core, laying a firm foundation for the synthesis of analogues with different branch sugars, while the second route features the introduction of the C13 trisaccharide sugar chain via a convergent strategy, securing the overall synthetic efficiency. Through the synthetic study, the effect of protecting groups (PGs) at the vicinal hydroxy group on the reactivity of OH acceptors was illustrated.

9.
Angew Chem Int Ed Engl ; 58(31): 10558-10562, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31190371

RESUMEN

The structural puzzle of amipurimycin, a peptidyl nucleoside antibiotic, is solved by total synthesis and X-ray diffraction analysis, with the originally proposed configurations at C3' and C8' inverted and those at C6', C2'', and C3'' corrected. A similar structural revision of the relevant miharamycins is proposed via chemical transformations and then validated by X-ray diffraction analysis. The miharamycins bear an unusual trans-fused dioxabicyclo[4.3.0]nonane sugar scaffold, which was previously assigned as being in the cis configuration.

10.
Angew Chem Int Ed Engl ; 58(47): 17000-17008, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31532864

RESUMEN

With the picolinyl (Pic) group as a C-1 located directing group and N3 as versatile precursor for C5-NH2 , a novel 1-Pic-5-N3 thiosialyl donor was designed and synthesized, based on which a new sialylation protocol was established. In comparison to conventional sialylation methods, the new protocol exhibited obvious advantages, including excellent α-stereoselectivity in the absence of a solvent effect, broad substrate scope encompassing the challenging sialyl 8- and 9-hydroxy groups of sialic acid acceptors, flexibility in sialoside derivative synthesis, high temperature tolerance and easy scalability. In particular, the applicability to the synthesis of complex and bioactive N-glycan antennae when combined with the MPEP glycosylation protocol via the "latent-active" strategy has been shown. Mechanistically, the excellent α-stereoselectivity of the novel sialylation protocol could be attributed to the dramatic electron-withdrawing effect of the protonated Pic groups, which was supported by control reactions and DFT calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA