Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
BMC Pulm Med ; 22(1): 259, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768814

RESUMEN

BACKGROUND: The expression profiles and molecular mechanisms of CXC chemokine receptors (CXCRs) in Lung adenocarcinoma (LUAD) have been extensively explored. However, the comprehensive prognostic values of CXCR members in LUAD have not yet been clearly identified. METHODS: Multiple available datasets, including Oncomine datasets, the cancer genome atlas (TCGA), HPA platform, GeneMANIA platform, DAVID platform and the tumor immune estimation resource (TIMER) were used to detect the expression of CXCRs in LUAD, as well as elucidate the significance and value of novel CXCRs-associated genes and signaling pathways in LUAD. RESULTS: The mRNA and/or protein expression of CXCR1, CXCR2, CXCR3, CXCR4, CXCR5 and CXCR6 displayed predominantly decreased in LUAD tissues as compared to normal tissues. On the contrary, compared with the normal tissues, the expression of CXCR7 was significantly increased in LUAD tissues. Subsequently, we constructed a network including CXCR family members and their 20 related genes, and the related GO functions assay showed that CXCRs connected with these genes participated in the process of LUAD through several signal pathways including Chemokine signaling pathway, Cytokine-cytokine receptor interaction and Neuroactive ligand-receptor interaction. TCGA and Timer platform revealed that the mRNA expression of CXCR family members was significantly related to individual cancer stages, cancer subtypes, patient's gender and the immune infiltration level. Finally, survival analysis showed that low mRNA expression levels of CXCR2 (HR = 0.661, and Log-rank P = 1.90e-02), CXCR3 (HR = 0.674, and Log-rank P = 1.00e-02), CXCR4 (HR = 0.65, and Log-rank P = 5.01e-03), CXCR5 (HR = 0.608, and Log-rank P = 4.80e-03) and CXCR6 (HR = 0.622, and Log-rank P = 1.85e-03) were significantly associated with shorter overall survival (OS), whereas high CXCR7 mRNA expression (HR = 1.604, and Log-rank P = 4.27e-03) was extremely related with shorter OS in patients. CONCLUSION: Our findings from public databases provided a unique insight into expression characteristics and prognostic values of CXCR members in LUAD, which would be benefit for the understanding of pathogenesis, diagnosis, prognosis prediction and targeted treatment in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/patología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Humanos , Neoplasias Pulmonares/patología , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Nature ; 445(7126): 433-6, 2007 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-17230191

RESUMEN

Feedback regulation of adaptive immunity is a fundamental mechanism for controlling the overall output of different signal transduction pathways, including that mediated by the T-cell antigen receptor (TCR). Calcineurin and Ras are known to have essential functions during T-cell activation. However, how the calcineurin signalling pathway is terminated in the process is still largely unknown. Although several endogenous inhibitors of calcineurin have been reported, none fulfils the criteria of a feedback inhibitor, as their expression is not responsive to TCR signalling. Here we identify an endogenous inhibitor of calcineurin, named Carabin, which also inhibits the Ras signalling pathway through its intrinsic Ras GTPase-activating protein (GAP) activity. Expression of Carabin is upregulated on TCR signalling in a manner that is sensitive to inhibitors of calcineurin, indicating that Carabin constitutes part of a negative regulatory loop for the intracellular TCR signalling pathway. Knockdown of Carabin by short interfering RNA led to a significant enhancement of interleukin-2 production by antigen-specific T cells in vitro and in vivo. Thus, Carabin is a negative feedback inhibitor of the calcineurin signalling pathway that also mediates crosstalk between calcineurin and Ras.


Asunto(s)
Inhibidores de la Calcineurina , Proteínas Portadoras/metabolismo , Retroalimentación Fisiológica , Proteínas ras/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Calcineurina/metabolismo , Proteínas Portadoras/genética , Células Cultivadas , Proteínas Activadoras de GTPasa , Regulación de la Expresión Génica , Humanos , Interleucina-2/biosíntesis , Células Jurkat , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Unión Proteica , Transducción de Señal , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas ras/metabolismo
3.
Comput Intell Neurosci ; 2022: 2836486, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35449738

RESUMEN

Nowadays, the information processing capabilities and resource storage capabilities of computers have been greatly improved, which also provides support for the neural network technology. Convolutional neural networks have good characterization capabilities in computer vision tasks, such as image recognition technology. Aiming at the problem of high similarity image recognition and classification in a specific field, this paper proposes a high similarity image recognition and classification algorithm fused with convolutional neural networks. First, we extract the image texture features, train different types, and different resolution image sets and determine the optimal texture different parameter values. Second, we decompose the image into subimages according to the texture difference, extract the energy features of each subimage, and perform classification. Then, the input image feature vector is converted into a one-dimensional vector through the alternating 5-layer convolution and 3-layer pooling of convolutional neural networks. On this basis, different sizes of convolution kernels are used to extract different convolutions of the image features, and then use convolution to achieve the feature fusion of different dimensional convolutions. Finally, through the increase in the number of training and the increase in the amount of data, the network parameters are continuously optimized to improve the classification accuracy in the training set and in the test set. The actual accuracy of the weights is verified, and the convolutional neural network model with the highest classification accuracy is obtained. In the experiment, two image data sets of gems and apples are selected as the experimental data to classify and identify gems and determine the origin of apples. The experimental results show that the average identification accuracy of the algorithm is more than 90%.


Asunto(s)
Algoritmos , Redes Neurales de la Computación
4.
Adv Sci (Weinh) ; 9(3): e2103373, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34837482

RESUMEN

The requirement of a large input amount (500 ng) for Nanopore direct RNA-seq presents a major challenge for low input transcriptomic analysis and early pathogen surveillance. The high RNA input requirement is attributed to significant sample loss associated with library preparation using solid-phase reversible immobilization (SPRI) beads. A novel solid-phase catalysis strategy for RNA library preparation to circumvent the need for SPRI bead purification to remove enzymes is reported here. This new approach leverages concurrent processing of non-polyadenylated transcripts with immobilized poly(A) polymerase and T4 DNA ligase, followed by directly loading the prepared library onto a flow cell. Whole transcriptome sequencing, using a human pathogen Listeria monocytogenes as a model, demonstrates this new method displays little sample loss, takes much less time, and generates higher sequencing throughput correlated with reduced nanopore fouling compared to the current library preparation for 500 ng input. Consequently, this approach enables Nanopore low-input direct RNA-seq, improving pathogen detection and transcript identification in a microbial community standard with spike-in transcript controls. Besides, as evident in the bioinformatic analysis, the new method provides accurate RNA consensus with high fidelity and identifies higher numbers of expressed genes for both high and low input RNA amounts.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nanoporos , Análisis de Secuencia de ARN/métodos , Humanos
5.
Front Med (Lausanne) ; 9: 989913, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388914

RESUMEN

Prompt and accurate pathogen identification, by diagnostics and sequencing, is an effective tool for tracking and potentially curbing pathogen spread. Targeted detection and amplification of viral genomes depends on annealing complementary oligonucleotides to genomic DNA or cDNA. However, genomic mutations that occur during viral evolution may perturb annealing, which can result in incomplete sequence coverage of the genome and/or false negative diagnostic test results. Herein, we demonstrate how to assess, test, and optimize sequencing and detection methodologies to attenuate the negative impact of mutations on genome targeting efficiency. This evaluation was conducted using in vitro-transcribed (IVT) RNA as well as RNA extracted from clinical SARS-CoV-2 variant samples, including the heavily mutated Omicron variant. Using SARS-CoV-2 as a current example, these results demonstrate how to maintain reliable targeted pathogen sequencing and how to evaluate detection methodologies as new variants emerge.

6.
Chembiochem ; 12(14): 2217-26, 2011 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-21793150

RESUMEN

The ability to specifically attach chemical probes to individual proteins represents a powerful approach to the study and manipulation of protein function in living cells. It provides a simple, robust and versatile approach to the imaging of fusion proteins in a wide range of experimental settings. However, a potential drawback of detection using chemical probes is the fluorescence background from unreacted or nonspecifically bound probes. In this report we present the design and application of novel fluorogenic probes for labeling SNAP-tag fusion proteins in living cells. SNAP-tag is an engineered variant of the human repair protein O(6)-alkylguanine-DNA alkyltransferase (hAGT) that covalently reacts with benzylguanine derivatives. Reporter groups attached to the benzyl moiety become covalently attached to the SNAP tag while the guanine acts as a leaving group. Incorporation of a quencher on the guanine group ensures that the benzylguanine probe becomes highly fluorescent only upon labeling of the SNAP-tag protein. We describe the use of intramolecularly quenched probes for wash-free labeling of cell surface-localized epidermal growth factor receptor (EGFR) fused to SNAP-tag and for direct quantification of SNAP-tagged ß-tubulin in cell lysates. In addition, we have characterized a fast-labeling variant of SNAP-tag, termed SNAP(f), which displays up to a tenfold increase in its reactivity towards benzylguanine substrates. The presented data demonstrate that the combination of SNAP(f) and the fluorogenic substrates greatly reduces the background fluorescence for labeling and imaging applications. This approach enables highly sensitive spatiotemporal investigation of protein dynamics in living cells.


Asunto(s)
Diseño de Fármacos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Imagen Molecular/métodos , O(6)-Metilguanina-ADN Metiltransferasa/química , Proteínas Recombinantes de Fusión/química , Extractos Celulares , Membrana Celular/metabolismo , Supervivencia Celular , Receptores ErbB/metabolismo , Colorantes Fluorescentes/metabolismo , Guanidina/química , Células HEK293 , Humanos , Cinética , O(6)-Metilguanina-ADN Metiltransferasa/genética , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
7.
Front Microbiol ; 12: 760289, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745068

RESUMEN

Two strains of filamentous, colorless sulfur bacteria were isolated from bacterial fouling in the outflow of hydrogen sulfide-containing waters from a coal mine (Thiothrix sp. Ku-5) and on the seashore of the White Sea (Thiothrix sp. AS). Metagenome-assembled genome (MAG) A52 was obtained from a sulfidic spring in the Volgograd region, Russia. Phylogenetic analysis based on the 16S rRNA gene sequences showed that all genomes represented the genus Thiothrix. Based on their average nucleotide identity and digital DNA-DNA hybridization data these new isolates and the MAG represent three species within the genus Thiothrix with the proposed names Thiothrix subterranea sp. nov. Ku-5T, Thiothrix litoralis sp. nov. AST, and "Candidatus Thiothrix anitrata" sp. nov. A52. The complete genome sequences of Thiothrix fructosivorans QT and Thiothrix unzii A1T were determined. Complete genomes of seven Thiothrix isolates, as well as two MAGs, were used for pangenome analysis. The Thiothrix core genome consisted of 1,355 genes, including ones for the glycolysis, the tricarboxylic acid cycle, the aerobic respiratory chain, and the Calvin cycle of carbon fixation. Genes for dissimilatory oxidation of reduced sulfur compounds, namely the branched SOX system (SoxAXBYZ), direct (soeABC) and indirect (aprAB, sat) pathways of sulfite oxidation, sulfur oxidation complex Dsr (dsrABEFHCEMKLJONR), sulfide oxidation systems SQR (sqrA, sqrF), and FCSD (fccAB) were found in the core genome. Genomes differ in the set of genes for dissimilatory reduction of nitrogen compounds, nitrogen fixation, and the presence of various types of RuBisCO.

8.
Oncol Lett ; 21(5): 421, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33850562

RESUMEN

Ubiquitin-specific peptidase (USP)18 belongs to the USP family, and is involved in cleaving and removing ubiquitin or ubiquitin-like molecules from their target molecules. Recently, increasing evidence has suggested that USP18 is constitutively expressed in different types of human tumors, and ectopic expression or downregulation of USP18 expression may contribute to tumorigenesis. However, the role of USP18 in uterine cervical cancer (UCC) remains unclear. Thus, the present study aimed to investigate USP18 expression in a human tissue microarray constructed using UCC and non-cancer cervical tissues, and to determine the potential role and molecular mechanism by which USP18 is implicated in the tumor biology of human UCC HeLa cells. Microarray analysis demonstrated that USP18 protein expression was downregulated in tumor tissues compared with in normal tissues. In addition, in vitro analysis revealed that USP18-knockdown markedly promoted the proliferation, colony formation, migration and aggressiveness of HeLa cells. Mechanistic analysis demonstrated that USP18-knockdown increased the levels of Bcl-2, STAT3 and phosphorylated-ERK in HeLa cells. Notably, USP18 silencing-induced malignant phenotypes were interrupted following exogenous administration of the ERK1/2 inhibitor PD98059. Overall, the results of the present study suggested that USP18 may be a potent inhibitor involved in UCC tumor-associated biological behaviors, which are associated with the ERK signaling pathway.

9.
Front Microbiol ; 11: 514, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32328039

RESUMEN

Viable pathogenic bacteria are major biohazards that pose a significant threat to food safety. Despite the recent developments in detection platforms, multiplex identification of viable pathogens in food remains a major challenge. A novel strategy is developed through direct metatranscriptome RNA-seq and multiplex RT-PCR amplicon sequencing on Nanopore MinION to achieve real-time multiplex identification of viable pathogens in food. Specifically, this study reports an optimized universal Nanopore sample extraction and library preparation protocol applicable to both Gram-positive and Gram-negative pathogenic bacteria, demonstrated using a cocktail culture of E. coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes, which were selected based on their impact on economic loss or prevalence in recent outbreaks. Further evaluation and validation confirmed the accuracy of direct metatranscriptome RNA-seq and multiplex RT-PCR amplicon sequencing using Sanger sequencing and selective media. The study also included a comparison of different bioinformatic pipelines for metatranscriptomic and amplicon genomic analysis. MEGAN without rRNA mapping showed the highest accuracy of multiplex identification using the metatranscriptomic data. EPI2ME also demonstrated high accuracy using multiplex RT-PCR amplicon sequencing. In addition, a systemic comparison was drawn between Nanopore sequencing of the direct metatranscriptome RNA-seq and RT-PCR amplicons. Both methods are comparable in accuracy and time. Nanopore sequencing of RT-PCR amplicons has higher sensitivity, but Nanopore metatranscriptome sequencing excels in read length and dealing with complex microbiome and non-bacterial transcriptome backgrounds.

10.
Genome Biol Evol ; 11(3): 706-720, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30715337

RESUMEN

Wolbachia, an alpha-proteobacterium closely related to Rickettsia, is a maternally transmitted, intracellular symbiont of arthropods and nematodes. Aedes albopictus mosquitoes are naturally infected with Wolbachia strains wAlbA and wAlbB. Cell line Aa23 established from Ae. albopictus embryos retains only wAlbB and is a key model to study host-endosymbiont interactions. We have assembled the complete circular genome of wAlbB from the Aa23 cell line using long-read PacBio sequencing at 500× median coverage. The assembled circular chromosome is 1.48 megabases in size, an increase of more than 300 kb over the published draft wAlbB genome. The annotation of the genome identified 1,205 protein coding genes, 34 tRNA, 3 rRNA, 1 tmRNA, and 3 other ncRNA loci. The long reads enabled sequencing over complex repeat regions which are difficult to resolve with short-read sequencing. Thirteen percent of the genome comprised insertion sequence elements distributed throughout the genome, some of which cause pseudogenization. Prophage WO genes encoding some essential components of phage particle assembly are missing, while the remainder are found in five prophage regions/WO-like islands or scattered around the genome. Orthology analysis identified a core proteome of 535 orthogroups across all completed Wolbachia genomes. The majority of proteins could be annotated using Pfam and eggNOG analyses, including ankyrins and components of the Type IV secretion system. KEGG analysis revealed the absence of five genes in wAlbB which are present in other Wolbachia. The availability of a complete circular chromosome from wAlbB will enable further biochemical, molecular, and genetic analyses on this strain and related Wolbachia.


Asunto(s)
Aedes/microbiología , Genoma Bacteriano , Wolbachia/genética , Animales , Ancirinas/genética , Línea Celular , Elementos Transponibles de ADN , Tamaño del Genoma , Profagos/genética , Proteoma , Sistemas de Secreción Tipo IV
11.
Sci Rep ; 9(1): 5939, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30976027

RESUMEN

Symbiosis is a major force of evolutionary change, influencing virtually all aspects of biology, from population ecology and evolution to genomics and molecular/biochemical mechanisms of development and reproduction. A remarkable example is Wolbachia endobacteria, present in some parasitic nematodes and many arthropod species. Acquisition of genomic data from diverse Wolbachia clades will aid in the elucidation of the different symbiotic mechanisms(s). However, challenges of de novo assembly of Wolbachia genomes include the presence in the sample of host DNA: nematode/vertebrate or insect. We designed biotinylated probes to capture large fragments of Wolbachia DNA for sequencing using PacBio technology (LEFT-SEQ: Large Enriched Fragment Targeted Sequencing). LEFT-SEQ was used to capture and sequence four Wolbachia genomes: the filarial nematode Brugia malayi, wBm, (21-fold enrichment), Drosophila mauritiana flies (2 isolates), wMau (11-fold enrichment), and Aedes albopictus mosquitoes, wAlbB (200-fold enrichment). LEFT-SEQ resulted in complete genomes for wBm and for wMau. For wBm, 18 single-nucleotide polymorphisms (SNPs), relative to the wBm reference, were identified and confirmed by PCR. A limit of LEFT-SEQ is illustrated by the wAlbB genome, characterized by a very high level of insertion sequences elements (ISs) and DNA repeats, for which only a 20-contig draft assembly was achieved.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Simbiosis , Wolbachia/genética , Aedes/microbiología , Animales , Drosophila melanogaster/microbiología , Evolución Molecular , Genómica
12.
Sci Rep ; 9(1): 20184, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31874958

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Biotechniques ; 42(1): 63-9, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17269486

RESUMEN

Synthetic peptides incorporating various chemical moieties, for example, phosphate groups, are convenient tools for investigating protein modification enzymes, such as protein phosphatases (PPs). However, short peptides are sometimes poor substrates, and their binding to commonly used matrices is unpredictable and variable. In general, protein substrates for PPs are superior for enzymatic assays, binding to various matrices, and Western blot analysis. The preparation and characterization of phosphoproteins, however can be difficult and technically demanding. In this study, the intein-mediated protein ligation (IPL) technique was used to readily generate phosphorylated protein substrates by ligating a synthetic phosphopeptide to an intein-generated carrier protein (CP) possessing a carboxyl-terminal thioester with a one-to-one stoichiometry. The ligated phosphoprotein (LPP) substrate was treated with a PP and subsequently subjected to array or Western blot analysis with a phospho-specific antibody. This approach is highly effective in producing arrays of protein substrates containing phosphorylated amino acid residues and has been applied for screening of PPs with specificity toward phosphorylated tyrosine, serine, or threonine residues, resulting in an approximately 240-fold increase in sensitivity in dot blot analysis compared with the use of synthetic peptides. The IPL technique overcomes the disadvantages of current methods and is a versatile system for the facile production of protein substrates containing well-defined structural motifs for the study of protein modification enzymes.


Asunto(s)
Ácidos Fosfoaminos/química , Fosfoproteínas Fosfatasas/química , Inteínas , Análisis por Matrices de Proteínas , Especificidad por Sustrato
14.
Methods Mol Biol ; 381: 313-38, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17984527

RESUMEN

Synthetic peptides are widely used for production and analysis of antibodies as well as in the study of protein modification enzymes. To circumvent the technical challenges of the existing techniques regarding peptide quantization and normalization, a new method of producing peptide arrays has been developed. This approach utilizes intein-mediated protein ligation that involves linkage of a carrier protein possessing a reactive carboxyl-terminal thioester to a peptide with an amino-terminal cysteine through a native peptide bond. Ligated protein substrates or enzyme-treated samples are arrayed on nitrocellulose membranes with a standard dot-blot apparatus and analyzed by immunoassay. This technique has improved sensitivity and reproducibility, and is suitable for various peptide-based applications. In this report, several experimental procedures including epitope mapping and the study of protein modifications were described.


Asunto(s)
Mapeo Epitopo/métodos , Inteínas , Fosfoproteínas Fosfatasas/metabolismo , Fosfotransferasas/metabolismo , Análisis por Matrices de Proteínas/métodos , Alanina , Secuencia de Aminoácidos , Anticuerpos Fosfo-Específicos/farmacología , Especificidad de Anticuerpos , Proteínas Portadoras/metabolismo , Electroforesis en Gel de Poliacrilamida , Humanos , Immunoblotting , Datos de Secuencia Molecular , Péptidos/química , Especificidad por Sustrato/efectos de los fármacos
15.
J Immunol Methods ; 282(1-2): 45-52, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14604539

RESUMEN

Coupling an antigenic peptide to a solid support is a crucial step in the affinity purification of a peptide-specific antibody. Conventional methods for generating reactive agarose, cellulose or other matrices for peptide conjugation are laborious and can result in a significant amount of chemical waste. In this report, we present a novel method for the facile production of a peptide affinity column by employing intein-mediated protein ligation (IPL) in conjunction with chitin affinity chromatography. A reactive thioester was generated at the C-terminal of the chitin binding domain (CBD) from the chitinase A1 of Bacillus circulans WL-2 by thiol-induced cleavage of the peptide bond between the CBD and a modified intein. Peptide epitopes possessing an N-terminal cysteine were ligated to the chitin bound CBD tag. We demonstrate that the resulting peptide columns permit the highly specific and efficient affinity purification of antibodies from animal sera.


Asunto(s)
Anticuerpos/aislamiento & purificación , Secuencia de Aminoácidos , Especificidad de Anticuerpos , Sitios de Unión , Quitina/metabolismo , Cromatografía de Afinidad , Datos de Secuencia Molecular
16.
J Immunol Methods ; 293(1-2): 85-95, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15541279

RESUMEN

Synthetic peptides have become an important tool in antibody production and enzyme characterization. The small size of peptides, however, has hindered their use in assays systems, such as Western blots, and as immunogens. Here, we present a facile method to improve the properties of peptides for multiple applications by ligating the peptides to intein-generated carrier proteins. The stoichiometric ligation of peptide and carrier achieved by intein-mediated protein ligation (IPL) results in the ligation product migrating as a single band on a SDS-PAGE gel. The carrier proteins, HhaI methylase (M.HhaI) and maltose-binding protein (MBP), were ligated to various peptides; the ligated carrier-peptide products gave sharp, reproducible bands when used as positive controls for antibodies raised against the same peptides during Western blot analysis. We further show that ligation of the peptide antigens to a different thioester-tagged carrier protein, paramyosin, produced immunogens for the production of antisera in rabbits or mice. Furthermore, we demonstrate the generation of a substrate for enzymatic assays by ligating a peptide containing the phosphorylation site for Abl protein tyrosine kinase to a carrier protein. This carrier-peptide protein was used as a kinase substrate that could easily be tested for phosphorylation using a phosphotyrosine antibody in Western blot analysis. These techniques do not require sophisticated equipment, reagents, or skills thereby providing a simple method for research and development.


Asunto(s)
Anticuerpos/inmunología , Western Blotting/métodos , Proteínas Portadoras , Fragmentos de Péptidos/inmunología , Animales , Anticuerpos/análisis , Anticuerpos/química , Antígenos/inmunología , Sueros Inmunes/inmunología , Fosfotransferasas/análisis , Conejos , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/metabolismo
17.
Biotechniques ; 36(6): 976-8, 980-1, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15211748

RESUMEN

We have applied intein-mediated peptide ligation (IPL) to the use of peptide substrates for kinase assays and subsequent Western blot analysis. IPL allows for the efficient ligation of a synthetic peptide with an N-terminal cysteine residue to an intein-generated carrier protein containing a cysteine reactive C-terminal thioester through a native peptide bond. A distinct advantage of this procedure is that each carrier protein molecule ligates only one peptide, ensuring that the ligation product forms a sharp band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We demonstrate the effectiveness of this approach by mutational analysis of peptide substrates derived from human cyclin-dependent kinase, Cdc2, which contains a phosphorylation site of human c-Src protein tyrosine kinase.


Asunto(s)
Western Blotting/métodos , Proteínas Portadoras/inmunología , Péptidos/inmunología , Familia-src Quinasas/análisis , Familia-src Quinasas/inmunología , Especificidad de Anticuerpos , Humanos , Unión Proteica , Especificidad por Sustrato
18.
Biotechniques ; 37(3): 430-6, 438, 440 passim, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15470898

RESUMEN

Peptide arrays are increasingly used to define antibody epitopes and substrate specificities of protein kinases. Their use is hampered, however, by ineffective and variable binding efficiency of peptides, which often results in low sensitivity and inconsistent results. To overcome these limitations, we have developed a novel method for making arrays of synthetic peptides on various membranes after ligating the peptide substrates to an intein-generated carrier protein. We have conducted screening for optimal carrier proteins by immunoreactivity and direct assessment of binding using a peptide derivatized at a lysine sidechain with fluorescein, CDPEK(fluorescein)DS. Ligation of a synthetic peptide antigen to a carrier protein, HhaI methylase, resulted in an improved retention of peptides and an increased sensitivity of up to 10(4)-fold in immunoassay- and epitope-scanning experiments. Denaturing the ligation products with 2% sodium dodecyl sulfate (SDS) or an organic solvent (20% methanol) prior to arraying did not significantly affect the immunoreactivity of the HhaI methylase-peptide product. Because the carrier protein dominates the binding of ligation products and contains one peptide reactive site, the amount of peptide arrayed onto the membranes can be effectively normalized. This technique was utilized in the alanine scanning of hemagglutinin (HA) antigen using two monoclonal antibodies, resulting in distinguishing the different antigen epitope profiles. Furthermore, we show that this method can be used to characterize the antibodies that recognize phosphorylated peptides. This novel approach allows for synthetic peptides to be uniformly arrayed onto membranes, compatible with a variety of applications.


Asunto(s)
Proteínas Portadoras/química , Mapeo Epitopo/métodos , Inteínas , Péptidos/química , Anticuerpos Monoclonales/análisis , Anticuerpos Monoclonales/inmunología , Proteínas Portadoras/síntesis química , Proteínas Portadoras/inmunología , Ensayo de Inmunoadsorción Enzimática , Hemaglutininas/inmunología , Humanos , Immunoblotting/métodos , Péptidos/síntesis química , Péptidos/inmunología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/inmunología
19.
Curr Pharm Des ; 19(30): 5414-20, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23431983

RESUMEN

The SNAP-tag labeling technology provides a simple, robust, and versatile approach to the imaging of fusion proteins for a wide range of experimental applications. Owing to the specific and covalent nature of the labeling reaction, SNAP-tag is well suited for the analysis and quantification of fused target protein using fluorescence microscopy techniques. In this report, we present our most recent findings on the labeling of SNAP-tag fusion proteins both in vitro and in cell culture with SNAP-tag substrates derived from single regioisomers of carboxyrhodamine dyes. Carboxyrhodamines are invaluable fluorescent dyes for biotechnology applications including DNA sequencing, detection on microarrays, and fluorescence in situ hybridization. We found that SNAP-tag reacts preferentially with the 6-positional regioisomer of carboxyrhodamine fluorescent dyes, whereas the 5-regioisomer predominantly contributes to background fluorescence. Our experimental study also indicates that benzylchloropyrimidine (CP) conjugates of 6-carboxyrhodamines exhibit a dramatic increase in the signal-to-noise ratio of fluorescently labeled cellular proteins compared to the benzylguanine (BG) conjugates, presumably due to higher cell permeability. These new SNAP-tag substrates based on pure 6-regioisomers can significantly improve fluorescence labeling in live cells and should become powerful tools for bioimaging applications.


Asunto(s)
Colorantes Fluorescentes/química , Imagen Molecular/métodos , Animales , Línea Celular , Membrana Celular/metabolismo , Cricetinae , Humanos , Estructura Molecular , Permeabilidad , Rodaminas/química , Especificidad por Sustrato
20.
Methods Mol Biol ; 705: 87-107, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21125382

RESUMEN

Intein-mediated protein ligation (IPL) employs an intein to create a protein possessing a C-terminal thioester that can be ligated to a protein or peptide with an amino-terminal cysteine via a native peptide bond. Here we present a procedure to conduct isolation and labeling of recombinant proteins expressed in E. coli using synthetic short peptides possessing a fluorescent moiety. This approach can be readily utilized for site-specific conjugation of a fluorophore to the C-terminus of a protein of interest, without the drawback of non-specific chemical labeling. This chapter also gives a general review of the critical parameters of intein-mediated cleavage and ligation reactions.


Asunto(s)
Escherichia coli , Colorantes Fluorescentes/química , Inteínas , Proteínas Recombinantes de Fusión/química , Sulfuros/química , Colorantes Fluorescentes/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Sulfuros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA