Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Exp Cell Res ; 437(1): 113994, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479704

RESUMEN

m6A modification has been studied in tumors, but its role in host anti-tumor immune response and TAMs polarization remains unclear. The fatty acid oxidation (FAO) process of TAMs is also attracting attention. A co-culture model of colorectal cancer (CRC) cells and macrophages was used to simulate the tumor microenvironment. Expression changes of m6A demethylase genes FTO and ALKBH5 were screened. ALKBH5 was further investigated. Gain-of-function experiments were conducted to study ALKBH5's effects on macrophage M2 polarization, CRC cell viability, proliferation, migration, and more. Me-RIP and Actinomycin D assays were performed to study ALKBH5's influence on CPT1A, the FAO rate-limiting enzyme. AMP, ADP, and ATP content detection, OCR measurement, and ECAR measurement were used to explore ALKBH5's impact on macrophage FAO level. Rescue experiments validated ALKBH5's mechanistic role in macrophage M2 polarization and CRC malignant development. In co-culture, CRC cells enhance macrophage FAO and suppress m6A modification in M2 macrophages. ALKBH5 was selected as the gene for further investigation. ALKBH5 mediates CPT1A upregulation by removing m6A modification, promoting M2 macrophage polarization and facilitating CRC development. These findings indicate that ALKBH5 enhances fatty acid metabolism and M2 polarization of macrophages by upregulating CPT1A, thereby promoting CRC development.


Asunto(s)
Neoplasias Colorrectales , Macrófagos , Humanos , Regulación hacia Arriba/genética , Macrófagos/metabolismo , Neoplasias Colorrectales/patología , Ácidos Grasos/metabolismo , Microambiente Tumoral , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
2.
Small ; 20(19): e2308453, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38221691

RESUMEN

Despite great efforts on economical and functionalized carbon materials, their scalable applications are still restricted by the unsatisfying energy storage capability under high-rate conditions. Herein, theoretical and methodological insights for surface-to-bulk engineering of multi-heteroatom-doped hollow porous carbon (HDPC), with subtly designed Zn(OH)F nanoarrays as the template are presented. This fine-tuned HDPC delivers an ultrahigh-rate energy storage capability even at a scan rate of 3000 mV s-1 (fully charged within 0.34 s). It preserves a superior capacitance of 234 F g-1 at a super-large current density of 100 A g-1 and showcases an ultralong cycling life without capacitance decay after 50 000 cycles. Through dynamic and theoretical analysis, the key role of in situ surface-modified heteroatoms and defects in decreasing the K+-adsorption/diffusion energy barrier is clarified, which cooperates with the porous conductive highways toward enhanced surface-to-bulk activity and kinetics. In situ Raman aids in visualizing the reversibly dynamic adsorption/releasing of the electrolyte ions on the tailored carbon structure during the charge/discharge process. The potential of the design concept is further evidenced by the enhanced performances in water-in-salt electrolytes. This surface-to-bulk nanotechnology opens the path for developing high-performance energy materials to better meet the practical requirements in the future.

3.
Acta Pharmacol Sin ; 45(5): 1044-1059, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38326625

RESUMEN

The development of targeted chemotherapeutic agents against colorectal cancer (CRC), one of the most common cancers with a high mortality rate, is in a constant need. Nannocystins are a family of myxobacterial secondary metabolites featuring a 21-membered depsipeptide ring. The in vitro anti-CRC activity of natural and synthetic nannocystins was well documented, but little is known about their in vivo efficacy and if positive, the underlying mechanism of action. In this study we synthesized a nitroaromatic nannocystin through improved preparation of a key fragment, and characterized its in vitro activity and in vivo efficacy against CRC. We first described the total synthesis of compounds 2-4 featuring Heck macrocyclization to forge their 21-membered macrocycle. In a panel of 7 cancer cell lines from different tissues, compound 4 inhibited the cell viability with IC values of 1-6 nM. In particular, compound 4 (1, 2, 4 nM) inhibited the proliferation of CRC cell lines (HCT8, HCT116 and LoVo) in both concentration and time dependent manners. Furthermore, compound 4 concentration-dependently inhibited the colony formation and migration of CRC cell lines. Moreover, compound 4 induced cell cycle arrest at sub-G1 phase, apoptosis and cellular senescence in CRC cell lines. In three patient-derived CRC organoids, compound 4 inhibited the PDO with IC values of 3.68, 28.93 and 11.81 nM, respectively. In a patient-derived xenograft mouse model, injection of compound 4 (4, 8 mg/kg, i.p.) every other day for 12 times dose-dependently inhibited the tumor growth without significant change in body weight. We conducted RNA-sequencing, molecular docking and cellular thermal shift assay to elucidate the anti-CRC mechanisms of compound 4, and revealed that it exerted its anti-CRC effect at least in part by targeting AKT1.


Asunto(s)
Antineoplásicos , Proliferación Celular , Neoplasias Colorrectales , Depsipéptidos , Compuestos Macrocíclicos , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Depsipéptidos/farmacología , Depsipéptidos/uso terapéutico , Depsipéptidos/química , Depsipéptidos/síntesis química , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Plant Cell Rep ; 43(3): 63, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340191

RESUMEN

KEY MESSAGE: To establish a sterile culture system and protoplast regeneration system for Bryum argenteum, and to establish and apply CRISPR/Cas9 system in Bryum argenteum. Bryum argenteum is a fascinating, cosmopolitan, and versatile moss species that thrives in various disturbed environments. Because of its comprehensive tolerance to the desiccation, high UV and extreme temperatures, it is emerging as a model moss for studying the molecular mechanisms underlying plant responses to abiotic stresses. However, the lack of basic tools such as gene transformation and targeted genome modification has hindered the understanding of the molecular mechanisms underlying the survival of B. argenteum in different environments. Here, we reported the protonema of B. argenteum can survive up to 95.4% water loss. In addition, the genome size of B. argenteum is approximately 313 Mb by kmer analysis, which is smaller than the previously reported 700 Mb. We also developed a simple method for protonema induction and an efficient protoplast isolation and regeneration protocol for B. argenteum. Furthermore, we established a PEG-mediated protoplast transient transfection and stable transformation system for B. argenteum. Two homologues of ABI3(ABA-INSENSITIVE 3) gene were successfully cloned from B. argenteum. To further investigate the function of the ABI3 gene in B. argenteum, we used the CRISPR/Cas9 genetic editing system to target the BaABI3A and BaABI3B gene in B. argenteum protoplasts. This resulted in mutagenesis at the target in about 2-5% of the regenerated plants. The isolated abi3a and abi3b mutants exhibited increased sensitivity to desiccation, suggesting that BaABI3A and BaABI3B play redundant roles in desiccation stress. Overall, our results provide a rapid and simple approach for molecular genetics in B. argenteum. This study contributes to a better understanding of the molecular mechanisms of plant adaptation to extreme environmental.


Asunto(s)
Briófitas , Bryopsida , Edición Génica , Bryopsida/genética , Briófitas/genética , Estrés Fisiológico/genética , Transformación Genética , Sistemas CRISPR-Cas/genética , Protoplastos
5.
J Environ Manage ; 356: 120664, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508006

RESUMEN

Continuous discharge of wastewater, emissions, and solid wastes from steelworks poses environmental risks to ecosystems. However, the role of keystone taxa in maintaining multifunctional stability during environmental disturbances remains poorly understood. To address this, we investigated the community diversity, assembly mechanisms, and soil multifunctionality of soils collected from within the steelworks (I), within 2.5 km radius from the steelworks (E), and from an undisturbed area (CK) in Jiangsu Province, China, via 16 S rRNA sequencing. Significant differences were found in the Chao1 and the richness indexes of the total taxa (p < 0.05), while the diversity of keystone taxa was not significant at each site (p > 0.05). The deterministic processes for total taxa were 42.9%, 61.9% and 47.7% in CK, E, and I, respectively. Steelworks stress increased the deterministicity of keystone taxa from 52.3% in CK to 61.9% in E and I soils. The average multifunctionality indices were 0.518, 0.506 and 0.513 for CK, E and I, respectively. Although the soil multifunctionality was positive correlated with α diversity of both the total and keystone taxa, the average degree of keystone taxa in functional network increased significantly (79.96 and 65.58, respectively), while the average degree of total taxa decreased (44.59 and 51.25, respectively) in the E and I. This suggests keystone taxa contribute to promoting the stability of ecosystems. With increasing disturbance, keystone taxa shift their function from basic metabolism (ribosome biogenesis) to detoxification (xenobiotics biodegradation, metabolism, and benzoate degradation). Here we show that keystone taxa are the most important factor in maintaining stable microbial communities and functions, providing new insights for mitigating pollution stress and soil health protection.


Asunto(s)
Microbiota , Suelo , Microbiología del Suelo , Bacterias/genética , Contaminación Ambiental
6.
Environ Microbiol ; 25(4): 800-810, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36571495

RESUMEN

Bacterial viruses are the most abundant biological entities in soil ecosystems. Owing to the advent of metagenomics and viromics approaches, an ever-increasing diversity of virus-encoded auxiliary metabolic genes (AMGs) have been identified in soils, including those involved in the transformation of carbon, phosphorus, and sulfur, degradation of organic pollutants, and antibiotic resistance, among other processes. These viral AMGs can alter soil biogeochemical processes and metabolic activities by interfering with bacterial host metabolism. It is recognized that viral AMGs compensate for host bacterial metabolism outputs by encoding accessory functional genes and are favourable for the hosts' adaptation to stressed soil environments. The eco-evolutionary mechanisms behind this fascinating diversity of viral AMGs in soil microbiomes have begun to emerge, such as horizontal gene transfer, lytic-lysogenic conversion, and single-nucleotide polymorphisms. In this mini-review, we summarize recent advances in the diversity and function of virus-encoded AMGs in the soil environment, especially focusing on the evolutionary significance of AMGs involved in virus-host interactions. This mini-review also sheds light on the existing gaps and future perspectives that could have major significance for viral AMGs research in soils.


Asunto(s)
Bacteriófagos , Microbiota , Genes Virales , Bacteriófagos/genética , Evolución Biológica , Bacterias/metabolismo , Microbiota/genética , Suelo
7.
Biochem Biophys Res Commun ; 655: 90-96, 2023 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-36933312

RESUMEN

AIMS: Acute lung injury (ALI) induced by sepsis and its complications have high morbidity and mortality rates globally. The objective of this study was to enhance our understanding of the underlying mechanism of ALI by identifying potential splicing events that are regulated in this condition. MATERIALS AND METHODS: The CLP mouse model was utilized for mRNA sequencing, and the expression and splicing data were analyzed. Verification of the changes in expression and splicing induced by CLP was conducted using qPCR and RT-PCR. RESULTS: Our results showed that splicing-related genes were regulated, suggesting that splicing regulation may be a key mechanism in ALI. We also found that more than 2900 genes displayed alternative splicing in the lungs of mice with sepsis. Using RT-PCR, we verified that TLR4 and other genes had differential splicing isoforms in the lungs of mice with sepsis. We confirmed the presence of TLR4-s in the lungs of mice with sepsis using RNA-fluorescence in situ hybridization. CONCLUSION: Our results suggest that sepsis-induced ALI can significantly alter splicing in the lungs of mice. The list of DASGs and splicing factors is valuable for further study in the search for new treatment approaches for sepsis-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Ratones , Animales , Empalme Alternativo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Hibridación Fluorescente in Situ , Pulmón/metabolismo , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo , Punciones/efectos adversos , Ligadura/efectos adversos , Ciego/cirugía , Ciego/metabolismo , Sepsis/complicaciones , Sepsis/genética , Sepsis/metabolismo
8.
Small ; : e2308147, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38150664

RESUMEN

Despite great efforts on economical and functionalized carbon materials, their scalable applications are still restricted by the unsatisfying energy storage capability under high-rate conditions. Herein, theoretical and methodological insights for surface-to-bulk engineering of multi-heteroatom-doped hollow porous carbon (HDPC) is presented, with subtly designed Zn(OH)F nanoarrays as the template. This fine-tuned HDPC delivers an ultrahigh-rate energy storage capability even at a scan rate of 3000 mV s-1 (fully charged within 0.34 s). It preserves a superior capacitance of 234 F g-1 at a super-large current density of 100 A g-1 and showcases an ultralong cycling life without capacitance decay after 50 000 cycles. Through dynamic and theoretical analysis, the key role of in situ surface-modified heteroatoms and defects in decreasing the K+ -adsorption/diffusion energy barrier is clarified, which cooperates with the porous conductive highways toward enhanced surface-to-bulk activity and kinetics. In situ Raman further aids in visualizing the reversibly dynamic adsorption/releasing of the electrolyte ions on the tailored carbon structure during the charge/discharge process. The potential of the design concept is further evidenced by the enhanced performances in water-in-salt electrolytes. This surface-to-bulk nanotechnology opens the path for developing high-performance energy materials to better meet the practical requirements in future.

9.
Appl Environ Microbiol ; 89(3): e0181022, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36809072

RESUMEN

The ecological drivers that direct the assembly of viral and host bacterial communities are largely unknown, even though viral-encoded accessory genes help host bacteria survive in polluted environments. To understand the ecological mechanism(s) of viruses and hosts synergistically surviving under organochlorine pesticide (OCP) stress, we investigated the community assembly processes of viruses and bacteria at the taxon and functional gene levels in clean and OCP-contaminated soils in China using a combination of metagenomics/viromics and bioinformatics approaches. We observed a decreased richness of bacterial taxa and functional genes but an increased richness of viral taxa and auxiliary metabolic genes (AMGs) in OCP-contaminated soils (from 0 to 2,617.6 mg · kg-1). In OCP-contaminated soils, the assembly of bacterial taxa and genes was dominated by a deterministic process, of which the relative significance was 93.0% and 88.7%, respectively. In contrast, the assembly of viral taxa and AMGs was driven by a stochastic process, which contributed 83.1% and 69.2%, respectively. The virus-host prediction analysis, which indicated Siphoviridae was linked to 75.0% of bacterial phyla, and the higher migration rate of viral taxa and AMGs in OCP-contaminated soil suggested that viruses show promise for the dissemination of functional genes among bacterial communities. Taken together, the results of this study indicated that the stochastic assembly processes of viral taxa and AMGs facilitated bacterial resistance to OCP stress in soils. Moreover, our findings provide a novel avenue for understanding the synergistic interactions between viruses and bacteria from the perspective of microbial ecology, highlighting the significance of viruses in mediating bioremediation of contaminated soils. IMPORTANCE The interaction between viral communities and microbial hosts has been studied extensively, and the viral community affects host community metabolic function through AMGs. Microbial community assembly is the process by which species colonize and interact to establish and maintain communities. This is the first study that aimed to understand the assembly process of bacterial and viral communities under OCP stress. The findings of this study provide information about microbial community responses to OCP stress and reveal the collaborative interactions between viral and bacterial communities to resist pollutant stress. Thereby, we highlight the importance of viruses in soil bioremediation from the perspective of community assembly.


Asunto(s)
Hidrocarburos Clorados , Microbiota , Plaguicidas , Virus , Suelo , Bacterias , Microbiología del Suelo , Plaguicidas/metabolismo , Hidrocarburos Clorados/metabolismo
10.
FASEB J ; 36(5): e22302, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35394688

RESUMEN

Arginine-serine (RS) domain(s) in splicing factors are critical for protein-protein interaction in pre-mRNA splicing. Phosphorylation of RS domain is important for splicing control and nucleocytoplasmic transport in the cell. RNA-binding motif 20 (RBM20) is a splicing factor primarily expressed in the heart. A previous study using phospho-antibody against RS domain showed that RS domain can be phosphorylated. However, its actual phosphorylation sites and function have not been characterized. Using middle-down mass spectrometry, we identified 16 phosphorylation sites, two of which (S638 and S640 in rats, or S637 and S639 in mice) were located in the RSRSP stretch in the RS domain. Mutations on S638 and S640 regulated splicing, promoted nucleocytoplasmic transport and protein-RNA condensates. Phosphomimetic mutations on S638 and S640 indicated that phosphorylation was not the major cause for RBM20 nucleocytoplasmic transport and condensation in vitro. We generated a S637A knock-in (KI) mouse model (Rbm20S637A ) and observed the reduced RBM20 phosphorylation. The KI mice exhibited aberrant gene splicing, protein condensates, and a dilated cardiomyopathy (DCM)-like phenotype. Transcriptomic profiling demonstrated that KI mice had altered expression and splicing of genes involving cardiac dysfunction, protein localization, and condensation. Our in vitro data showed that phosphorylation was not a direct cause for nucleocytoplasmic transport and protein condensation. Subsequently, the in vivo results reveal that RBM20 mutations led to cardiac pathogenesis. However, the role of phosphorylation in vivo needs further investigation.


Asunto(s)
Empalme del ARN , Proteínas de Unión al ARN , Transporte Activo de Núcleo Celular , Animales , Ratones , Miocitos Cardíacos/metabolismo , Fosforilación , Motivos de Unión al ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ratas
11.
J Med Genet ; 59(9): 840-849, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34544842

RESUMEN

BACKGROUND: A large number of new causative and risk genes for amyotrophic lateral sclerosis (ALS) have been identified mostly in patients of European ancestry. In contrast, we know relatively little regarding the genetics of ALS in other ethnic populations. This study aims to provide a comprehensive analysis of the genetics of ALS in an unprecedented large cohort of Chinese mainland population and correlate with the clinical features of rare variants carriers. METHODS: A total of 1587 patients, including 64 familial ALS (FALS) and 1523 sporadic ALS (SALS), and 1866 in-house controls were analysed by whole-exome sequencing and/or testing for G4C2 repeats in C9orf72. Forty-one ALS-associated genes were analysed. FINDINGS: 155 patients, including 26 (40.6%) FALS and 129 (8.5%) SALS, carrying rare pathogenic/likely pathogenic (P/LP) variants of ALS causative genes were identified. SOD1 was the most common mutated gene, followed by C9orf72, FUS, NEK1, TARDBP and TBK1. By burden analysis, rare variants in SOD1, FUS and TARDBP contributed to the collective risk for ALS (p<2.5e-6) at the gene level, but at the allelic level TARDBP p.Gly294Val and FUS p.Arg521Cys and p.Arg521His were the most important single variants causing ALS. Clinically, P/LP variants in TARDBP and C9orf72 were associated with poor prognosis, in FUS linked with younger age of onset, and C9orf72 repeats tended to affect cognition. CONCLUSIONS: Our data provide essential information for understanding the genetic and clinical features of ALS in China and for optimal design of genetic testing and evaluation of disease prognosis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Estudios de Cohortes , Predisposición Genética a la Enfermedad , Humanos , Mutación/genética , Superóxido Dismutasa-1/genética
12.
Molecules ; 28(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36771078

RESUMEN

Neuromyelitis optica spectrum disorder (NMOSD) is a central nervous system inflammatory demyelinating disease, the pathogenesis of which involves autoantibodies targeting the extracellular epitopes of aquaporin-4 on astrocytes. We neutralized the AQP4-IgG from NMOSD patient sera using synthesized AQP4 extracellular epitope peptides and found that the severe cytotoxicity produced by aquaporin-4 immunoglobin (AQP4-IgG) could be blocked by AQP4 extracellular mimotope peptides of Loop A and Loop C in astrocyte protection and animal models. ACT001, a natural compound derivative, has shown anti-tumor activity in various cancers. In our study, the central nervous system anti-inflammatory effect of ACT001 was investigated. The results demonstrated the superior astrocyte protection activity of ACT001 at 10 µM. Furthermore, ACT001 decreases the behavioral score in the mouse NMOSD model, which was not inferior to Methylprednisolone Sodium Succinate, the first-line therapy of NMOSD in clinical practice. In summary, our study showed that astrocytes are protected by specific peptides, or small molecular drugs, which is a new strategy for the treatment of NMOSD. It is possible for ACT001 to be a promising therapy for NMOSD.


Asunto(s)
Neuromielitis Óptica , Animales , Ratones , Neuromielitis Óptica/tratamiento farmacológico , Astrocitos , Acuaporina 4 , Epítopos , Modelos Animales de Enfermedad , Autoanticuerpos , Inmunoglobulina G
13.
Eur J Neurol ; 29(11): 3218-3228, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35861376

RESUMEN

BACKGROUND AND PURPOSE: Recent genetic progress has shown many causative/risk genes linked to Parkinson's disease (PD), mainly in patients of European ancestry. The study aimed to investigate the PD-related genes and determine the mutational spectrum of early-onset PD in ethnic Chinese. METHODS: In this study, whole-exome sequencing and/or gene dosage analysis were performed in 704 early-onset PD (EOPD) patients (onset age ≤45 years) and 1866 controls. Twenty-six PD-related genes and 20 other genes linked to neurodegenerative and lysosome diseases were analysed. RESULTS: Eighty-two (11.6%, 82/704) EOPD patients carrying rare pathogenic/likely pathogenic variants in PD-related genes were identified. The mutation frequency in autosomal recessive inheritance EOPD (42.9%, 27/63) was much higher than that in autosomal dominant inheritance EOPD (0.9%, 12/110) or sporadic EOPD (8.1%, 43/531). Bi-allelic mutations in PRKN were the most frequent, accounting for 5.1% of EOPD cases. Three common pathogenic variants, p.A53V in SNCA, p.G284R in PRKN and p.P53Afs*38 in CHCHD2, occur exclusively in Asians. The putative damaging variants from GBA, PRKN, DJ1, PLA2G6 and GCH1 contributed to the collective risk for EOPD. Notably, the protein-truncating variants in CHCHD2 were enriched in EOPD, especially for p.P53Afs*38, which was also found in three patients from an independent cohort of patients with late-onset PD (n = 1300). Functional experiments confirmed that truncated CHCHD2 variants cause loss of function and are linked to mitochondrial dysfunction. CONCLUSIONS: Our study reveals that the genetic spectrum of EOPD in Chinese, which may help develop genetic scanning strategies, provided more evidence supporting CHCHD2 in PD.


Asunto(s)
Enfermedad de Parkinson , Edad de Inicio , Pueblo Asiatico/genética , China , Proteínas de Unión al ADN/genética , Humanos , Persona de Mediana Edad , Mutación , Enfermedad de Parkinson/genética , Factores de Transcripción/genética
14.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36232604

RESUMEN

Previous studies have shown that phosphoinositide 3-kinase enhancer-activating Akt (PIKE-A) is involved in the regulation of several biological processes in cancer. In our previous study, we demonstrated a crucial function of PIKE-A in cancer energy metabolism by regulating pentose phosphate pathway (PPP) flux. However, whether PIKE-A regulates energy metabolism through affecting mitochondrial changes are poorly understood. In the present study, we show that PIKE-A promotes mitochondrial membrane potential, leading to increasing proliferation of glioblastoma cell. Mechanistically, PIKE-A affects the expression of respiratory chain complex Ⅱ succinate dehydrogenase A (SDHA), mediated by regulating the axis of STAT3/FTO. Taken together, these results revealed that inhibition of PIKE-A reduced STAT3/FTO/SDHA expression, leading to the suppression of mitochondrial function. Thus, our findings suggest the PIKE-A/STAT3/FTO/SDHA axis as promising anti-cancer treatment targets.


Asunto(s)
Glioblastoma , Proteínas Proto-Oncogénicas c-akt , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Humanos , Mitocondrias/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo , Succinato Deshidrogenasa/metabolismo
15.
J Environ Manage ; 310: 114776, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35219207

RESUMEN

Earthworms are important in soil bioremediation because of their capability of pollutant degradation. However, the trade-off between pollutant dissemination and degradation arising from earthworm activities remains unclear, as well as the potential biodegradation mechanism. Herein, an earthworm avoidance experiment was established to investigate Metaphire guillelmi-mediated tetracycline (TC) diffusion and degradation. The results showed that above 1600 mg kg-1 TC pollution in soil induced avoidance behaviour of earthworms (p < 0.05), below which the random worm behaviour accelerated TC diffusion by 8.2% at most (p < 0.05), resulting in elevated levels of antibiotic-resistant bacteria and genes in the soil. Nevertheless, earthworms enhanced TC degradation regardless of whether their avoidance behaviour occurred (14.6-25.8%, p < 0.05). Compared with in soil, metabolic pathways affiliated with xenobiotic degradation and metabolism in the intestines were enriched (LDA >3). Given the abundant glutathione S-transferases in the intestines and their close relationship with Δ degradation, they may play a key role in intestinal TC biodegradation. In general, earthworms had good tolerance to soil TC contamination and their impact on promoting TC degradation outweighed that accelerating TC diffusion. This work provides a comprehensive view of earthworms as a potential remediation method for TC-contaminated soil.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Antibacterianos/metabolismo , Oligoquetos/metabolismo , Suelo , Contaminantes del Suelo/análisis , Tetraciclina/metabolismo , Tetraciclina/farmacología
16.
J Hum Genet ; 66(3): 227-236, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32917966

RESUMEN

Genetic testing of TSC1 and TSC2 is important for the diagnosis of tuberous sclerosis complex (TSC), an autosomal dominant neurocutaneous disease. This study retrospectively reviewed 347 samples from patients with clinically suspected TSC being tested for mutations in TSC1 and TSC2 genes using next-generation sequencing and multiplex ligation-dependent probe amplification. Two hundred eighty-one patients (80.98%) were classified as definite/possible/uncertain diagnosis of TSC and the mutational spectrum of TSC1/TSC2 was described. Two hundred eighteen unique nonsynonymous SNVs/Indels (64 in TSC1, 154 in TSC2) and 13 copy number variants (CNVs) were identified in 241 samples (85.77%), including 82 novel variants. CNVs involving 12 large deletions and one duplication were detected exclusively in TSC2. Both TSC1 and TSC2 mutations were nearly uniformly distributed in their protein-coding regions. Furthermore, a string of non-TSC1/TSC2 deleterious variants in 12 genes was identified in the patients, especially overwhelmingly present in the patients with no mutation identified (NMI) in TSC1/TSC2. Our study provides a comprehensive TSC1/TSC2 mutation landscape and reveal some potential risk non-TSCs variants present in patients with NMI.


Asunto(s)
Mutación , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Esclerosis Tuberosa/genética , Adolescente , Adulto , Pueblo Asiatico/genética , Niño , Preescolar , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Mutación INDEL , Lactante , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Estudios Retrospectivos , Esclerosis Tuberosa/diagnóstico , Esclerosis Tuberosa/etnología , Adulto Joven
17.
Mol Cell Biochem ; 476(9): 3423-3431, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33970409

RESUMEN

Reprogramming of energy metabolism is a hallmark of cancer which is prevalent worldwide. Octamer transcription factor-1 (OCT1) is a well-known transcription factor. However, the role of OCT1 in metabolism remodeling has not been well defined. In the present study, we found that OCT1 was up-regulated in non-small cell lung cancer (NSCLC) and correlated with poor patient survival. Further data identified that OCT1 increased glycolysis flux, promoting proliferation in lung cancer cells. Mechanistically, OCT1 facilitated the aerobic glycolysis and cell proliferation via up-regulation of hexokinase 2 (HK2), a crucial enzyme of the Warburg effect. Hence, our findings indicate that, in NSCLC, high levels of OCT1 contribute to the Warburg effect through up-regulation of HK2, linking up the OCT1/HK2 axis and cancer progression, which provide a potential biomarker and therapeutic target for NSCLC treatment.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Regulación Neoplásica de la Expresión Génica , Hexoquinasa/metabolismo , Neoplasias Pulmonares/patología , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Efecto Warburg en Oncología , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proliferación Celular , Glucólisis , Hexoquinasa/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Factor 1 de Transcripción de Unión a Octámeros/genética , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas
18.
Br J Clin Pharmacol ; 87(4): 2098-2110, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33098714

RESUMEN

AIMS: Ningetinib is a tyrosine kinase inhibitor for the treatment of non-small cell lung cancer (NSCLC). The present study aims to investigate the drug interaction of ningetinib and gefitinib and the mechanism of high plasma exposure of N-demethylated ningetinib (M1) in NSCLC patients. METHODS: Patients with NSCLC were recruited. Metabolism and transport assays were performed using in vitro models. Deuterated M1 was used to study the effects of ningetinib and gefitinib on M1 efflux in Institute of Cancer Research (ICR) mice. RESULTS: Upon co-administration of ningetinib with gefitinib, the plasma exposure of M1 was reduced by 80%, whereas that of ningetinib was not affected. In vitro experiments indicated that CYP1A1 was primarily responsible for M1 formation. Gefitinib was demonstrated to be a strong inhibitor of CYP1A1 with Ki value of 0.095 µM. M1 was identified as a substrate of efflux transporters P-gp and BCRP, while ningetinib and gefitinib were demonstrated to be their inhibitors, which was consistent with the results in mice. However, the inhibitory effect of gefitinib on efflux in vivo was negligible in the presence of ningetinib. CONCLUSION: The high plasma exposure of M1 in patients was attributed to the inhibition of M1 efflux by ningetinib and its low tissue affinity. When co-administered, gefitinib inhibited the formation of M1, but due to the low metabolic yield of M1 in vivo, the pharmacokinetics of ningetinib was not influenced. Inhibition of CYP1A1 may increase the concentration of ningetinib in target tissues, and the long-term safety and efficacy of ningetinib combined with gefitinib should be evaluated.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Citocromo P-450 CYP1A1 , Interacciones Farmacológicas , Gefitinib/farmacología , Gefitinib/uso terapéutico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Proteínas de Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinazolinas/farmacología , Quinazolinas/uso terapéutico
19.
J Immunol ; 203(1): 282-292, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31076530

RESUMEN

The gut microbiota has been shown critical for mucosal adjuvant activity of cholera toxin (CT), a potent mucosal adjuvant. However, the mechanisms involved remain largely unknown. In this study, we report that depletion of gut bacteria significantly decreased mucosal and systemic Ab responses in mice orally immunized with OVA and CT. Feeding mice short-chain fatty acids (SCFAs) promoted Ab responses elicited by CT, and, more importantly, rescued Ab responses in antibiotic-treated mice. In addition, mice deficient in GPR43, a receptor for SCFAs, showed impaired adjuvant activity of CT. Administering CT did not promote SCFA production in the intestines; thus, SCFAs facilitated but did not directly mediate the adjuvant activity of CT. SCFAs promoted B cell Ab production by promoting dendritic cell production of BAFF and ALDH1a2, which induced B cell expression of IFN regulatory factor 4, Blimp1, and XBP1, the plasma B cell differentiation-related genes. Furthermore, when infected with Citrobacter rodentium, GPR43-/- mice exhibited decreased Ab responses and were more susceptible to infection, whereas the administration of SCFAs promoted intestinal Ab responses in wild-type mice. Our study thereby demonstrated a critical role of gut microbiota and their metabolite SCFAs in promoting mucosal adjuvant activity of CT through GPR43.


Asunto(s)
Adyuvantes Inmunológicos/metabolismo , Linfocitos B/inmunología , Toxina del Cólera/metabolismo , Citrobacter rodentium/fisiología , Células Dendríticas/inmunología , Infecciones por Enterobacteriaceae/inmunología , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Familia de Aldehído Deshidrogenasa 1/metabolismo , Animales , Formación de Anticuerpos , Factor Activador de Células B/metabolismo , Diferenciación Celular , Inmunidad Mucosa , Ratones , Ratones Noqueados , Comunicación Paracrina , Receptores Acoplados a Proteínas G/genética , Retinal-Deshidrogenasa/metabolismo
20.
J Immunol ; 202(1): 79-92, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30478092

RESUMEN

The role of retinoid-related orphan receptor γ t (RORγt) in Th17 cell differentiation has been well established; however, how it regulates other T cell lineages is still not clearly understood. In this study, we report that in mice, while promoting Th17 cell differentiation, RORγt inhibited IL-10 production by T cells, thereby preserving the pathogenicity of Th17 cells. Treatment with RORγt-specific inhibitor suppressed Th17 cell signature cytokines, but promoted IL-10 production. RORγt inhibitor-treated Th17 cells induce less severe colitis compared with control Th17 cells. Mechanistically, the RORγt inhibitor induced T cell expression of Blimp-1 (encoded by Prdm1). Prdm1-/- T cells produced significantly fewer IL-10 when treated with RORγt inhibitor compared with wild-type T cells. Furthermore, RORγt inhibitor-treated Prdm1-/- Th17 cells induce more severe colitis compared with RORγt inhibitor-treated wild-type Th17 cells. Collectively, our studies reveal a novel mechanism by which RORγt drives and maintains pathogenic Th17 cell development by inhibiting IL-10 production.


Asunto(s)
Colitis/inmunología , Interleucina-10/metabolismo , Intestinos/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Células Th17/inmunología , Animales , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Represión Epigenética , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA