Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mol Cell ; 84(7): 1257-1270.e6, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38377993

RESUMEN

Current base editors (BEs) use DNA deaminases, including cytidine deaminase in cytidine BE (CBE) or adenine deaminase in adenine BE (ABE), to facilitate transition nucleotide substitutions. Combining CBE or ABE with glycosylase enzymes can induce limited transversion mutations. Nonetheless, a critical demand remains for BEs capable of generating alternative mutation types, such as T>G corrections. In this study, we leveraged pre-trained protein language models to optimize a uracil-N-glycosylase (UNG) variant with altered specificity for thymines (eTDG). Notably, after two rounds of testing fewer than 50 top-ranking variants, more than 50% exhibited over 1.5-fold enhancement in enzymatic activities. When eTDG was fused with nCas9, it induced programmable T-to-S (G/C) substitutions and corrected db/db diabetic mutation in mice (up to 55%). Our findings not only establish orthogonal strategies for developing novel BEs but also demonstrate the capacities of protein language models for optimizing enzymes without extensive task-specific training data.


Asunto(s)
Ácidos Alcanesulfónicos , Edición Génica , Uracil-ADN Glicosidasa , Animales , Ratones , Mutación , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA