RESUMEN
We report the 1-year results from one patient as the preliminary analysis of a first-in-human phase I clinical trial (ChiCTR2300072200) assessing the feasibility of autologous transplantation of chemically induced pluripotent stem-cell-derived islets (CiPSC islets) beneath the abdominal anterior rectus sheath for type 1 diabetes treatment. The patient achieved sustained insulin independence starting 75 days post-transplantation. The patient's time-in-target glycemic range increased from a baseline value of 43.18% to 96.21% by month 4 post-transplantation, accompanied by a decrease in glycated hemoglobin, an indicator of long-term systemic glucose levels at a non-diabetic level. Thereafter, the patient presented a state of stable glycemic control, with time-in-target glycemic range at >98% and glycated hemoglobin at around 5%. At 1 year, the clinical data met all study endpoints with no indication of transplant-related abnormalities. Promising results from this patient suggest that further clinical studies assessing CiPSC-islet transplantation in type 1 diabetes are warranted.
RESUMEN
Pathogens have co-evolved with mosquitoes to optimize transmission to hosts. Mosquito salivary-gland extract is known to modulate host immune responses and facilitate pathogen transmission, but the underlying molecular mechanisms of this have remained unknown. In this study, we identified and characterized a prominent 15-kilodalton protein, LTRIN, obtained from the salivary glands of the mosquito Aedes aegypti. LTRIN expression was upregulated in blood-fed mosquitoes, and LTRIN facilitated the transmission of Zika virus (ZIKV) and exacerbated its pathogenicity by interfering with signaling through the lymphotoxin-ß receptor (LTßR). Mechanically, LTRIN bound to LTßR and 'preferentially' inhibited signaling via the transcription factor NF-κB and the production of inflammatory cytokines by interfering with the dimerization of LTßR during infection with ZIKV. Furthermore, treatment with antibody to LTRIN inhibited mosquito-mediated infection with ZIKV, and abolishing LTßR potentiated the infectivity of ZIKV both in vitro and in vivo. This study provides deeper insight into the transmission of mosquito-borne diseases in nature and supports the therapeutic potential of inhibiting the action of LTRIN to disrupt ZIKV transmission.
Asunto(s)
Aedes/virología , Proteínas de Insectos/metabolismo , Saliva/metabolismo , Infección por el Virus Zika/transmisión , Virus Zika/patogenicidad , Animales , Humanos , Receptor beta de Linfotoxina/inmunología , Receptor beta de Linfotoxina/metabolismo , Ratones , Mosquitos Vectores/química , Mosquitos Vectores/inmunología , Mosquitos Vectores/metabolismo , Saliva/químicaRESUMEN
The discovery and application of genome editing introduced a new era of plant breeding by giving researchers efficient tools for the precise engineering of crop genomes1. Here we demonstrate the power of genome editing for engineering broad-spectrum disease resistance in rice (Oryza sativa). We first isolated a lesion mimic mutant (LMM) from a mutagenized rice population. We then demonstrated that a 29-base-pair deletion in a gene we named RESISTANCE TO BLAST1 (RBL1) caused broad-spectrum disease resistance and showed that this mutation caused an approximately 20-fold reduction in yield. RBL1 encodes a cytidine diphosphate diacylglycerol synthase that is required for phospholipid biosynthesis2. Mutation of RBL1 results in reduced levels of phosphatidylinositol and its derivative phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). In rice, PtdIns(4,5)P2 is enriched in cellular structures that are specifically associated with effector secretion and fungal infection, suggesting that it has a role as a disease-susceptibility factor3. By using targeted genome editing, we obtained an allele of RBL1, named RBL1Δ12, which confers broad-spectrum disease resistance but does not decrease yield in a model rice variety, as assessed in small-scale field trials. Our study has demonstrated the benefits of editing an LMM gene, a strategy relevant to diverse LMM genes and crops.
Asunto(s)
Diacilglicerol Colinafosfotransferasa , Resistencia a la Enfermedad , Edición Génica , Oryza , Fitomejoramiento , Enfermedades de las Plantas , Resistencia a la Enfermedad/genética , Edición Génica/métodos , Genoma de Planta/genética , Oryza/enzimología , Oryza/genética , Oryza/microbiología , Fosfatidilinositoles/metabolismo , Fitomejoramiento/métodos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Alelos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Diacilglicerol Colinafosfotransferasa/genética , Diacilglicerol Colinafosfotransferasa/metabolismoRESUMEN
As key oncogenic drivers in non-small-cell lung cancer (NSCLC), various mutations in the epidermal growth factor receptor (EGFR) with variable drug sensitivities have been a major obstacle for precision medicine. To achieve clinical-level drug recommendations, a platform for clinical patient case retrieval and reliable drug sensitivity prediction is highly expected. Therefore, we built a database, D3EGFRdb, with the clinicopathologic characteristics and drug responses of 1339 patients with EGFR mutations via literature mining. On the basis of D3EGFRdb, we developed a deep learning-based prediction model, D3EGFRAI, for drug sensitivity prediction of new EGFR mutation-driven NSCLC. Model validations of D3EGFRAI showed a prediction accuracy of 0.81 and 0.85 for patients from D3EGFRdb and our hospitals, respectively. Furthermore, mutation scanning of the crucial residues inside drug-binding pockets, which may occur in the future, was performed to explore their drug sensitivity changes. D3EGFR is the first platform to achieve clinical-level drug response prediction of all approved small molecule drugs for EGFR mutation-driven lung cancer and is freely accessible at https://www.d3pharma.com/D3EGFR/index.php.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Aprendizaje Profundo , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Receptores ErbB/genética , Mutación , Almacenamiento y Recuperación de la InformaciónRESUMEN
A quantum internet that connects remote quantum processors1,2 should enable a number of revolutionary applications such as distributed quantum computing. Its realization will rely on entanglement of remote quantum memories over long distances. Despite enormous progress3-12, at present the maximal physical separation achieved between two nodes is 1.3 kilometres10, and challenges for longer distances remain. Here we demonstrate entanglement of two atomic ensembles in one laboratory via photon transmission through city-scale optical fibres. The atomic ensembles function as quantum memories that store quantum states. We use cavity enhancement to efficiently create atom-photon entanglement13-15 and we use quantum frequency conversion16 to shift the atomic wavelength to telecommunications wavelengths. We realize entanglement over 22 kilometres of field-deployed fibres via two-photon interference17,18 and entanglement over 50 kilometres of coiled fibres via single-photon interference19. Our experiment could be extended to nodes physically separated by similar distances, which would thus form a functional segment of the atomic quantum network, paving the way towards establishing atomic entanglement over many nodes and over much longer distances.
RESUMEN
[C. Koch, S. Ullman, Hum. Neurobiol.4, 219-227 (1985)] proposed a 2D topographical salience map that took feature-map outputs as its input and represented the importance "saliency" of the feature inputs at each location as a real number. The computation on the map, "winner-take-all," was used to predict action priority. We propose that the same or a similar map is used to compute centroid judgments, the center of a cloud of diverse items. [P. Sun, V. Chu, G. Sperling, Atten. Percept. Psychophys.83, 934-955 (2021)] demonstrated that following a 250-msec exposure of a 24-dot array of 3 intermixed colors, subjects could accurately report the centroid of each dot color, thereby indicating that these subjects had at least three salience maps. Here, we use a postcue, partial-report paradigm to determine how many more salience maps subjects might have. In 11 experiments, subjects viewed 0.3-s flashes of 28 to 32 item arrays composed of M, M = 3,...,8, different features followed by a cue to mouse-click the centroid of items of just the post-cued feature. Ideal detector response analyses show that subjects utilized at least 12 to 17 stimulus items. By determining whether a subject's performance in (M-1)-feature experiments could/could-not predict performance in M-feature experiments, we conclude that one subject has at least 7 and the other two have at least five salience maps. A computational model shows that the primary performance-limiting factors are channel capacity for representing so many concurrently presented groups of items and working-memory capacity for so many computed centroids.
Asunto(s)
Juicio , Memoria a Corto Plazo , Memoria a Corto Plazo/fisiología , Señales (Psicología) , Percepción Visual/fisiologíaRESUMEN
Information about dynamic head motion is conveyed by a central "striolar" zone of vestibular hair cells and afferent neurons in the inner ear. How vestibular hair cells are tuned to transduce dynamic stimuli at the molecular level is not well understood. Here we take advantage of the differential expression pattern of tmc1, tmc2a, and tmc2b, which encode channel subunits of the mechanotransduction complex in zebrafish vestibular hair cells. To test the role of various combinations of Tmc subunits in transducing dynamic head movements, we measured reflexive eye movements induced by high-frequency stimuli in single versus double tmc mutants. We found that Tmc2a function correlates with the broadest range of frequency sensitivity, whereas Tmc2b mainly contributes to lower-frequency responses. Tmc1, which is largely excluded from the striolar zone, plays a minor role in sensing lower-frequency stimuli. Our study suggests that the Tmc subunits impart functional differences to the mechanotransduction of dynamic stimuli.Significance Statement Information about dynamic head movements is transmitted by sensory receptors, known as hair cells, in the labyrinth of the inner ear. The sensitivity of hair cells to fast or slow movements of the head differs according to cell type. Whether the mechanotransduction complex that converts mechanical stimuli into electrical signals in hair cells participates in conveying frequency information is not clear. Here we find that the transmembrane channel-like 1/2 genes, which encode a central component of the complex, are differentially expressed in the utricle and contribute to frequency sensitivity in zebrafish.
Asunto(s)
Mecanotransducción Celular , Pez Cebra , Animales , Pez Cebra/metabolismo , Mecanotransducción Celular/fisiología , Proteínas de la Membrana/metabolismo , Células Ciliadas Auditivas/fisiología , Sáculo y Utrículo/metabolismoRESUMEN
Mutations in human VPS4A are associated with neurodevelopmental defects, including motor delays and defective muscle tone. VPS4A encodes a AAA-ATPase required for membrane scission, but how mutations in VPS4A lead to impaired control of motor function is not known. Here we identified a mutation in zebrafish vps4a, T248I, that affects sensorimotor transformation. Biochemical analyses indicate that the T248I mutation reduces the ATPase activity of Vps4a and disassembly of ESCRT filaments, which mediate membrane scission. Consistent with the role for Vps4a in exosome biogenesis, vps4aT248I larvae have enlarged endosomal compartments in the CNS and decreased numbers of circulating exosomes in brain ventricles. Resembling the central form of hypotonia in VPS4A patients, motor neurons and muscle cells are functional in mutant zebrafish. Both somatosensory and vestibular inputs robustly evoke tail and eye movements, respectively. In contrast, optomotor responses, vestibulospinal, and acoustic startle reflexes are absent or strongly impaired in vps4aT248I larvae, indicating a greater sensitivity of these circuits to the T248I mutation. ERG recordings revealed intensity-dependent deficits in the retina, and in vivo calcium imaging of the auditory pathway identified a moderate reduction in afferent neuron activity, partially accounting for the severe motor impairments in mutant larvae. Further investigation of central pathways in vps4aT248I mutants showed that activation of descending vestibulospinal and midbrain motor command neurons by sensory cues is strongly reduced. Our results suggest that defects in sensorimotor transformation underly the profound yet selective effects on motor reflexes resulting from the loss of membrane scission mediated by Vps4a.Significance Statement Here we present a T248I mutation in vps4a, which causes sensorimotor defects in zebrafish larvae. Vps4a plays a key role in membrane scission. Spanning biochemical to systems level analyses, our study indicates that a reduction in Vps4a enzymatic activity leads to abnormalities in membrane-scission dependent processes such as endosomal protein trafficking and exosome biogenesis, resulting in pronounced deficits in sensorimotor transformation of visual, auditory, and vestibular cues. We suggest that the mechanisms underlying this type of dysfunction in zebrafish may also contribute to the condition seen in human patients with de novo mutations in the human VPS4A orthologue.
RESUMEN
BACKGROUND: The intrathecally administered antisense oligonucleotide tofersen reduces synthesis of the superoxide dismutase 1 (SOD1) protein and is being studied in patients with amyotrophic lateral sclerosis (ALS) associated with mutations in SOD1 (SOD1 ALS). METHODS: In this phase 3 trial, we randomly assigned adults with SOD1 ALS in a 2:1 ratio to receive eight doses of tofersen (100 mg) or placebo over a period of 24 weeks. The primary end point was the change from baseline to week 28 in the total score on the ALS Functional Rating Scale-Revised (ALSFRS-R; range, 0 to 48, with higher scores indicating better function) among participants predicted to have faster-progressing disease. Secondary end points included changes in the total concentration of SOD1 protein in cerebrospinal fluid (CSF), in the concentration of neurofilament light chains in plasma, in slow vital capacity, and in handheld dynamometry in 16 muscles. A combined analysis of the randomized component of the trial and its open-label extension at 52 weeks compared the results in participants who started tofersen at trial entry (early-start cohort) with those in participants who switched from placebo to the drug at week 28 (delayed-start cohort). RESULTS: A total of 72 participants received tofersen (39 predicted to have faster progression), and 36 received placebo (21 predicted to have faster progression). Tofersen led to greater reductions in concentrations of SOD1 in CSF and of neurofilament light chains in plasma than placebo. In the faster-progression subgroup (primary analysis), the change to week 28 in the ALSFRS-R score was -6.98 with tofersen and -8.14 with placebo (difference, 1.2 points; 95% confidence interval [CI], -3.2 to 5.5; P = 0.97). Results for secondary clinical end points did not differ significantly between the two groups. A total of 95 participants (88%) entered the open-label extension. At 52 weeks, the change in the ALSFRS-R score was -6.0 in the early-start cohort and -9.5 in the delayed-start cohort (difference, 3.5 points; 95% CI, 0.4 to 6.7); non-multiplicity-adjusted differences favoring early-start tofersen were seen for other end points. Lumbar puncture-related adverse events were common. Neurologic serious adverse events occurred in 7% of tofersen recipients. CONCLUSIONS: In persons with SOD1 ALS, tofersen reduced concentrations of SOD1 in CSF and of neurofilament light chains in plasma over 28 weeks but did not improve clinical end points and was associated with adverse events. The potential effects of earlier as compared with delayed initiation of tofersen are being further evaluated in the extension phase. (Funded by Biogen; VALOR and OLE ClinicalTrials.gov numbers, NCT02623699 and NCT03070119; EudraCT numbers, 2015-004098-33 and 2016-003225-41.).
Asunto(s)
Esclerosis Amiotrófica Lateral , Oligonucleótidos Antisentido , Superóxido Dismutasa-1 , Adulto , Esclerosis Amiotrófica Lateral/sangre , Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Método Doble Ciego , Humanos , Inyecciones Espinales , Proteínas de Neurofilamentos/sangre , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Recuperación de la Función/efectos de los fármacos , Superóxido Dismutasa-1/líquido cefalorraquídeo , Superóxido Dismutasa-1/genéticaRESUMEN
Coronavirus (CoV) 3C-like protease (3CLpro) is essential for viral replication and is involved in immune escape by proteolyzing host proteins. Deep profiling the 3CLpro substrates in the host proteome extends our understanding of viral pathogenesis and facilitates antiviral drug discovery. Here, 3CLpro from porcine epidemic diarrhea virus (PEDV), an enteropathogenic CoV, was used as a model which to identify the potential 3CLpro cleavage motifs in all porcine proteins. We characterized the selectivity of PEDV 3CLpro at sites P5-P4'. We then compiled the 3CLpro substrate preferences into a position-specific scoring matrix and developed a 3CLpro profiling strategy to delineate the protein substrate landscape of CoV 3CLpro. We identified 1,398 potential targets in the porcine proteome containing at least one putative cleavage site and experimentally validated the reliability of the substrate degradome. The PEDV 3CLpro-targeted pathways are involved in mRNA processing, translation, and key effectors of autophagy and the immune system. We also demonstrated that PEDV 3CLpro suppresses the type 1 interferon (IFN-I) cascade via the proteolysis of multiple signaling adaptors in the retinoic acid-inducible gene I (RIG-I) signaling pathway. Our composite method is reproducible and accurate, with an unprecedented depth of coverage for substrate motifs. The 3CLpro substrate degradome establishes a comprehensive substrate atlas that will accelerate the investigation of CoV pathogenicity and the development of anti-CoV drugs.IMPORTANCECoronaviruses (CoVs) are major pathogens that infect humans and animals. The 3C-like protease (3CLpro) encoded by CoV not only cleaves the CoV polyproteins but also degrades host proteins and is considered an attractive target for the development of anti-CoV drugs. However, the comprehensive characterization of an atlas of CoV 3CLpro substrates is a long-standing challenge. Using porcine epidemic diarrhea virus (PEDV) 3CLpro as a model, we developed a method that accurately predicts the substrates of 3CLpro and comprehensively maps the substrate degradome of PEDV 3CLpro. Interestingly, we found that 3CLpro may simultaneously degrade multiple molecules responsible for a specific function. For instance, it cleaves at least four adaptors in the RIG-I signaling pathway to suppress type 1 interferon production. These findings highlight the complexity of the 3CLpro substrate degradome and provide new insights to facilitate the development of anti-CoV drugs.
Asunto(s)
Proteasas 3C de Coronavirus , Virus de la Diarrea Epidémica Porcina , Animales , Humanos , Proteasas 3C de Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/veterinaria , Células HEK293 , Interferón Tipo I/metabolismo , Proteolisis , Proteoma/metabolismo , Especificidad por Sustrato , Porcinos , Proteínas Virales/metabolismo , Proteínas Virales/genética , Replicación ViralRESUMEN
Lipid droplets (LDs) are evolutionarily conserved organelles that serve as hubs of cellular lipid and energy metabolism in virtually all organisms. Mobilization of LDs is important in light-induced stomatal opening. However, whether and how LDs are involved in stomatal development remains unknown. We show here that Arabidopsis thaliana LIPID DROPLETS AND STOMATA 1 (LDS1)/RABC1 (At1g43890) encodes a member of the Rab GTPase family that is involved in regulating LD dynamics and stomatal morphogenesis. The expression of RABC1 is coordinated with the different phases of stomatal development. RABC1 targets to the surface of LDs in response to oleic acid application in a RABC1GEF1-dependent manner. RABC1 physically interacts with SEIPIN2/3, two orthologues of mammalian seipin, which function in the formation of LDs. Disruption of RABC1, RABC1GEF1, or SEIPIN2/3 resulted in aberrantly large LDs, severe defects in guard cell vacuole morphology, and stomatal function. In conclusion, these findings reveal an aspect of LD function and uncover a role for lipid metabolism in stomatal development in plants.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/metabolismo , Gotas Lipídicas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo de los Lípidos/genética , Mamíferos/metabolismoRESUMEN
Skin epidermis constitutes the outer permeability barrier that protects the body from dehydration, heat loss, and myriad external assaults. Mechanisms that maintain barrier integrity in constantly challenged adult skin and how epidermal dysregulation shapes the local immune microenvironment and whole-body metabolism remain poorly understood. Here, we demonstrate that inducible and simultaneous ablation of transcription factor-encoding Ovol1 and Ovol2 in adult epidermis results in barrier dysregulation through impacting epithelial-mesenchymal plasticity and inflammatory gene expression. We find that aberrant skin immune activation then ensues, featuring Langerhans cell mobilization and T cell responses, and leading to elevated levels of secreted inflammatory factors in circulation. Finally, we identify failure to gain body weight and accumulate body fat as long-term consequences of epidermal-specific Ovol1/2 loss and show that these global metabolic changes along with the skin barrier/immune defects are partially rescued by immunosuppressant dexamethasone. Collectively, our study reveals key regulators of adult barrier maintenance and suggests a causal connection between epidermal dysregulation and whole-body metabolism that is in part mediated through aberrant immune activation.
Asunto(s)
Proteínas de Unión al ADN , Epidermis , Proteínas de Unión al ADN/genética , Epidermis/metabolismo , Piel/metabolismo , Factores de Transcripción/metabolismo , Células Epidérmicas/metabolismoRESUMEN
Brain metastases, including prevalent breast-to-brain metastasis (B2BM), represent an urgent unmet medical need in the care of cancer due to a lack of effective therapies. Immune evasion is essential for cancer cells to metastasize to the brain tissue for brain metastasis. However, the intrinsic genetic circuits that enable cancer cells to avoid immune-mediated killing in the brain microenvironment remain poorly understood. Here, we report that a brain-enriched long noncoding RNA (BMOR) expressed in B2BM cells is required for brain metastasis development and is both necessary and sufficient to drive cancer cells to colonize the brain tissue. Mechanistically, BMOR enables cancer cells to evade immune-mediated killing in the brain microenvironment for the development of brain metastasis by binding and inactivating IRF3. In preclinical brain metastasis murine models, locked nucleic acid-BMOR, a designed silencer targeting BMOR, is effective in suppressing the metastatic colonization of cancer cells in the brain for brain metastasis. Taken together, our study reveals a mechanism underlying B2BM immune evasion during cancer cell metastatic colonization of brain tissue for brain metastasis, where B2BM cells evade immune-mediated killing in the brain microenvironment by acquiring a brain-enriched long noncoding RNA genetic feature.
Asunto(s)
Neoplasias Encefálicas , Encéfalo , Neoplasias de la Mama , Evasión Inmune , ARN Largo no Codificante , Animales , Encéfalo/inmunología , Encéfalo/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/secundario , Mama/patología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Evasión Inmune/genética , Ratones , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Microambiente TumoralRESUMEN
Spiro-OMeTAD hole transport materials typically exhibit an amorphous state in perovskite solar cells. However, the lack of structural ordering leads to weak intermolecular interaction, inferior carrier transfer, and poor stability in devices. Herein, we developed a π-conjugation-induced short-range ordering strategy to modulate the stacking order of spiro-OMeTAD during film formation. A clear molecular ordering at the nanoscale is observed, which enhances intermolecular π-π stacking in spiro-OMeTAD and enables effective carrier extraction and favorable energy level alignment. The nanoscale-ordered spiro-OMeTAD allows the achievement of perovskite solar cells with a champion efficiency of 25.37%, surpassing devices utilizing amorphous spiro-OMeTAD (23.52%). The unencapsulated device demonstrates enhanced operational stability by retaining 98% of its initial efficiency under continuous 1 sun equivalent illumination at 60 °C for 840 h. This work establishes a significant and valid modulation concept for the stacking order of organic transport materials, paving the way for the development of efficient and stable perovskite solar cells.
RESUMEN
Noise-induced hearing loss (NIHL) is a multifactorial disease caused by environmental, genetic and epigenetic variables. SUMOylation is a post-translational modification that regulates biological processes. The objective of this study was to determine the link between genetic variation in the chromobox 4 (CBX4) and the risk of NIHL. This study applied a case-control design with 588 cases and 582 controls, and the sample was predominantly male (93.76%). The T allele of CBX4 rs1285250 was found to be significantly linked with NIHL (P = 0.002) and showed strong associations in both the codominant and recessive models (TT versus CC, P = 0.005; TT/TC versus CC, P = 0.009). By constructing a mouse model of hearing loss because of noise exposure, changes in hearing thresholds were observed in noise-exposed mice, along with a decrease in the number of cochlear hair cells. Furthermore, noise promotes cochlear hair cell apoptosis by inducing SP1/CBX4 pathway activation. Further functional studies demonstrated that SP1 has an influence on the promoter activity of the CBX4 rs1285250 intron, with the promoter activity of the T allele being higher than that of the C allele. Knockdown of transcription factor SP1 reduced the expression of CBX4 expression and simultaneously reduced apoptosis in HEI-OC1 cells. Together, our findings have shown that CBX4 genetic polymorphism rs1285250 T-allele was associated with increased risk of NIHL and might be used as biomarkers for male workers exposed to noise. Furthermore, we speculate that the CBX4 of rs1285250 T-allele leads to a stronger potential enhancer activity from a predicted gain of stronger SP1 binding.
Asunto(s)
Pérdida Auditiva Provocada por Ruido , Ligasas/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Animales , Estudios de Casos y Controles , China , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Pérdida Auditiva Provocada por Ruido/genética , Masculino , Ratones , Polimorfismo de Nucleótido Simple/genética , Proteína SUMO-1/genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
BACKGROUND & AIMS: Gallstones are common and associated with substantial health and economic burden. We aimed to comprehensively evaluate the prevalence and incidence of gallstones in the 21st century. METHODS: We systematically searched PubMed and Embase to identify studies reporting the prevalence and/or incidence of gallstones between January 1, 2000, and November 18, 2023. Pooled prevalence and incidence were calculated using DerSimonian and Laird's random-effects model. We performed subgroup analyses and meta-regression based on age, sex, geographic location, population setting, and modality of detection to examine sources of heterogeneity. RESULTS: Based on 115 studies with 32,610,568 participants, the pooled prevalence of gallstones was 6.1% (95% CI, 5.6-6.5). Prevalence was higher in females vs males (7.6% vs 5.4%), in South America vs Asia (11.2% vs 5.1%), in upper-middle-income countries vs high-income countries (8.9% vs 4.0%), and with advancing age. On sensitivity analysis of population-based studies, the prevalence of gallstones was 5.5% (95% CI, 4.1-7.4; n = 44 studies), and when limiting subgroup analysis to imaging-based detection modalities, the prevalence was 6.7% (95% CI, 6.1-7.3; n = 101 studies). Prevalence has been stable over the past 20 years. Based on 12 studies, the incidence of gallstones was 0.47 per 100 person-years (95% CI, 0.37-0.51), without differences between males and females, and with increasing incidence in more recent studies. CONCLUSIONS: Globally, 6% of the population have gallstones, with higher rates in females and in South America. The incidence of gallstones may be increasing. Our findings call for prioritizing research on the prevention of gallstones.
Asunto(s)
Cálculos Biliares , Salud Global , Humanos , Cálculos Biliares/epidemiología , Incidencia , Prevalencia , Femenino , MasculinoRESUMEN
TGF-ß1 and TGF-ßR1 play important roles in immune and inflammatory responses. Genetic variants of TGF-ß1 rs1800470 and TGF-ßR1 rs334348 have emerged as potentially prognostic biomarkers for HPV-related head and neck cancer, while their prognostic effect on survival of smoking-related head and neck cancer remains unknown. This study included 1403 patients with smoking-related head and neck cancer, and all these patients were genotyped for TGF-ß1 rs1800470 and TGF-ßR1 rs334348. Both univariate and multivariate analyses were performed to evaluate associations between the two functional genetic variants in microRNA binding sites of TGF-ß1 and TGF-ßR1 and survivals. Patients with TGF-ß1 rs1800470 CT or CC genotype had 30-35% risk reductions for OS, DSS, and DFS compared to patients with TT genotype among overall patients, ever smokers, and patients administered chemoradiation. Furthermore, patients with TGF-ßR1 rs334348 GA or GG genotype had significant 50-60% risk reductions for OS, DSS, and DFS compared to patients with AA genotype among overall patients and patients administered chemoradiation; among ever smokers, the risk reductions even reached 60-70%. The TCGA dataset was used for validation. These findings suggest that TGF-ß1 rs1800470 and TGF-ßR1 rs334348 significantly affect survival outcomes in patients with smoking-related head and neck cancer, especially in the subgroups of ever smokers and patients treated with chemoradiation. These genetic variants may serve as prognostic indicators for patients with smoking-related head and neck cancer and could play a role in advancing the field of personalized chemoradiation, thereby improving patient survival and quality of life.
Asunto(s)
Neoplasias de Cabeza y Cuello , MicroARNs , Humanos , MicroARNs/genética , Factor de Crecimiento Transformador beta1/genética , Calidad de Vida , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/terapia , Fumar/efectos adversosRESUMEN
Background The potential of time-dependent diffusion MRI in imaging the progression from liver fibrosis to cirrhosis has not been established. Purpose To assess the effectiveness of time-dependent diffusion MRI in mapping the microstructure and characterizing cellular attributes during the progression of liver fibrosis to cirrhosis and to investigate its potential in grading liver fibrosis. Materials and Methods This prospective study, performed between December 2022 and October 2023, used 60 rats to establish a liver fibrosis model by means of diethylnitrosamine administration, with five additional rats serving as control animals. Time-dependent diffusion MRI was performed with equivalent diffusion time of 5.4, 10.7, and 69.3 msec on a 3.0-T scanner. Time-dependent diffusion MRI-based microstructural parameters, including cell diameter, intracellular volume fraction (ICVF), cellularity, and extracellular diffusivity, were estimated with use of the imaging microstructural parameters using limited spectrally edited diffusion, or IMPULSED, model. The fitted microstructural parameters were validated with histopathologic measurements. Results All 60 rats developed liver fibrosis, with a noticeable decrease in cell diameter and an increase in ICVF and cellularity observed as liver fibrosis progressed. The diameter measured at pathologic examination ranged from 11.4 µm to 35.4 µm, aligning with the range of 12.4-33.4 µm observed in time-dependent diffusion MRI, which indicated a strong correlation (r = 0.84; P < .001). The quantified ICVF at pathologic examination ranged from 0.28 to 0.89 and varied from 0.23 to 0.85 at time-dependent diffusion MRI, showing a high correlation (r = 0.62; P < .001). The cellularity observed at pathologic examination increased from 0.74 to 5.85, while the cellularity measured at time-dependent diffusion MRI ranged from 0.77 to 3.70, showing a correlation (r = 0.44; P < .001). Conclusion This study revealed the changes in quantitative microstructural mapping across the spectrum from liver fibrosis to cirrhosis. Cell diameter, ICVF, and cellularity are reliable markers for liver fibrosis, with diameter and ICVF presenting good discrimination ability. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Matos and Metens in this issue.
Asunto(s)
Imagen de Difusión por Resonancia Magnética , Cirrosis Hepática , Animales , Imagen de Difusión por Resonancia Magnética/métodos , Ratas , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/patología , Masculino , Estudios Prospectivos , Progresión de la Enfermedad , Hígado/diagnóstico por imagen , Hígado/patología , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Factores de TiempoRESUMEN
The modification of metal oxides with noble metals is one of the most effective means of improving gas-sensing performance of chemiresistors, but it is often accompanied by unintended side effects such as sensor resistance increases up to unmeasurable levels. Herein, a carbonization-oxidation method is demonstrated using ultrasonic spray pyrolysis technique to realize platinum (Pt) single atom (SA) substitutional doping into SnO2 (named PtSA-SnO2). The substitutional doping strategy can obviously enhance gas-sensing properties, and meanwhile decrease sensor resistance by two orders of magnitude (decreased from ≈850 to ≈2 MΩ), which are attributed to the tuning of band gap and fermi-level position, efficient single atom catalysis, and the raising of adsorption capability of formaldehyde, as validated by the state-of-the-art characterizations, such as spherical aberration-corrected scanning transmission electron microscopy (Cs-corrected STEM), in situ diffuse reflectance infrared Fourier transformed spectra (in situ DRIFT), CO temperature-programmed reduction (CO-TPR), and theoretical calculations. As a proof of concept, the developed PtSA-SnO2 sensor shows humidity-independent (30-70% relative humidity) gas-sensing performance in the selective detection of formaldehyde with high response, distinguishable selectivity (8< Sformaldehyde/Sinterferant <14), and ultra-low detection limit (10 ppb). This work presents a generalized and facile method to design high-performance metal oxides for chemical sensing of volatile organic compounds (VOCs).
RESUMEN
Bi2Te3-based alloys are the benchmark for commercial thermoelectric (TE) materials, the widespread demand for low-grade waste heat recovery and solid-state refrigeration makes it imperative to enhance the figure-of-merits. In this study, high-performance Bi0.5Sb1.5Te3 (BST) is realized by incorporating Cu2GeSe3 and Se. Concretely, the diffusion of Cu and Ge atoms optimizes the hole concentration and raises the density-of-states effective mass (md *), compensating for the loss of "donor-like effect" exacerbated by ball milling. The subsequent Se addition further increases md *, enabling a total 28% improvement of room-temperature power factor (S2σ), reaching 43.6 µW cm-1 K-2 compared to the matrix. Simultaneously, the lattice thermal conductivity is also significantly suppressed by multiscale scattering sources represented by Cu-rich nanoparticles and dislocation arrays. The synergistic effects yield a peak ZT of 1.41 at 350 K and an average ZT of 1.23 (300-500 K) in the Bi0.5Sb1.5Te2.94Se0.06 + 0.11 wt.% Cu2GeSe3 sample. More importantly, the integrated 17-pair TE module achieves a conversion efficiency of 6.4%, 80% higher than the commercial one at ΔT = 200 K. These results validate that the facile composition optimization of the BST/Cu2GeSe3/Se is a promising strategy to improve the application of BST-based TE modules.