Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 441
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 77(4): 825-839.e7, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31837995

RESUMEN

In mammals, chromatin organization undergoes drastic reorganization during oocyte development. However, the dynamics of three-dimensional chromatin structure in this process is poorly characterized. Using low-input Hi-C (genome-wide chromatin conformation capture), we found that a unique chromatin organization gradually appears during mouse oocyte growth. Oocytes at late stages show self-interacting, cohesin-independent compartmental domains marked by H3K27me3, therefore termed Polycomb-associating domains (PADs). PADs and inter-PAD (iPAD) regions form compartment-like structures with strong inter-domain interactions among nearby PADs. PADs disassemble upon meiotic resumption from diplotene arrest but briefly reappear on the maternal genome after fertilization. Upon maternal depletion of Eed, PADs are largely intact in oocytes, but their reestablishment after fertilization is compromised. By contrast, depletion of Polycomb repressive complex 1 (PRC1) proteins attenuates PADs in oocytes, which is associated with substantial gene de-repression in PADs. These data reveal a critical role of Polycomb in regulating chromatin architecture during mammalian oocyte growth and early development.


Asunto(s)
Cromatina/química , Oocitos/crecimiento & desarrollo , Oogénesis/genética , Proteínas del Grupo Polycomb/fisiología , Animales , Blastocisto/química , Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/fisiología , Embrión de Mamíferos/química , Silenciador del Gen , Código de Histonas , Ratones , Oocitos/química , Transcripción Genética , Cohesinas
2.
Development ; 151(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38546043

RESUMEN

The timely degradation of proteins that regulate the cell cycle is essential for oocyte maturation. Oocytes are equipped to degrade proteins via the ubiquitin-proteasome system. In meiosis, anaphase promoting complex/cyclosome (APC/C), an E3 ubiquitin-ligase, is responsible for the degradation of proteins. Ubiquitin-conjugating enzyme E2 S (UBE2S), an E2 ubiquitin-conjugating enzyme, delivers ubiquitin to APC/C. APC/C has been extensively studied, but the functions of UBE2S in oocyte maturation and mouse fertility are not clear. In this study, we used Ube2s knockout mice to explore the role of UBE2S in mouse oocytes. Ube2s-deleted oocytes were characterized by meiosis I arrest with normal spindle assembly and spindle assembly checkpoint dynamics. However, the absence of UBE2S affected the activity of APC/C. Cyclin B1 and securin are two substrates of APC/C, and their levels were consistently high, resulting in the failure of homologous chromosome separation. Unexpectedly, the oocytes arrested in meiosis I could be fertilized and the embryos could become implanted normally, but died before embryonic day 10.5. In conclusion, our findings reveal an indispensable regulatory role of UBE2S in mouse oocyte meiosis and female fertility.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Meiosis , Animales , Femenino , Ratones , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Oocitos/metabolismo , Ubiquitinas/metabolismo
3.
Development ; 150(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37485540

RESUMEN

Accurate chromosome segregation, monitored by the spindle assembly checkpoint (SAC), is crucial for the production of euploid cells. Previous in vitro studies by us and others showed that Mad2, a core member of the SAC, performs a checkpoint function in oocyte meiosis. Here, through an oocyte-specific knockout approach in mouse, we reconfirmed that Mad2-deficient oocytes exhibit an accelerated metaphase-to-anaphase transition caused by premature degradation of securin and cyclin B1 and subsequent activation of separase in meiosis I. However, it was surprising that the knockout mice were completely fertile and the resulting oocytes were euploid. In the absence of Mad2, other SAC proteins, including BubR1, Bub3 and Mad1, were normally recruited to the kinetochores, which likely explains the balanced chromosome separation. Further studies showed that the chromosome separation in Mad2-null oocytes was particularly sensitive to environmental changes and, when matured in vitro, showed chromosome misalignment, lagging chromosomes, and aneuploidy with premature separation of sister chromatids, which was exacerbated at a lower temperature. We reveal for the first time that Mad2 is dispensable for proper chromosome segregation but acts to mitigate environmental stress in meiotic oocytes.


Asunto(s)
Proteínas de Ciclo Celular , Huso Acromático , Animales , Ratones , Proteínas de Ciclo Celular/metabolismo , Huso Acromático/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Segregación Cromosómica/genética , Oocitos/metabolismo , Cinetocoros/metabolismo , Meiosis/genética
4.
Development ; 149(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35546066

RESUMEN

Mammalian early embryo cells have complex DNA repair mechanisms to maintain genomic integrity, and homologous recombination (HR) plays the main role in response to double-strand DNA breaks (DSBs) in these cells. Polo-like kinase 1 (PLK1) participates in the HR process and its overexpression has been shown to occur in a variety of human cancers. Nevertheless, the regulatory mechanism of PLK1 remains poorly understood, especially during the S and G2 phase. Here, we show that protein phosphatase 4 catalytic subunit (PPP4C) deletion causes severe female subfertility due to accumulation of DNA damage in oocytes and early embryos. PPP4C dephosphorylated PLK1 at the S137 site, negatively regulating its activity in the DSB response in early embryonic cells. Depletion of PPP4C induced sustained activity of PLK1 when cells exhibited DNA lesions that inhibited CHK2 and upregulated the activation of CDK1, resulting in inefficient loading of the essential HR factor RAD51. On the other hand, when inhibiting PLK1 in the S phase, DNA end resection was restricted. These results demonstrate that PPP4C orchestrates the switch between high-PLK1 and low-PLK1 periods, which couple the checkpoint to HR.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Recombinación , Animales , Proteínas de Ciclo Celular , Línea Celular , ADN/genética , Reparación del ADN por Unión de Extremidades , Reparación del ADN/genética , Desarrollo Embrionario/genética , Femenino , Recombinación Homóloga , Mamíferos/genética , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Quinasa Tipo Polo 1
5.
Histochem Cell Biol ; 162(6): 447-464, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39093409

RESUMEN

Oocyte meiotic maturation failure and chromosome abnormality is one of the main causes of infertility, abortion, and diseases. The mono-orientation of sister chromatids during the first meiosis is important for ensuring accurate chromosome segregation in oocytes. MEIKIN is a germ cell-specific protein that can regulate the mono-orientation of sister chromatids and the protection of the centromeric cohesin complex during meiosis I. Here we found that MEIKIN is a maternal protein that was highly expressed in mouse oocytes before the metaphase I (MI) stage, but became degraded by the MII stage and dramatically reduced after fertilization. Strikingly, MEIKIN underwent phosphorylation modification after germinal vesicle breakdown (GVBD), indicating its possible function in subsequent cellular event regulation. We further showed that MEIKIN phosphorylation was mediated by PLK1 at its carboxyl terminal region and its C-terminus was its key functional domain. To clarify the biological significance of meikin degradation during later stages of oocyte maturation, exogenous expression of MEIKIN was employed, which showed that suppression of MEIKIN degradation resulted in chromosome misalignment, cyclin B1 and Securin degradation failure, and MI arrest through a spindle assembly checkpoint (SAC)-independent mechanism. Exogenous expression of MEIKIN also inhibited metaphase II (MII) exit and early embryo development. These results indicate that proper MEIKIN expression level and its C-terminal phosphorylation by PLK1 are critical for regulating the metaphase-anaphase transition in meiotic oocyte. The findings of this study are important for understanding the regulation of chromosome segregation and the prevention meiotic abnormality.


Asunto(s)
Proteínas de Ciclo Celular , Ciclina B1 , Meiosis , Metafase , Oocitos , Quinasa Tipo Polo 1 , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Securina , Animales , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ratones , Oocitos/metabolismo , Oocitos/citología , Fosforilación , Femenino , Ciclina B1/metabolismo , Securina/metabolismo , Anafase , Ratones Endogámicos ICR , Mesotelina
6.
J Med Virol ; 96(4): e29590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619024

RESUMEN

Our study investigates the molecular link between COVID-19 and Alzheimer's disease (AD). We aim to elucidate the mechanisms by which COVID-19 may influence the onset or progression of AD. Using bioinformatic tools, we analyzed gene expression datasets from the Gene Expression Omnibus (GEO) database, including GSE147507, GSE12685, and GSE26927. Intersection analysis was utilized to identify common differentially expressed genes (CDEGs) and their shared biological pathways. Consensus clustering was conducted to group AD patients based on gene expression, followed by an analysis of the immune microenvironment and variations in shared pathway activities between clusters. Additionally, we identified transcription factor-binding sites shared by CDEGs and genes in the common pathway. The activity of the pathway and the expression levels of the CDEGs were validated using GSE164805 and GSE48350 datasets. Six CDEGs (MAL2, NECAB1, SH3GL2, EPB41L3, MEF2C, and NRGN) were identified, along with a downregulated pathway, the endocannabinoid (ECS) signaling pathway, common to both AD and COVID-19. These CDEGs showed a significant correlation with ECS activity (p < 0.05) and immune functions. The ECS pathway was enriched in healthy individuals' brains and downregulated in AD patients. Validation using GSE164805 and GSE48350 datasets confirmed the differential expression of these genes in COVID-19 and AD tissues. Our findings reveal a potential pathogenetic link between COVID-19 and AD, mediated by CDEGs and the ECS pathway. However, further research and multicenter evidence are needed to translate these findings into clinical applications.


Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Humanos , Enfermedad de Alzheimer/genética , Encéfalo , Análisis por Conglomerados , COVID-19/genética , Endocannabinoides , Proteínas de Microfilamentos , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito
7.
Cell ; 137(1): 123-32, 2009 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-19345191

RESUMEN

Sister chromatid separation is triggered by the separase-catalyzed cleavage of cohesin. This process is temporally controlled by cell-cycle-dependent factors, but its biochemical mechanism and spatial regulation remain poorly understood. We report that cohesin cleavage by human separase requires DNA in a sequence-nonspecific manner. Separase binds to DNA in vitro, but its proteolytic activity, measured by its autocleavage, is not stimulated by DNA. Instead, biochemical characterizations suggest that DNA mediates cohesin cleavage by bridging the interaction between separase and cohesin. In human cells, a fraction of separase localizes to the mitotic chromosome. The importance of the chromosomal DNA in cohesin cleavage is further demonstrated by the observation that the cleavage of the chromosome-associated cohesins is sensitive to nuclease treatment. Our observations explain why chromosome-associated cohesins are specifically cleaved by separase and the soluble cohesins are left intact in anaphase.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , ADN/metabolismo , Endopeptidasas/metabolismo , Mitosis , Anafase , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Humanos , Separasa , Cohesinas
8.
Exp Cell Res ; 427(2): 113605, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37080417

RESUMEN

As a member of Ubiquitin-specific protease subfamily, ubiquitin specific protease 7 (USP7) has been reported to participate in a variety of cellular processes, including cell cycle, apoptosis, DNA damage response, and epigenetic modification. However, its function in preimplantation embryos is still obscure. To investigate the functions of USP7 during preimplantation embryo development, we used siRNA to degrade endogenous USP7 messenger RNA. We found that USP7 knockdown significantly decreased the development rate of mouse early embryos. Moreover, depletion of USP7 induced the accumulation of the DNA lesions and apoptotic blastomeres in early embryos. In addition, USP7 knockdown caused an abnormal H3K27me3 modification in 2-cell embryos. Overall, our results indicate that USP7 maintains genome stability perhaps via regulating H3K27me3 and DNA damage, consequently controlling the embryo quality.


Asunto(s)
Histonas , Ubiquitina Tiolesterasa , Animales , Ratones , Peptidasa Específica de Ubiquitina 7/genética , Peptidasa Específica de Ubiquitina 7/metabolismo , Histonas/genética , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Daño del ADN/genética , Proteasas Ubiquitina-Específicas/genética
9.
Cell Mol Life Sci ; 80(12): 372, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38001238

RESUMEN

Postovulatory aging leads to the decline in oocyte quality and subsequent impairment of embryonic development, thereby reducing the success rate of assisted reproductive technology (ART). Potential preventative strategies preventing oocytes from aging and the associated underlying mechanisms warrant investigation. In this study, we identified that cordycepin, a natural nucleoside analogue, promoted the quality of oocytes aging in vitro, as indicated by reduced oocyte fragmentation, improved spindle/chromosomes morphology and mitochondrial function, as well as increased embryonic developmental competence. Proteomic and RNA sequencing analyses revealed that cordycepin inhibited the degradation of several crucial maternal proteins and mRNAs caused by aging. Strikingly, cordycepin was found to suppress the elevation of DCP1A protein by inhibiting polyadenylation during postovulatory aging, consequently impeding the decapping of maternal mRNAs. In humans, the increased degradation of DCP1A and total mRNA during postovulatory aging was also inhibited by cordycepin. Collectively, our findings demonstrate that cordycepin prevents postovulatory aging of mammalian oocytes by inhibition of maternal mRNAs degradation via suppressing polyadenylation of DCP1A mRNA, thereby promoting oocyte developmental competence.


Asunto(s)
Poliadenilación , ARN Mensajero Almacenado , Humanos , Animales , ARN Mensajero Almacenado/metabolismo , Proteómica , Oocitos/metabolismo , Envejecimiento , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mamíferos/metabolismo , Endorribonucleasas/metabolismo , Transactivadores/metabolismo
10.
Cell Mol Life Sci ; 80(9): 247, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37578641

RESUMEN

Controlled mRNA storage and stability is essential for oocyte meiosis and early embryonic development. However, how to regulate mRNA storage and stability in mammalian oogenesis remains elusive. Here we showed that LSM14B, a component of membraneless compartments including P-body-like granules and mitochondria-associated ribonucleoprotein domain (MARDO) in germ cell, is indispensable for female fertility. To reveal loss of LSM14B disrupted primordial follicle assembly and caused mRNA reduction in non-growing oocytes, which was concomitant with the impaired assembly of P-body-like granules. 10× Genomics single-cell RNA-sequencing and immunostaining were performed. Meanwhile, we conducted RNA-seq analysis of GV-stage oocytes and found that Lsm14b deficiency not only impaired the maternal mRNA accumulation but also disrupted the translation in fully grown oocytes, which was closely associated with dissolution of MARDO components. Moreover, Lsm14b-deficient oocytes reassembled a pronucleus containing decondensed chromatin after extrusion of the first polar body, through compromising the activation of maturation promoting factor, while the defects were restored via WEE1/2 inhibitor. Together, our findings reveal that Lsm14b plays a pivotal role in mammalian oogenesis by specifically controlling of oocyte mRNA storage and stability.


Asunto(s)
Oocitos , Oogénesis , Animales , Femenino , ARN Mensajero/genética , Oogénesis/genética , Folículo Ovárico , Meiosis/genética , Fertilidad/genética , Mamíferos
11.
Ecotoxicol Environ Saf ; 269: 115811, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38086265

RESUMEN

Our previous study reveals that maternal exposure to 4-vinylcyclohexene diepoxide (VCD) during pregnancy causes insufficient ovarian follicle reserve and decreased fertility in offspring. The present study aims to further explore the reasons for the significant decline of fecundity in mice caused by VCD, and to clarify the changes of gut microbiota and microbial metabolites in F1 mice. The ovarian metabolomics, gut microbiota and microbial metabolites were analyzed. The results of ovarian metabolomics analysis showed that maternal VCD exposure during pregnancy significantly reduced the concentration of carnitine in the ovaries of F1 mice, while supplementation with carnitine (isovalerylcarnitine and valerylcarnitine) significantly increased the number of ovulation. The results of 16 S rDNA-seq and microbial metabolites analysis showed that maternal VCD exposure during pregnancy caused disordered gut microbiota, increased abundance of Parabacteroides and Flexispira bacteria that are involved in secondary bile acid synthesis. The concentrations of NorDCA, LCA-3S, DCA and other secondary bile acids increased significantly. Our results indicate that maternal exposure to VCD during pregnancy leads to disorder in gut microbiota and bile acid metabolism in F1 mice, accompanying with decreased ovarian function, providing further evidence that maternal exposure to VCD during pregnancy has intergenerational deleterious effects on offspring.


Asunto(s)
Microbioma Gastrointestinal , Compuestos de Vinilo , Embarazo , Femenino , Humanos , Ratones , Animales , Exposición Materna/efectos adversos , Ciclohexenos/toxicidad , Ácidos y Sales Biliares , Carnitina
12.
BMC Biol ; 21(1): 43, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829148

RESUMEN

BACKGROUND: Undernourishment in utero has deleterious effects on the metabolism of offspring, but the mechanism of the transgenerational transmission of metabolic disorders is not well known. In the present study, we found that undernourishment in utero resulted in metabolic disorders of female F1 and F2 in mouse model. RESULTS: Undernutrition in utero induced metabolic disorders of F1 females, which was transmitted to F2 females. The global methylation in oocytes of F1 exposed to undernutrition in utero was decreased compared with the control. KEGG analysis showed that genes with differential methylation regions (DMRs) in promoters were significantly enriched in metabolic pathways. The altered methylation of some DMRs in F1 oocytes located at the promoters of metabolic-related genes were partially observed in F2 tissues, and the expressions of these genes were also changed. Meanwhile, the abnormal DNA methylation of the validated DMRs in F1 oocytes was also observed in F2 oocytes. CONCLUSIONS: These results indicate that DNA methylation may mediate the transgenerational inheritance of metabolic disorders induced by undernourishment in utero via female germline.


Asunto(s)
Desnutrición , Enfermedades Metabólicas , Ratones , Animales , Femenino , Epigénesis Genética , Metilación de ADN , Oocitos
13.
BMC Biol ; 21(1): 231, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37867192

RESUMEN

BACKGROUND: RNA splicing plays significant roles in fundamental biological activities. However, our knowledge about the roles of alternative splicing and underlying mechanisms during spermatogenesis is limited. RESULTS: Here, we report that Serine/arginine-rich splicing factor 2 (SRSF2), also known as SC35, plays critical roles in alternative splicing and male reproduction. Male germ cell-specific deletion of Srsf2 by Stra8-Cre caused complete infertility and defective spermatogenesis. Further analyses revealed that deletion of Srsf2 disrupted differentiation and meiosis initiation of spermatogonia. Mechanistically, by combining RNA-seq data with LACE-seq data, we showed that SRSF2 regulatory networks play critical roles in several major events including reproductive development, spermatogenesis, meiotic cell cycle, synapse organization, DNA recombination, chromosome segregation, and male sex differentiation. Furthermore, SRSF2 affected expression and alternative splicing of Stra8, Stag3 and Atr encoding critical factors for spermatogenesis in a direct manner. CONCLUSIONS: Taken together, our results demonstrate that SRSF2 has important functions in spermatogenesis and male fertility by regulating alternative splicing.


Asunto(s)
Empalme del ARN , Espermatogénesis , Masculino , Humanos , Espermatogénesis/genética , Proteínas de Unión al ARN/genética , Empalme Alternativo , Meiosis/genética , ARN Mensajero
14.
J Cell Physiol ; 238(11): 2535-2545, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37642322

RESUMEN

During the oocyte growth, maturation and zygote development, chromatin structure keeps changing to regulate different nuclear activities. Here, we reported the role of SMC2, a core component of condensin complex, in oocyte and embryo development. Oocyte-specific conditional knockout of SMC2 caused female infertility. In the absence of SMC2, oocyte meiotic maturation and ovulation occurred normally, but chromosome condensation showed defects and DNA damages were accumulated in oocytes. The pronuclei were abnormally organized and micronuclei were frequently observed in fertilized eggs, their activity was impaired, and embryo development was arrested at the one-cell stage, suggesting that maternal SMC2 is essential for embryonic development.


Asunto(s)
Núcleo Celular , Cromosomas , Animales , Femenino , Ratones , Embarazo , Ciclo Celular , Núcleo Celular/fisiología , Desarrollo Embrionario/genética , Meiosis/genética , Oocitos/fisiología , Cigoto
15.
Hum Mol Genet ; 30(7): 525-535, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33575778

RESUMEN

Oogenesis is a highly regulated process and its basic cellular events are evolutionarily conserved. However, the time spans of oogenesis differ substantially among species. To explore these interspecies differences in oogenesis, we performed single-cell RNA-sequencing on mouse and monkey female germ cells and downloaded the single-cell RNA-sequencing data of human female germ cells. The cell cycle analyses indicate that the period and extent of cell cycle transitions are significantly different between the species. Moreover, hierarchical clustering of critical cell cycle genes and the interacting network of cell cycle regulators also exhibit distinguished patterns across species. We propose that differences in the regulation of cell cycle transitions may underlie female germ cell developmental allochrony between species. A better understanding of the cell cycle transition machinery will provide new insights into the interspecies differences in female germ cell developmental time spans.


Asunto(s)
Ciclo Celular/genética , Oocitos/metabolismo , Oogénesis/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Macaca fascicularis , Ratones , Oocitos/citología , Especificidad de la Especie , Factores de Tiempo
16.
BMC Med ; 21(1): 388, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814306

RESUMEN

BACKGROUND: Dipeptidyl peptidase-4 inhibitors (DPP-4i) have become firmly established in treatment algorithms and national guidelines for improving glycemic control in type 2 diabetes mellitus (T2DM).To report the findings from a multicenter, randomized, double-blind, placebo-controlled phase 3 clinical trial, which was designed to assess the efficacy and safety of a novel DPP-4 inhibitor fotagliptin in treatment-naive patients with T2DM. METHODS: Patients with T2DM were randomized to receive fotagliptin (n = 230), alogliptin (n = 113) or placebo (n = 115) at a 2:1:1 ratio for 24 weeks of double-blind treatment period, followed by an open-label treatment period, making up a total of 52 weeks. The primary efficacy endpoint was to determine the superiority of fotagliptin over placebo in the change of HbA1c from baseline to Week 24. All serious or significant adverse events were recorded. RESULTS: After 24 weeks, mean decreases in HbA1c from baseline were -0.70% for fotagliptin, -0.72% for alogliptin and -0.26% for placebo. Estimated mean treatment differences in HbA1c were -0.44% (95% confidence interval [CI]: -0.62% to -0.27%) for fotagliptin versus placebo, and -0.46% (95% CI: -0.67% to -0.26%) for alogliptin versus placebo, and 0.02% (95%CI: -0.16% to 0.19%; upper limit of 95%CI < margin of 0.4%) for fotagliptin versus alogliptin. So fotagliptin was non-inferior to alogliptin. Compared with subjects with placebo (15.5%), significantly more patients with fotagliptin (37.0%) and alogliptin (35.5%) achieved HbA1c < 7.0% after 24 weeks of treatment. During the whole 52 weeks of treatment, the overall incidence of hypoglycemia was low for both of the fotagliptin and alogliptin groups (1.0% each). No drug-related serious adverse events were observed in any treatment group. CONCLUSIONS: In summary, the study demonstrated improvement in glycemic control and a favorable safety profile for fotagliptin in treatment-naive patients with T2DM. TRIAL REGISTRATION: ClinicalTrail.gov NCT05782192.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hemoglobina Glucada , Glucemia , Hipoglucemiantes/efectos adversos , Inhibidores de la Dipeptidil-Peptidasa IV/efectos adversos , Método Doble Ciego , Resultado del Tratamiento
17.
Biol Reprod ; 108(3): 437-446, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36503987

RESUMEN

As the most abundant organelles in oocytes, mitochondria play an important role in maintaining oocyte quality. Here, we report that March5, encoding a mitochondrial ubiquitin ligase that promotes mitochondrial elongation, plays a critical role in mouse oocyte meiotic maturation via regulating mitochondrial function. The subcellular localization of MARCH5 was similar to the mitochondrial distribution during mouse oocyte meiotic progression. Knockdown of March5 caused decreased ratios of the first polar body extrusion. March5-siRNA injection resulted in oocyte mitochondrial dysfunctions, manifested by increased reactive oxygen species, decreased ATP content as well as decreased mitochondrial membrane potential, leading to reduced ability of spindle formation and an increased ratio of kinetochore-microtubule detachment. Further study showed that the continuous activation of the spindle assembly checkpoint and the failure of Cyclin B1 degradation caused MI arrest and first polar body (PB1) extrusion failure in March5 knockdown oocytes. Taken together, our results demonstrated that March5 plays an essential role in mouse oocyte meiotic maturation, possibly via regulation of mitochondrial function and/or ubiquitination of microtubule dynamics- or cell cycle-regulating proteins.


Asunto(s)
Oogénesis , Ubiquitina-Proteína Ligasas , Animales , Ratones , Mitocondrias/metabolismo , Oocitos/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
18.
Biol Reprod ; 108(6): 887-901, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37040346

RESUMEN

The mule is the interspecific hybrid of horse and donkey and has hybrid vigor in muscular endurance, disease resistance, and longevity over its parents. Here, we examined adult fibroblasts of mule (MAFs) compared with the cells from their parents (donkey adult fibroblasts and horse adult fibroblasts) (each species has repeated three independent individuals) in proliferation, apoptosis, and glycolysis and found significant differences. We subsequently derived mule, donkey, and horse doxycycline (Dox)-independent induced pluripotent stem cells (miPSCs, diPSCs, and hiPSCs) from three independent individuals of each species and found that the reprogramming efficiency of MAFs was significantly higher than that of cells of donkey and horse. miPSCs, diPSCs, and hiPSCs all expressed the high levels of crucial endogenous pluripotency genes such as POU class 5 homeobox 1 (POU5F1, OCT4), SRY-box 2 (SOX2), and Nanog homeobox (NANOG) and propagated robustly in single-cell passaging. miPSCs exhibited faster proliferation and higher pluripotency and differentiation than diPSCs and hiPSCs, which were reflected in co-cultures and separate-cultures, teratoma formation, and chimera contribution. The establishment of miPSCs provides a unique research material for the investigation of "heterosis" and perhaps is more significant to study hybrid gamete formation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Caballos , Animales , Reprogramación Celular , Equidae , Células Cultivadas , Diferenciación Celular/genética , Fibroblastos , Factor 3 de Transcripción de Unión a Octámeros/genética
19.
Mol Hum Reprod ; 29(9)2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37471586

RESUMEN

Circular RNAs (circRNAs), which exert critical functions in the regulation of transcriptional and post-transcriptional gene expression, are found in mammalian cells but their functions in mammalian preimplantation embryo development remain poorly understood. Here, we showed that circKDM5B mediated miRNA-128 (miR-128) to regulate porcine early embryo development. We screened circRNAs potentially expressed in porcine embryos through an integrated analysis of sequencing data from mouse and human embryos, as well as porcine oocytes. An authentic circRNA originating from histone demethylase KDM5B (referred to as circKDM5B) was abundantly expressed in porcine embryos. Functional studies revealed that circKDM5B knockdown not only significantly reduced blastocyst formation but also decreased the number of total cells and trophectoderm (TE) cells. Moreover, the knockdown of circKDM5B resulted in the disturbance of tight junction assembly and impaired paracellular sealing within the TE epithelium. Mechanistically, miR-128 inhibitor injection could rescue the early development of circKDM5B knockdown embryos. Taken together, the findings revealed that circKDM5B functions as a miR-128 sponge, thereby facilitating early embryonic development in pigs through the modulation of gene expression linked to tight junction assembly.


Asunto(s)
Blastocisto , MicroARNs , ARN Circular , Animales , Humanos , Ratones , Blastocisto/metabolismo , Embrión de Mamíferos , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Mamíferos/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Porcinos , Histona Demetilasas con Dominio de Jumonji/genética
20.
J Transl Med ; 21(1): 426, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386516

RESUMEN

BACKGROUND: The global delay in women's reproductive age has raised concerns about age-related infertility. The decline in oocyte quality is a limiting factor of female fertility, yet there are currently no strategies to preserve oocyte quality in aged women. Here, we investigated the effects of growth hormone (GH) supplementation on aneuploidy of aged oocytes. METHODS: For the in vivo experiments, the aged mice (8-month-old) were intraperitoneally injected with GH daily for 8 weeks. For the in vitro experiments, germinal vesicle oocytes from aged mice were treated with GH during oocyte maturation. The impacts of GH on ovarian reserve before superovulation was evaluated. Oocytes were retrieved to assess oocyte quality, aneuploidy and developmental potential characteristics. Quantitative proteomics analysis was applied to investigate the potential targets of GH in aged oocytes. RESULTS: In this study, we demonstrated that GH supplementation in vivo not only alleviated the decline in oocyte number caused by aging, but also improved the quality and developmental potential of aged oocytes. Strikingly, we discovered that GH supplementation reduced aneuploidy in aged oocytes. Mechanically, in addition to improving mitochondrial function, our proteomic analysis indicated that the MAPK3/1 pathway may be involved in the reduction in aneuploidy of aged oocytes, as confirmed both in vivo and in vitro. In addition, JAK2 may also act as a mediator in how GH regulates MAPK3/1. CONCLUSIONS: In conclusion, our research reveals that GH supplementation protects oocytes against aging-related aneuploidy and enhances the quality of aged oocytes, which has clinical significance for aged women undergoing assisted reproduction technology.


Asunto(s)
Hormona del Crecimiento , Proteómica , Femenino , Animales , Ratones , Hormona del Crecimiento/farmacología , Oocitos , Envejecimiento , Aneuploidia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA