RESUMEN
The theoretically infinite compositional space of high-entropy alloys (HEAs) and their novel properties and applications have attracted significant attention from a broader research community. The successful synthesis of high-quality single-phase HEA nanoparticles represents a crucial step in fully unlocking the potential of this new class of materials to drive innovations. This review analyzes the various methods reported in the literature to identify their commonalities and dissimilarities, which allows categorizing these methods into five general strategies. Physical minimization of HEA metals into HEA nanoparticles through cryo-milling represents the typical top-down strategy. The counter bottom-up strategy requires the simultaneous generation and precipitation of metal atoms of different elements on growing nanoparticles. Depending on the metal atom generation process, there are four synthesis strategies: vaporization of metals, burst reduction of metal precursors, thermal shock-induced reduction of metal precursors, and solvothermal reduction of metal precursors. Comparisons among the methods within each strategy, along with discussions, provide insights and guidance for achieving the robust synthesis of HEA nanoparticles.
RESUMEN
Quorum sensing (QS) is widely employed by bacterial cells to control gene expression in a cell density-dependent manner. A previous study revealed that anthranilic acid from Ralstonia solanacearum plays a vital role in regulating the physiology and pathogenicity of R. solanacearum. We reported here that anthranilic acid controls the important biological functions and virulence of R. solanacearum through the receptor protein RaaR, which contains helix-turn-helix (HTH) and LysR substrate binding (LysR_substrate) domains. RaaR regulates the same processes as anthranilic acid, and both are present in various bacterial species. In addition, anthranilic acid-deficient mutant phenotypes were rescued by in trans expression of RaaR. Intriguingly, we found that anthranilic acid binds to the LysR_substrate domain of RaaR with high affinity, induces allosteric conformational changes, and then enhances the binding of RaaR to the promoter DNA regions of target genes. These findings indicate that the components of the anthranilic acid signaling system are distinguished from those of the typical QS systems. Together, our work presents a unique and widely conserved signaling system that might be an important new type of cell-to-cell communication system in bacteria.
Asunto(s)
Ralstonia solanacearum , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Ralstonia solanacearum/genética , Virulencia/genética , ortoaminobenzoatosRESUMEN
Candida albicans infection poses a significant global health threat. It is imperative to exploit new antifungal agents against C. albicans infections without leading to drug resistance, so that these potential agents can complement or combine with current medications to effectively treat diseases caused by C. albicans. We screened moscatin, and assessed the inhibitory effectiveness against C. albicans SC5314 on hyphae production and biofilm formation. It was revealed that moscatin exhibited significant effects on morphological transition and biofilm formation in C. albicans SC5314. It also lowered the pathogenicity of C. albicans SC5314 in a concentration-dependent way in both A549 cells and mice fungal infection models, but had no cytotoxicity to A549 cells. In addition, moscatin attenuated the virulence of clinical fluconazole-resistant C. albicans and exhibited synergistic activity with fluconazole. It could also restore the composition and richness of the intestinal microbiota in mice infected by C. albicans. These findings indicate that these moscatin has great potential to be developed as a new therapeutic drug against C. albicans infection.
RESUMEN
Immune-inflammatory diseases are a class of conditions with high prevalence that severely impact the quality of life. Current treatment strategies include immunosuppressants, glucocorticoids, and monoclonal antibodies. However, these approaches have certain limitations, such as poor membrane permeability, immunogenicity, and the requirement for injection in large molecule drugs. Small molecule compounds, on the other hand, suffer from issues like poor selectivity, inability to inhibit non-enzymatic functions, and biological compensation. These factors constrain the effectiveness of current therapeutic strategies in immune-inflammatory diseases. As a novel small molecule drug development technology, proteolysis-targeting chimeras (PROTACs) regulate protein levels by inducing interactions between target proteins and E3 ubiquitin ligases, leading to the selective degradation of target proteins. This technology has already shown promising therapeutic effects in the treatment of immune-inflammatory diseases. This review aims to comprehensively summarize the application of PROTAC technology in the field of immune inflammation and provide insights into its potential in treating immune-inflammatory diseases.
RESUMEN
Objective: COPD patients have a high incidence of frailty and numerous complications, which seriously affect their quality of life. This study systematically evaluated and analyzed the current state of frailty incidence and risk factors in COPD patients to reduce the prevalence of frailty and enhance their quality of life. Method: The Cochrane Library, PubMed, Embase, Web of Science, CBM, CNKI, VIP, and Wanfang databases were searched for relevant studies from the inception of each database until November 2022. A thorough literature screening, quality evaluation, and data extraction was conducted. Meta-analysis was performed using RevMan5.3Meta. Twelve articles were selected as most relevant to this review; 10 were in Chinese, and 2 were in English. Results: The results showed that the incidence of asthenia in COPD patients was 26% (OR 0.26, 95% CI 0.17~0.34). Discussion: The main risk factors for frailty in COPD patients were age (OR 1.32, 95% CI 1.30~1.34), GOLD pulmonary function class (OR 3.18, 95% CI 2.14~4.71), mMRC score (OR 3.90, 95% CI 1.53~9.92), comorbidity (OR 2.17, 95% CI 1.48~3.18), polypharmacy (OR 6.74, 95% CI 3.23~14.08), malnutrition (OR 3.32, 95% CI 1.77~6.24), depression (OR 1.37, 95% CI 1.07~1.76) and ≥2 admissions within 1 year (OR 4.84, 95% CI 2.45~9.57). Conclusion: The study presented comprehensive evidence through meta-analysis and proposed that the prevalence of frailty in COPD patients is 26%. Risk factors were identified, including age, pulmonary function class according to GOLD criteria, mMRC score, comorbidity polypharmacy malnutrition, depression, or 2 or more hospital admissions within a year. It is recommended that clinical medical staff identify these risk factors at an early stage.
RESUMEN
Catalytic performance decline is a general issue when shaping fine powder into macroscale catalysts (e.g., beads, fiber, pellets). To address this challenge, a phenolic resin-assisted strategy was proposed to prepare porous Co/N carbon beads (ZACBs) at millimeter scale via the phase inversion method followed by confined pyrolysis. Specially, p-aminophenol-formaldehyde (AF) resin-coated zeolitic imidazolate framework (ZIF-67) nanoparticles were introduced to polyacrylonitrile (PAN) solution before pyrolysis. The thermosetting of the coated AF improved the interface compatibility between the ZIF-67 and PAN matrix, inhibiting the shrinkage of ZIF-67 particles, thus significantly improving the void structure of ZIF-67 and the dispersion of active species. The obtained ZACBs exhibited a 99.9% removal rate of tetracycline (TC) within 120 min, with a rate constant of 0.069 min-1 (2.3 times of ZIF-67/PAN carbon beads). The quenching experiments and electron paramagnetic resonance (EPR) tests showed that radicals dominated the reaction. This work provides new insight into the fabrication of high-performance MOF catalysts with outstanding recycling properties, which may promote the use of MOF powder in more practical applications.
RESUMEN
The discovery of effective therapeutic treatments for cancer via cell differentiation instead of antiproliferation remains a great challenge. Cyclin-dependent kinase 2 (CDK2) inactivation, which overcomes the differentiation arrest of acute myeloid leukemia (AML) cells, may be a promising method for AML treatment. However, there is no available selective CDK2 inhibitor. More importantly, the inhibition of only the enzymatic function of CDK2 would be insufficient to promote notable AML differentiation. To further validate the role and druggability of CDK2 involved in AML differentiation, a suitable chemical tool is needed. Therefore, we developed first-in-class CDK2-targeted proteolysis-targeting chimeras (PROTACs), which promoted rapid and potent CDK2 degradation in different cell lines without comparable degradation of other targets, and induced remarkable differentiation of AML cell lines and primary patient cells. These data clearly demonstrated the practicality and importance of PROTACs as alternative tools for verifying CDK2 protein functions.
Asunto(s)
Antineoplásicos/farmacología , Diferenciación Celular/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Células Progenitoras Mieloides/efectos de los fármacos , Proteolisis/efectos de los fármacos , Triazoles/farmacología , Antineoplásicos/síntesis química , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Línea Celular Tumoral , Proliferación Celular , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Diseño de Fármacos , Descubrimiento de Drogas , Humanos , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Concentración 50 Inhibidora , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Células Progenitoras Mieloides/enzimología , Células Progenitoras Mieloides/patología , Piperazinas/farmacología , Cultivo Primario de Células , Piridinas/farmacología , Pirimidinas/farmacología , Quinazolinas/farmacología , Transducción de Señal , Relación Estructura-Actividad , Transcriptoma , Triazoles/síntesis químicaRESUMEN
A facile and sensitive glucose sandwich assay using surface-enhanced Raman scattering (SERS) has been developed. Glucose was captured by 3-aminopheyonyl boronic acid (APBA) modified Ag nanoparticles decorated onto a polyamide surface. Then, Ag nanoparticles modified with 3-amino-6-ethynylpicolinonitrile (AEPO) and APBA were used as SERS tags. APBA forms specific cis-diol compounds with glucose molecules avoiding interference by other saccharides and biomolecules in urine enabling its selective detection. As the actual Raman reporter, AEPO exhibited a distinctive SERS peak in the Raman silent region, thus increasing the sensitivity of the glucose detection to 10-11 M. Additionally, the developed SERS assay was reusable, and its applicability in artificial urine samples demonstrated future clinical utility confirming the potential of this innovative technology as a diagnostic tool for glucose sensing.
Asunto(s)
Glucosa , Espectrometría Raman , Oro/química , Nanopartículas del Metal/química , Plata/química , Espectrometría Raman/métodosRESUMEN
Intraoperatively acquired pressure injuries (IAPIs) occur frequently among patients who undergo surgical procedures that last longer than 3 h. Several studies indicated that heat shock proteins (HSPs) play an important role in the protection of stress-induced damages in skin tissues. Hence, the aim of this study was to investigate the potential preventive effect of thermal preconditioning (TPC) on IAPIs in surgical patients and rats and to identify the differentially expressed HSP genes in response to the above treatment. TPC was performed on one group of hairless rats before the model of pressure injuries was established. Subsequently, the size of skin lesions was measured and the expression levels of mRNA and protein of HSPs of the pressured skin were detected by real-time polymerase chain reaction (RT-PCR), western blot, and immunohistochemical staining. For human studies, 118 surgical patients were randomly divided into the TPC group (n = 59) and the control group (n = 59), respectively. The temperature and pressure of sacral skin, as well as the incidence of pressure injury (PI) were detected and compared. In animal studies, TPC significantly reduced both the size and incidence of PI in rats on the second, third and fourth days post treatment. In addition, the expression levels of both mRNA and protein of HSP27 were increased in the TPC group, compared with the control group. Immunohistochemical staining showed that HSP27 was distributed in various types of dermal cells and increased in basal cells. In human studies, a significant reduction (75%) of IAPIs was observed among the patients in the TPC group. TPC can reduce the incidence of PI in rats and humans, and the upregulation of HSP27 may play an important role in this biological progress. Further studies are warranted to explore the molecular mechanism of the preventive effect in PI mediated by HSP27.
Asunto(s)
Úlcera por Presión , Ratas , Humanos , Animales , Úlcera por Presión/prevención & control , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Incidencia , ARN Mensajero/genética , Proteínas HSP70 de Choque Térmico/genéticaRESUMEN
The recovery of volatile fatty acids (VFAs) through anaerobic fermentation (AF) is usually restricted by the poor biodegradability of waste activated sludge (WAS). This study proposed a novel strategy, i.e. peroxymonosulfate (PMS) activated by Fe-loaded sodium alginate hydrogel beads (Fe-SA), to enhance AF performance. Experimental results demonstrated that the as-synthesized Fe-SA and PMS co-pretreatment synergistically enhanced WAS solubilization and VFAs production. The maximal VFAs yield of 2013 mg COD/L was achieved at the Fe-SA dosage of 4.0 mM/g TSS, which was 93.7% higher than that with sole PMS addition and 8.82 times higher than that of the control. Mechanistic studies elucidated that the generation of reactive radicals such as SO4â¢- and â¢OH from PMS was greatly induced by Fe-SA, which contributed to WAS disintegration and degradation of refractory compounds. Additionally, analysis of the key enzyme activities indicated that the Fe-SA could strengthen biological hydrolysis and acidogenesis of sludge during AF. Microbial analysis illustrated that Fe-SA evidently improved the abundances of fermentative microorganisms as well as functional gene expression via creating a favorable environment for microbial growth. This study demonstrated the applicable potential of Fe-SA hydrogel beads activating PMS for VFAs production and provides an important reference for developing advanced oxidation processes-based application in AF.
Asunto(s)
Alginatos , Aguas del Alcantarillado , Fermentación , Anaerobiosis , Hidrogeles , Concentración de Iones de Hidrógeno , Ácidos Grasos VolátilesRESUMEN
Single oxygen-based advanced oxidation processes (1O2-AOPs) exhibit great prospects in selective degradation of organic pollutants. However, efficient production of 1O2 via tailored design of catalysts to achieve selective oxidation of contaminants remains challenging. Herein, we develop a simple strategy to regulate the components and coordination of Co-N-C catalysts at the atomic level by adjusting the Zn/Co ratio of bimetallic zeolitic imidazolate frameworks (ZnxCo1-ZIFs). Zn4Co1-C demonstrates 98% selective removal of phenol in the mixed phenol/benzoic acid (phenol/BA) solutions. Density functional theory calculations and experiments reveal that more active CoN4 sites are generated in Zn4Co1-C, which are beneficial to peroxymonosulfate activation to generate 1O2. Furthermore, the correlation between the origin of selectivity and well-defined catalysts is systematically investigated by the electron paramagnetic resonance test and quenching experiments. This work may provide novel insights into selective removal of target pollutants in a complicated water matrix.
Asunto(s)
Contaminantes Ambientales , Catálisis , Oxígeno , Peróxidos , Fenoles , AguaRESUMEN
Development of efficient catalysts for peroxymonosulfate (PMS) activation and further understanding its mechanism on organic pollutants degradation is of significant importance for advanced oxidation processes (AOPs). Herein, hollow (Co, Mn)3O4 catalysts were synthesized by calcination of Co, Mn containing metal-organic frameworks (MOFs) and further used to evaluate the effectiveness of organic pollutants (Bisphenol A (BPA), atrazine (ATZ), and diethyl phthalate (DEP)) degradation by PMS activation. The PMS utilization efficiency in (Co, Mn)3O4/PMS system (36.4%) was estimated to be 28.0% and 43.8% higher than that of Co3O4/PMS and Mn5O8/PMS system, respectively. Notably, the metal leaching in (Co, Mn)3O4/PMS system was significantly suppressed. The utilization efficiency also reveals an inverse proportionality relationship with BPA mineralization but decreases with increasing initial pH value. A synergy between oxides of Co and Mn was perceived to enhance PMS utilization efficiency and BPA degradation. The results indicate enhanced catalytic performance with (Co, Mn)3O4 compared to Co3O4 derived from Co-MOF and other reported catalysts, with 99% of BPA degradation within 4 min. The oxidation mechanism was then proposed based on the electron paramagnetic resonance (EPR) and XPS results. Our findings might have contributed to designing heterogeneous catalysts for efficient PMS utilization in AOPs.
Asunto(s)
Contaminantes Ambientales , Cobalto , Nanotecnología , Óxidos , PeróxidosRESUMEN
Well dispersed nanocatalysts on porous substrate with macroscopic morphology are highly desired for the application of heterogeneous catalysis. Traditional fabrication process suffers from multiple steps for controlling the structure on nanocatalysts and matrix or both. Herein, we report a facile strategy for the synthesis of millimeter-sized hierarchical porous carbon beads (HPCBs) which containing well dispersed hollow-nano carbon boxes for peroxymonosulfate catalysis. Specially, the precursors of HPCBs were prepared by phase inversion method, which involving introduction of zeolitic imidazolate framework (ZIF-8) nanocubes into polyacrylonitrile (PAN) solutions followed by solidification of the mixture. After pyrolysis, nitrogen doped and hierarchical porous HPCBs with diameter of about 1.2 mm were obtained. The merits of our synthesis strategy lie in that synchronizes the hollow microstructure evolution with the shaping of ZIF-8 nanocubes into millimeter scale beads. Attribute to its special structure feature and the appropriate chemical composition, the resultant millimeter-sized HPCBs exhibit enhanced catalytic performance by activation of peroxymonosulfate (PMS) for tetracycline degradation. The degradation efficiency of TC is up to 85.1% within 120 min, which is 18% higher than that of ZIF8-Solid/PAN carbon bead (SPCBs). In addition, the possible decomposition pathways, main reactive oxygen species, and reasonable enhanced mechanism for the HPCBs/PMS system are systematically investigated by quenching experiments, electron paramagnetic resonance (EPR) and liquid chromatography-mass spectrometry (LC-MS). This work addresses the issue of easy aggregation and recycling of carbon materials in industrial productions and extends the prospects of carbon materials in engineering applications.
Asunto(s)
Carbono , Zeolitas , Resinas Acrílicas , Carbono/química , Catálisis , Peróxidos , PorosidadRESUMEN
Elevated concentrations of antimony (Sb) in the ecological environment have received considerable attention due to the harmful consequence involved. This study synthesized sulphidated ferrihydrite with different S:Fe molar ratios to efficiently remove Sb(V) from water. As the S:Fe molar ratio ranged from 0.00 to 1.48, the removal efficiency of Sb(V) by sulphidated ferrihydrite first decreased before increasing considerably. Sulphidated ferrihydrite with an S:Fe molar ratio of 0.74 exhibited a strong affinity towards Sb(V) with an optimal removal capacity of 963.74 mg Sb/g, which was 3.2-fold higher than that of ferrihydrite. In the kinetic experiments, the removal behavior of Sb(V) was well described by the pseudo-second-order model, suggesting that the removal process was controlled via chemisorption. Moreover, Sb(V) was efficiently removed over a wide pH range of 3.00-11.00, and coexisting anions (NO3-, Cl-, SO42-, SiO32-, CO32- and PO43-) exhibited marginal impact on the Sb(V) removal by sulphidated ferrihydrite (S:Fe ≥ 0.44). The characterization results of XRD, SEM, TEM mapping and etched XPS revealed goethite to be the dominant phase of sulphidated ferrihydrite with an S:Fe molar ratio of 0.15, while a mixed constitution of mixed-valent iron (hydro)oxides and iron sulphide was formed when the S:Fe molar ratio exceeded 0.44. Moreover, sulphidated ferrihydrite acted as a donor for Fe and S for the effective retention of Sb(V) by two main pathways: precipitation (tripuhyite, FeSbO4) and complexation (≡S-H and ≡Fe-OH). Therefore, sulphidated ferrihydrite is a promising material for eliminating Sb(V) contamination from water.
Asunto(s)
Compuestos Férricos , Agua , Adsorción , Antimonio/química , Compuestos Férricos/químicaRESUMEN
In this work, polyacrylonitrile/aminated polymeric nanosphere (PAN/APN) nanofibers were prepared by electrospinning of monodispersed aminated polymeric nanospheres (APNs) for removal of Cr(VI) from aqueous solution. Characterization results showed that obtained PAN/APNs possessed nitrogen functionalization. Furthermore, the adsorption application results indicated that PAN/APN nanofibers exhibited a high adsorption capacity of 556 mg/g at 298 K for Cr(VI) removal. The kinetic data showed that the adsorption process fits the pseudo-second order. A thermodynamic study revealed that the adsorption of Cr(VI) was spontaneous and endothermic. The coexisting ions Na+, Ca2+, K+, Cl-, NO3- and PO43- had little influence on Cr(VI) adsorption, while SO42- in solution dramatically decreased the removal performance. In the investigation of the removal mechanism, relative results indicated that the adsorption behavior possibly involved electrostatic adsorption, redox reaction and chelation. PAN/APN nanofibers can detoxify Cr(VI) to Cr(III) and subsequently chelate Cr(III) on its surface. The unique structure and nitrogen functionalization of PAN/APN nanofibers make them novel and prospective candidates in heavy metal removal.
Asunto(s)
Metales Pesados , Nanofibras , Nanosferas , Contaminantes Químicos del Agua , Nanofibras/química , Contaminantes Químicos del Agua/química , Cromo/química , Adsorción , Cinética , Polímeros , Iones , NitrógenoRESUMEN
Clean water production calls for highly efficient and less energy-intensive technologies. Herein, a novel concept of a sequential ultrafiltration-catalysis membrane is developed by loading Co3O4/C@SiO2 yolk-shell nanoreactors into the fingerlike channels of a polymeric ultrafiltration membrane. Such a sequenced structure design successfully integrates selective separation with peroxymonosulfate-based catalysis to prepare a functionalized molecular sieve membrane, which exhibits excellent decontamination performance toward multipollutants by filtering the water matrices containing humic acid (HA) and bisphenol A (BPA). In this study, 100% rejection of HA and 95% catalytic degradation of BPA were achieved under a low pressure of 0.14 MPa and an ultrahigh flux of 229 L m-2 h-1, corresponding to a retention time of 3.1 s. Notably, the removal performance of multiple pollutants essentially depends on the ordered arrangement of ultrafiltration and catalysis. Moreover, the flow-through process demonstrated significant enhancement of BPA degradation kinetics, which is 21.9 times higher than that of a conventional batch reactor. This study provides a novel strategy for excellent removal of multiple pollutants in water.
Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Purificación del Agua , Catálisis , Dióxido de Silicio , Ultrafiltración , Agua , Contaminantes Químicos del Agua/análisisRESUMEN
MOFs-derived metal/carbon materials have been considered as promising candidates for the electrochemical detection of micropollutants. However, the aggregation of metal nanoparticles and structure collapse of precursor MOFs during pyrolysis significantly hamper the improvement on detecting performance. Herein, a dicyandiamide-assisted strategy is utilized to synthesize well-dispersed Cu/N-doped porous carbon nanoarchitecture (CuNC) for the electrochemical detection of acetaminophen (AP). The constructed CuNC sensor exhibits excellent electro-analytical performance for monitoring AP with linear range from 0.01 µM to 921.2 µM, and the low detection limit of 2.46 nM (S/N = 3). The improved performance of CuNC sensor is ascribed to the introduction of dicyandiamide, which can prevent HKUST-1 framework breakage and reduce the aggregation tendency of Cu, leading to the evenly distributed small Cu nanoparticles, abundant N species, hierarchical channel structure, and high conductivity carbon framework. These advantages endow predominant repeatability, stability, and selectivity of CuNC sensor. This strategy provided a novel approach to preparing MOFs-derived carbon nanoarchitectures with excellent electroanalysis performance to monitor micropollutants.
Asunto(s)
Acetaminofén , Carbono , Técnicas Electroquímicas , Guanidinas , Estructuras Metalorgánicas , PorosidadRESUMEN
Cancer drug resistance has become the major problem facing current clinical treatment via different kinds of therapies. Proteolysis targeting chimeras (PROTACs) as a novel and powerful strategy have attracted a great deal of attention both from academia and from industry for their sensitivity to drug-resistant targets relying on their unique characteristics compared to those of traditional inhibitors. PROTACs exert their function by degrading the target protein instead of inhibiting targets. Thus, different kinds of resistance could be conquered by PROTACs such as target mutation or overexpression. Various resistant targets have been overcome by PROTACs, including AR, ER, BTK, BET, and BCR-ABL. Though PROTACs have achieved some significant advances in combating drug resistance, more cases are needed to prove the efficiency of PROTACs in addressing the hurdle of resistance in the near future.
Asunto(s)
Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Factores de Transcripción/genética , Línea Celular Tumoral , Quimera/genética , Descubrimiento de Drogas , Humanos , Neoplasias/genética , Neoplasias/patología , Proteolisis/efectos de los fármacosRESUMEN
Selective removal of organic pollutants from surface water with high efficiency is crucial in water purification. Here, yolk-shell Co/C nanoreactors (YSCCNs) are facilely synthesized via pyrolysis of controllably etched ZIF-67 by tannic acid, and their degradation performance on multiple pollutants is demonstrated. To present the structure-performance relationship between the designed nanocatalyst and the selective removal of organic pollutants, bisphenol A (BPA) was selected as the targeted pollutant with coexistence of humus acid (HA). For comparison, solid and hollow ZIF-67 derived Co/C nanoparticles denoted as SCCNs and HCCNs, were also tested. The results show that YSCCNs exhibit enhanced BPA degradation rate of 0.32 min-1, which is 23.1% and 45.4% higher than that of HCCNs and SCCNs in HA (10 ppm) system. The essential improvement can be ascribed to the synergetic effects from shell layer (size-exclusion) and core/shell (confinement effect). The degradation mechanism and pathway are further confirmed by radical quenching experiments and liquid chromatography-mass spectrograph (LC-MS), respectively. In addition, some influential factors, including reaction temperature, pH value, and peroxymonosulfate (PMS) dosage are investigated in detail. This work provides a possible way to selectively remove target contaminant from multiple pollutants in complex water system.
Asunto(s)
Contaminantes Ambientales , Estructuras Metalorgánicas , Purificación del AguaRESUMEN
Nanofiltration (NF) is an advanced environmental technology in water treatment. To thin film nanocomposite (TFN) membrane, good compatibility between nanofillers and polyamide (PA) layer is the guarantee of remarkable performance. Herein, tannic acid (TA) was employed as modifier of UIO-66-NH2 prior to the interfacial polymerization (IP). With TA modification, more interaction can be formed so that the compatibility between nanofillers and PA layer can be promoted at the molecular level. Characterizations demonstrated the coating of TA on UIO-66-NH2, together with successful introducing of nanofillers in TFN membranes. Compared to pristine thin film composite (TFC) membrane, both UIO-incorporated TFN (TFN-U) and TA modified UIO-incorporated TFN (TFN-TU) membranes showed higher permeance (111.2% and 93% enhancement, respectively). However, under the same nanofillers dose, TFN-TU exhibited slightly lower permeance and higher rejection than TFN-U since the bridging effect of TA healed non-selective voids in skin layer. With the increasing of nanofiller dose in IP, TFN-TU remained reasonable selectivity while TFN-U failed to. Moreover, TFN-TU showed better anti-fouling property due to TA modification. Introducing TA modified MOFs into IP can serve as an ingenious strategy for TFN membrane to achieve high-quality environmental applications.