Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107376, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762176

RESUMEN

Liver fibrosis/cirrhosis is a pathological state caused by excessive extracellular matrix deposition. Sustained activation of hepatic stellate cells (HSC) is the predominant cause of liver fibrosis, but the detailed mechanism is far from clear. In this study, we found that long noncoding RNA Fendrr is exclusively increased in hepatocytes in the murine model of CCl4- and bile duct ligation-induced liver fibrosis, as well as in the biopsies of liver cirrhosis patients. In vivo, ectopic expression of Fendrr aggravated the severity of CCl4-induced liver fibrosis in mice. In contrast, inhibiting Fendrr blockaded the activation of HSC and ameliorated CCl4-induced liver fibrosis. Our mechanistic study showed that Fendrr binds to STAT2 and enhances its enrichment in the nucleus, which then promote the expression of interleukin 6 (IL-6), and, ultimately, activates HSC in a paracrine manner. Accordingly, disrupting the interaction between Fendrr and STAT2 by ectopic expression of a STAT2 mutant attenuated the profibrotic response inspired by Fendrr in the CCl4-induced liver fibrosis. Notably, the increase of Fendrr in patient fibrotic liver is positively correlated with the severity of fibrosis and the expression of IL-6. Meanwhile, hepatic IL-6 positively correlates with the extent of liver fibrosis and HSC activation as well, thus suggesting a causative role of Fendrr in HSC activation and liver fibrosis. In conclusion, these observations identify an important regulatory cross talk between hepatocyte Fendrr and HSC activation in the progression of liver fibrosis, which might represent a potential strategy for therapeutic intervention.


Asunto(s)
Hepatocitos , Interleucina-6 , Cirrosis Hepática , ARN Largo no Codificante , Animales , Humanos , Masculino , Ratones , Tetracloruro de Carbono/toxicidad , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Interleucina-6/metabolismo , Interleucina-6/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Ratones Endogámicos C57BL , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factor de Transcripción STAT2/metabolismo , Factor de Transcripción STAT2/genética
2.
Small ; 20(12): e2307414, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37940626

RESUMEN

Type-I photosensitizers have shown advantages in addressing the shortcomings of traditional oxygen-dependent type-II photosensitizers for the photodynamic therapy (PDT) of hypoxic tumors. However, developing type-I photosensitizers is yet a huge challenge because the type-II energy transfer process is much faster than the type-I electron transfer process. Herein, from the fundamental point of view, an effective approach is proposed to improve the electron transfer efficiency of the photosensitizer by lowering the internal reorganization energy and exciton binding energy via self-assembly-induced exciton delocalization. An example proof is presented by the design of a perylene diimide (PDI)-based photosensitizer (PDIMp) that can generate singlet oxygen (1O2) via a type-II energy transfer process in the monomeric state, but induce the generation of superoxide anion (O2˙-) via a type-I electron transfer process in the aggregated state. Significantly, with the addition ofcucurbit[6]uril (CB[6]), the self-assembled PDIMp can convert back to the monomeric state via host-guest complexation and consequently recover the generation of 1O2. The biological evaluations reveal that supramolecular nanoparticles (PDIMp-NPs) derived from PDIMp show superior phototherapeutic performance via synergistic type-I PDT and mild photothermal therapy (PTT) against cancer under either normoxia or hypoxia conditions.


Asunto(s)
Imidas , Nanopartículas , Neoplasias , Perileno , Perileno/análogos & derivados , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/química , Perileno/química , Perileno/uso terapéutico , Nanopartículas/química , Hipoxia/tratamiento farmacológico , Neoplasias/terapia
3.
Plant Cell Environ ; 47(5): 1452-1470, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38233741

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs that play a vital role in plant responses to abiotic and biotic stresses. Recently, it has been discovered that some primary miRNAs (pri-miRNAs) encode regulatory short peptides called miPEPs. However, the presence of miPEPs in rice, and their functions in response to abiotic stresses, particularly stress induced by heavy metals, remain poorly understood. Here, we identified a functional small peptide (miPEP156e) encoded by pri-miR156e that regulates the expression of miR156 and its target SPL genes, thereby affecting miR156-mediated cadmium (Cd) tolerance in rice. Overexpression of miPEP156e led to decreased uptake and accumulation of Cd and reactive oxygen species (ROS) levels in plants under Cd stress, resulting in improved rice Cd tolerance, as observed in miR156-overexpressing lines. Conversely, miPEP156e mutants displayed sensitivity to Cd stress due to the elevated accumulation of Cd and ROS. Transcriptome analysis further revealed that miPEP156e improved rice Cd tolerance by modulating Cd transporter genes and ROS scavenging genes. Our study provides insights into the regulatory mechanism of miPEP156e in rice response to Cd stress and demonstrates the potential of miPEPs as an effective tool for improving crop abiotic stress tolerance.


Asunto(s)
MicroARNs , Oryza , MicroARNs/genética , MicroARNs/metabolismo , Cadmio/metabolismo , Oryza/fisiología , Especies Reactivas de Oxígeno/metabolismo , Péptidos/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
FASEB J ; 37(8): e23071, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37389924

RESUMEN

The sustained release of profibrotic cytokines, mainly transforming growth factor-ß (TGF-ß), leads to the occurrence of kidney fibrosis and chronic kidney disease (CKD). Connective tissue growth factor (CTGF) appears to be an alternative target to TGF-ß for antifibrotic therapy in CKD. In this study, we found that long noncoding RNA AI662270 was significantly increased in various renal fibrosis models. In vivo, ectopic expression of AI662270 alone was sufficient to activate interstitial fibroblasts and drive kidney fibrosis, whereas inhibition of AI662270 blocked the activation of interstitial fibroblasts and ameliorated kidney fibrosis in various murine models. Mechanistic studies revealed that overexpression of AI662270 significantly increased CTGF product, which was required for the role of AI662270 in driving kidney fibrosis. Furthermore, AI662270 binds to the CTGF promoter and directly interacts with METTL3, the methyltransferase of RNA N6 -methyladenosine (m6 A) modification. Functionally, AI662270-mediated recruitment of METTL3 increased the m6 A methylation of CTGF mRNA and consequently enhanced CTGF mRNA stability. In conclusion, our results support that AI662270 promotes CTGF expression at the posttranscriptional stage by recruiting METTL3 to the CTGF promoter and depositing m6 A modifications on the nascent mRNA, thereby, uncovering a novel regulatory mechanism of CTGF in the pathogenesis of kidney fibrosis.


Asunto(s)
ARN Largo no Codificante , Insuficiencia Renal Crónica , Animales , Ratones , Factor de Crecimiento del Tejido Conjuntivo/genética , Riñón , Metiltransferasas/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Factor de Crecimiento Transformador beta/genética
5.
Analyst ; 149(5): 1548-1556, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38284430

RESUMEN

Circulating tumor DNA (ctDNA) is a highly promising biomarker for the early diagnosis and treatment of gastric cancer (GC). However, there is still a lack of effective and practical ctDNA detection methods. In this work, a simple and economical capillary non-gel sieving electrophoresis-LED induced fluorescence detection (NGCE-LEDIF) platform coupled with catalytic hairpin assembly (CHA) as the signal amplification strategy is proposed for quantitative detection of PIK3CA E542K and TP53 (two types of ctDNA associated with GC). We have reasonably designed two pairs of programmable oligonucleotide hairpin probes for PIK3CA E542K and TP53. Using a one-pot reaction, the presence of ctDNA triggers the cyclic amplification of CHA, forming numerous thermodynamically stable H1/H2 double-strands. The H1/H2 double-stranded DNA catalyzed by PIK3CA E542K and TP53 can be easily separated by NGCE due to their different lengths, enabling simultaneous detection of both ctDNAs. Under optimal experimental conditions, the detection limits of this strategy for detecting GC-related biomarkers PIK3CA E542K and TP53 are 20.35 pM and 19.61 pM, respectively, and can achieve 730-fold signal amplification. This strategy has a good recovery in the serum matrix. The results of this study show that this strategy has significant advantages such as high selectivity, a simple process, no special instruments and equipment, no need for fluorescence modification of hairpin probes in advance, high automation, low cost, and minimal sample consumption. This provides a powerful method for the detection of trace cancer biomarkers in the serum matrix with good application prospects.


Asunto(s)
Técnicas Biosensibles , ADN Tumoral Circulante , ADN Catalítico , ADN Tumoral Circulante/genética , ADN/genética , Espectrometría de Fluorescencia/métodos , Electroforesis Capilar , Fosfatidilinositol 3-Quinasa Clase I/genética , Técnicas Biosensibles/métodos , Límite de Detección
6.
Phys Chem Chem Phys ; 26(4): 3044-3050, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38180238

RESUMEN

The electrosynthesis of hydrogen peroxide (H2O2) offers a sustainable and viable option for generating H2O2 directly, as an alternative to the anthraquinone oxidation method. This study focuses on the comparative study of Co nanoparticles and single-atomic Co sites (Co SACs) that were encapsulated into nitrogen-doped carbon for the electrosynthesis of H2O2, which has been synthesized by direct pyrolysis of Zn/Co-ZIF or Co-based zeolitic imidazolate frameworks (ZIF-67). The electrochemical measurement results demonstrate that the coexistence of Co nanoparticles and single-atomic Co sites in the CoNC catalyst is more conducive for H2O2 production compared to Co SACs only, possessing better H2O2 selectivity of 73.3% and higher faradaic efficiency of 87%. The improved performance of CoNC with SACs can be attributed to the presence of additional Co nanoparticles in the nitrogen-doped carbon layers.

7.
Plant Cell Rep ; 43(6): 157, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819475

RESUMEN

KEY MESSAGE: CmMYB308 was identified as a key regulator in chrysanthemum flower color variation from purple to pink by conducting transcriptome and metabolome analysis. CmMYB308 can inhibit anthocyanin biosynthesis by suppressing the expression of CmPAL, CmC4H, and Cm4CL. Flower color variation is a widespread natural occurrence that plays a significant role in floral breeding. We discovered a variation in the flower of the chrysanthemum cultivar 'Dante Purple' (abbreviated as 'DP'), where the flower color shifted from purple to pink. We successfully propagated these pink flowers through tissue culture and designated them as DPM. By conducting transcriptome and metabolome analysis, we identified a reduction in the expression of critical genes involved in anthocyanin biosynthesis-CmPAL, CmC4H, and Cm4CL-in the DPM. This downregulation led to an accumulation of phenylalanine and cinnamic acid within the general phenylpropanoid pathway (GPP), which prevented their conversion into cyanidin and cyanidin 3-glucoside. As a result, the flowers turned pink. Additional transformation and biochemical experiments confirmed that the upregulation of CmMYB308 gene expression in the DPM directly suppressed CmPAL-1 and CmC4H genes, which indirectly affected Cm4CL-3 expression and ultimately inhibited anthocyanin biosynthesis in the DPM. This study offers a preliminary insight into the molecular mechanism underlying chrysanthemum flower color mutation, paving the way for genetic improvements in chrysanthemum flower color breeding.


Asunto(s)
Antocianinas , Chrysanthemum , Flores , Regulación de la Expresión Génica de las Plantas , Pigmentación , Proteínas de Plantas , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antocianinas/metabolismo , Pigmentación/genética , Transcriptoma/genética , Metabolómica/métodos , Metaboloma/genética , Perfilación de la Expresión Génica , Color , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Psychol Health Med ; : 1-17, 2024 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-39488735

RESUMEN

Previous studies showed that loneliness and psychological distress are related. However, the potential mechanisms involved in this relationship are unknown. This study examined the mediating effect of mobile phone addiction and the moderating effect of core self-evaluation on the relationship between mobile phone addiction and psychological distress. A total of 826 college students were recruited. A cross-sectional study design and an online questionnaire survey were employed to measure loneliness, mobile phone addiction, core self-evaluation, and psychological distress in college students, and used the PROCESS macro program to conduct moderated mediation analysis. Loneliness was significantly and positively associated with psychological distress, mobile phone addiction partially mediated the relation between Loneliness and college students' psychological distress and this indirect path was moderated by core self-evaluations. Specifically, the effect of mobile phone addiction on psychological distress was stronger for college students with lower core self-evaluations than for those with higher core self-evaluations. The results are helpful to comprehend the producing mechanism of psychological distress and provide a theoretical basis for the intervention of psychological distress.

9.
BMC Bioinformatics ; 24(1): 44, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765282

RESUMEN

BACKGROUND: XRCC4 is a NHEJ factor identified recently that plays a vital role in repairing DNA double-stranded breaks. Studies have reported the associations between abnormal expression of XRCC4 and tumor susceptibility and radiosensitivity, but the potential biological mechanisms by which XRCC4 exerts effects on tumorigenesis are not fully understood. This study aimed to systematically investigate the role of XRCC4 across cancer types. METHODS: The TIMER, GTEX and Xiantao Academic database were used to interpret the expression of XRCC4. Genomic alterations and protein expression in human organic and tumor tissues were applied in cBioPortal and the Human Protein Atlas databases. Correlations between XRCC4 expression and immune and molecular subtypes were analyzed by using the TISIDB database. Protein-protein interactions, GO and KEGG enrichment were also applied for XRCC4-related genes. The TIMER and the Tumor Immune Single Cell Hub (TISCH) online databases were used to explore the relationship between XRCC4 and tumor immune microenvironment. Drug sensitivity information was acquired from the CellMiner database to analyze the effect of XRCC4 on sensitivity analysis. RESULTS: The XRCC4 expression was significantly upregulated in 15 tumor types and downregulated in two tumor types compared with the normal tissues, most of which were validated by the results of Xiantao academic platform. XRCC4 was expressed at intermediate level in malignant cells. The XRCC4 expression was related to the molecular and immune subtypes of human cancers, and the survival outcome of 11 types of cancers, including KIRC, STAD and LIHC. The main type of frequent genetic alteration is amplification. Strong correlations were also found between XRCC4 and immune checkpoint genes in 33 human cancers. Furthermore, the abnormal expression of XRCC4 was related to immune cell infiltration and drug sensitivity. Enrichment analysis showed that XRCC4 was significantly correlated with DNA damage response. CONCLUSIONS: This comprehensive pan-cancer analysis suggested that XRCC4 may play a vital role in the prognosis and immunotherapy response in cancer patients, and it is a promising therapy target in the future.


Asunto(s)
Neoplasias , Humanos , Pronóstico , Neoplasias/genética , Bases de Datos de Proteínas , Biomarcadores , Microambiente Tumoral
10.
J Am Chem Soc ; 145(21): 11633-11642, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37203139

RESUMEN

Development of highly efficient near-infrared (NIR)-excited photosensitizers is hampered by the fast nonradiative vibrational relaxation process regulated by the energy gap law. Here, from the fundamental perspective we propose that the intermolecular coupling of well-designed photosensitizers has the potential to facilitate exciton delocalization and hence reduce the exciton-vibration coupling, thereby boosting their phototherapeutic efficacy via inhibition of the vibrational relaxation pathway. Such conceived NIR-excited metallo-photosensitizers (IrHA1 and IrHA2) were prepared and studied for experimental validation. The resulting iridium complexes exhibited a little singlet oxygen (1O2) production in the monomeric state, but produced substantially enhanced 1O2 generation efficiency via benefiting from the exciton-vibration decoupling in the self-assembly state. Particularly, IrHA2 exhibits an unprecedented high 1O2 quantum yield of 54.9% (FDA-approved NIR dye indocyanine green: ΦΔ = 0.2%) under 808 nm laser irradiation with negligible heat generation, probably attributed to the suppression of vibronic couplings from the stretching mode of the acceptor ligand. In phototherapy, IrHA2-NPs with high biocompatibility and low dark toxicity can induce substantial tumor regression with 92.9% tumor volume reduction in vivo. This self-assembly-induced vibronic decoupling strategy would offer an effective approach to the design of high-performance NIR-excited photosensitizers.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fototerapia/métodos , Oxígeno Singlete
11.
J Neurochem ; 167(3): 410-426, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37753942

RESUMEN

Microglia play a crucial role in regulating neuroinflammation in the pathogenesis of neonatal hypoxic-ischemic brain damage (HIBD). Pyroptosis, an inflammatory form of programmed cell death, has been implicated in HIBD; however, its underlying mechanism remains unclear. We previously demonstrated that high-mobility group box 1 protein (HMGB1) mediates neuroinflammation and microglial damage in HIBD. In this study, we aimed to investigate the association between HMGB1 and microglial pyroptosis and elucidate the mechanism involved in rats with HIBD (both sexes were included) and in BV2 microglia subjected to oxygen-glucose deprivation. Our results showed that HMGB1 inhibition by glycyrrhizin (20 mg/kg) reduced the expression of microglial pyroptosis-related proteins, including caspase-1, the N-terminus fragment of gasdermin D (N-GSDMD), and pyroptosis-related inflammatory factors, such as interleukin (IL) -1ß and IL-18. Moreover, HMGB1 inhibition resulted in reduced neuronal damage in the hippocampus 72 h after HIBD and ultimately improved neurobehavior during adulthood, as evidenced by reduced escape latency and path length, as well as increased time and distance spent in the target quadrant during the Morris water maze test. These results revealed that HIBD-induced pyroptosis is mediated by HMGB1/receptor for advanced glycation end products (RAGE) signaling (inhibition by FPS-ZM1, 1 mg/kg) and the activation of cathespin B (cat B). Notably, cat B inhibition by CA074-Me (5 mg/kg) also reduced hippocampal neuronal damage by suppressing microglial pyroptosis, thereby ameliorating learning and memory impairments caused by HIBD. Lastly, we demonstrated that microglial pyroptosis may contribute to neuronal damage through the HMGB1/RAGE/cat B signaling pathway in vitro. In conclusion, these results suggest that HMGB1/RAGE/cat B inhibitors can alleviate hippocampal injury by regulating microglial pyroptosis and caspase activation in HIBD, thereby reducing the release of proinflammatory mediators that destroy hippocampal neurons and induce spatial memory impairments.

12.
Anal Chem ; 95(26): 9932-9939, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37348843

RESUMEN

The global transition from fossil fuels to green energy underpins the need for efficient and reliable energy storage systems. Advanced analysis and characterization of battery materials is not only important to understand fundamental battery properties but also crucial for their continued development. A deep understanding of these systems is often difficult to obtain through only pre- and/or post-mortem analyses, with the full complexity of a battery being hidden in its operational state. Thus, we have developed an operando methodology to analyze solid-state batteries (SSBs) structurally as well as chemically before, during, and after cycling. The approach is based on a specially designed sample holder, which enables a variety of electrochemical experiments. Since the entire workflow is performed within a single focused ion beam scanning electron microscope equipped with an in-house developed magnetic sector secondary ion mass spectrometer, we are able to pause the cycling at any time, perform analysis, and then continue cycling. Microstructural analysis is performed via secondary electron imaging, and the chemical mapping is performed using the secondary ion mass spectrometer. In this proof-of-concept study, we were able to identify dendrites in a short-circuited symmetric cell and to chemically map dendritic structures. While this methodology focuses on SSBs, the approach can directly be adapted to different battery systems and beyond. Our technique clearly has an advantage over many alternatives for battery analysis as no transfer of samples between instruments is needed and a correlation between the microstructure, chemical composition, and electrochemical performance is obtained directly.

13.
Small ; 19(12): e2206472, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36642818

RESUMEN

The development of highly efficient and cost-effective hydrogen evolution reaction (HER) catalysts is highly desirable to efficiently promote the HER process, especially under alkaline condition. Herein, a polyoxometalates-organic-complex-induced carbonization method is developed to construct MoO2 /Mo3 P/Mo2 C triple-interface heterojunction encapsulated into nitrogen-doped carbon with urchin-like structure using ammonium phosphomolybdate and dopamine. Furthermore, the mass ratio of dopamine and ammonium phosphomolybdate is found critical for the successful formation of such triple-interface heterojunction. Theoretical calculation results demonstrate that such triple-interface heterojunctions possess thermodynamically favorable water dissociation Gibbs free energy (ΔGH2O ) of -1.28 eV and hydrogen adsorption Gibbs free energy (ΔGH* ) of -0.41 eV due to the synergistic effect of Mo2 C and Mo3 P as water dissociation site and H* adsorption/desorption sites during the HER process in comparison to the corresponding single components. Notably, the optimal heterostructures exhibit the highest HER activity with the low overpotential of 69 mV at the current density of 10 mA cm-2 and a small Tafel slope of 60.4 mV dec-1 as well as good long-term stability for 125 h. Such remarkable results have been theoretically and experimentally proven to be due to the synergistic effect between the unique heterostructures and the encapsulated nitrogen-doped carbon.

14.
Microb Cell Fact ; 22(1): 164, 2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37635252

RESUMEN

BACKGROUND: Recently, researchers have focused on the search for alternatives to conventional antibiotics. Antimicrobial peptides are small bioactive peptides that regulate immune activation and have antibacterial activity with a reduced risk of bacterial resistance. Porcine myeloid antibacterial peptide 37 (PMAP-37) is a small-molecule peptide with broad-spectrum antibacterial activity isolated from pig bone marrow, and PMAP-37(F34-R) is its analogue. In this study, PMAP-37(F34-R) was recombinantly expressed in Pichia pastoris, and the recombinant peptide was further investigated for its antibacterial properties, mechanism and preservative in plums. RESULTS: To obtain a Pichia pastoris strain expressing PMAP-37(F34-R), we constructed a plasmid expressing recombinant PMAP-37(F34-R) (pPICZα-PMAP-37(F34-R)-A) and introduced it into Pichia pastoris. Finally, we obtained a highly active recombinant peptide, PMAP-37(F34-R), which inhibited the activity of both Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration is 0.12-0.24 µg/mL, and it can destroy the integrity of the cell membrane, leading to cell lysis. It has good stability and is not easily affected by the external environment. Hemolysis experiments showed that 0.06 µg/mL-0.36 µg/mL PMAP-37(F34-R) had lower hemolysis ability to mammalian cells, and the hemolysis rate was below 1.5%. Additionally, 0.36 µg/mL PMAP-37(F34-R) showed a good preservative effect in plums. The decay and weight loss rates of the treated samples were significantly lower than those of the control group, and the respiratory intensity of the fruit was delayed in the experimental group. CONCLUSIONS: In this study, we constructed a recombinant Pichia pastoris strain, which is a promising candidate for extending the shelf life of fruits and has potential applications in the development of new preservatives.


Asunto(s)
Prunus domestica , Animales , Porcinos , Antibacterianos/farmacología , Hemólisis , Bacterias Gramnegativas , Bacterias Grampositivas , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias , Mamíferos
15.
Inorg Chem ; 62(24): 9649-9660, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37267472

RESUMEN

In this work, four naphthalene diimide (NDI)-functionalized half-sandwich Ru(II) complexes Ru1-Ru4 bearing the general formula [(η6-arene)RuII(N^N)Cl]PF6, where arene = benzene (bn), p-cymene (p-cym), 1,3,5-trimethylbenzene (tmb), and hexamethylbenzene (hmb), have been synthesized and characterized. By introducing the NDI unit into the N,N-chelating ligand of these half-sandwich complexes, the poor luminescent half-sandwich complexes are endowed with excellent emission performance. Besides, modification on the arene ligand of arene-Ru(II) complexes can influence the electron density of the metal center, resulting in great changes in the kinetic properties, catalytic activities in the oxidative conversion of NADH to NAD+, and biological activities of these compounds. Particularly, Ru4 exhibits the highest reactivity and the strongest inhibitory activity against the growth of three tested cancer cell lines. Further study revealed that Ru4 can enter cells quickly in an energy-dependent manner and preferentially accumulate in the mitochondria of MDA-MB-231 cells, inducing cell apoptosis via reactive oxygen species overproduction and mitochondrial dysfunction. Significantly, Ru4 can effectively inhibit the cell migration and invasion. Overall, the complexation with NDI and modification on the arene ligand endowed the half-sandwich Ru(II) complexes with improved spectroscopic properties and anticancer activities, highlighting their potential applications for cancer treatment.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Estructura Molecular , Ligandos , Antineoplásicos/farmacología , Antineoplásicos/química , Imidas/farmacología , Rutenio/farmacología , Rutenio/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Línea Celular Tumoral
16.
J Pathol ; 256(1): 25-37, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34543458

RESUMEN

Upstream stimuli for myofibroblast activation are of considerable interest for understanding the mechanisms underlying renal fibrosis. Activin B, a member of the TGF-ß family, exists as a homodimer of inhibin subunit beta B (INHBB), but its role in renal fibrosis remains unknown. We found that INHBB expression was significantly increased in various renal fibrosis models and human chronic kidney disease specimens with renal fibrosis. Notably, the increase of INHBB occurred mainly in the tubular epithelial cells (TECs). In vivo, inhibiting INHBB blocked the activation of interstitial fibroblasts and ameliorated the renal fibrosis induced by unilateral ureteral obstruction or ischemia-reperfusion injury, while ectopic expression of INHBB in the TECs was able to activate interstitial fibroblasts and initiate interstitial fibrosis. In vitro, overexpression of INHBB in TECs led to the secretion of activin B, thereby promoting the proliferation and activation of interstitial fibroblasts through activin B/Smad signaling. Furthermore, inhibition of activin B/Smad signaling attenuated the fibrotic response caused by tubular INHBB. Mechanistically, the upregulation of INHBB depended on the transcription factor Sox9 in the injured TECs. Clinical analyses also identified a positive correlation between Sox9 and INHBB expression in human specimens, suggesting the Sox9/INHBB axis as a positive regulator of renal fibrosis. In conclusion, tubule-derived INHBB is implicated in the pathogenesis of renal fibrosis by activating the surrounding fibroblasts in a paracrine manner, thereby exhibiting as a potential therapeutic target. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Fibroblastos/metabolismo , Fibrosis/metabolismo , Subunidades beta de Inhibinas/metabolismo , Animales , Proliferación Celular/fisiología , Fibroblastos/patología , Fibrosis/patología , Humanos , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Regulación hacia Arriba , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
17.
Mol Breed ; 43(6): 47, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37309310

RESUMEN

Hybrid breeding can help us to meet the challenge of feeding a growing world population with limited agricultural land. The demand for soybean is expected to grow; however, the hybrid soybean is still in the process of commercialization even though considerable progress has been made in soybean genome and genetic studies in recent years. Here, we summarize recent advances in male sterility-based breeding programs and the current status of hybrid soybean breeding. A number of male-sterile lines with cytoplasmic male sterility (CMS), genic-controlled photoperiod/thermo-sensitive male sterility, and stable nuclear male sterility (GMS) have been identified in soybean. More than 40 hybrid soybean varieties have been bred using the CMS three-line hybrid system and the cultivation of hybrid soybean is still under way. The key to accelerating hybrid soybean breeding is to increase the out-crossing rate in an economical way. This review outlines current problems with the hybrid soybean breeding systems and explores the current efforts to make the hybrid soybean a commercial success.

18.
Genet Sel Evol ; 55(1): 87, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062365

RESUMEN

BACKGROUND: Egg-laying performance is economically important in poultry breeding programs. Crossbreeding between indigenous and elite commercial lines to exploit heterosis has been an upward trend in traditional layer breeding for niche markets. The objective of this study was to analyse the genetic background and to estimate the heterosis of longitudinal egg-laying traits in reciprocal crosses between an indigenous Beijing-You and an elite commercial White Leghorn layer line. Egg weights were measured for the first three eggs, monthly from 28 to 76 weeks of age, and at 86 and 100 weeks of age. Egg quality traits were measured at 32, 54, 72, 86, and 100 weeks of age. Egg production traits were measured from the start of lay until 43, 72, and 100 weeks of age. Heritabilities and phenotypic and genetic correlations were estimated. Heterosis was estimated as the percentage difference of performance of a crossbred from that of the parental average. Reciprocal cross differences were estimated as the difference between the reciprocal crossbreds as a percentage of the parental average. RESULTS: Estimates of heritability of egg weights ranged from 0.29 to 0.75. Estimates of genetic correlations between egg weights at different ages ranged from 0.72 to 1.00. Estimates of heritability for cumulative egg numbers until 43, 72, and 100 weeks of age were around 0.15. Estimates of heterosis for egg weight and cumulative egg number increased with age, ranging from 1.0 to 9.0% and from 1.4 to 11.6%, respectively. From 72 to 100 weeks of age, crossbreds produced more eggs per week than the superior parent White Leghorn (3.5 eggs for White Leghorn, 3.8 and 3.9 eggs for crossbreds). Heterosis for eggshell thickness ranged from 2.7 to 6.6% when using Beijing-You as the sire breed. No significant difference between reciprocal crosses was observed for the investigated traits, except for eggshell strength at 54 weeks of age. CONCLUSIONS: The heterosis was substantial for egg weight and cumulative egg number, and increased with age, suggesting that non-additive genetic effects are important in crossbreds between the indigenous and elite breeds. Generally, the crossbreds performed similar to or even outperformed the commercial White Leghorns for egg production persistency.


Asunto(s)
Pollos , Vigor Híbrido , Animales , Pollos/genética , Oviposición/genética , Hibridación Genética , Aves de Corral
19.
Genet Sel Evol ; 55(1): 69, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803296

RESUMEN

BACKGROUND: Heterosis is routinely exploited to improve animal performance. However, heterosis and its underlying molecular mechanism for feed intake and efficiency have been rarely explored in chickens. Feed efficiency continues to be an important breeding goal trait since feed accounts for 60 to 70% of the total production costs in poultry. Here, we profiled the mRNA-lncRNA landscape of 96 samples of the hypothalamus, liver and duodenum mucosa from White Leghorn (WL), Beijing-You chicken (YY), and their reciprocal crosses (WY and YW) to elucidate the regulatory mechanisms of heterosis. RESULTS: We observed negative heterosis for both feed intake and residual feed intake (RFI) in YW during the laying period from 43 to 46 weeks of age. Analysis of the global expression pattern showed that non-additivity was a major component of the inheritance of gene expression in the three tissues for YW but not for WY. The YW-specific non-additively expressed genes (YWG) and lncRNA (YWL) dominated the total number of non-additively expressed genes and lncRNA in the hypothalamus and duodenum mucosa. Enrichment analysis of YWG showed that mitochondria components and oxidation phosphorylation (OXPHOS) pathways were shared among the three tissues. The OXPHOS pathway was enriched by target genes for YWL with non-additive inheritance of expression in the liver and duodenum mucosa. Weighted gene co-expression network analysis revealed divergent co-expression modules associated with feed intake and RFI in the three tissues from WL, YW, and YY. Among the negatively related modules, the OXPHOS pathway was enriched by hub genes in the three tissues, which supports the critical role of oxidative phosphorylation. Furthermore, protein quantification of ATP5I was highly consistent with ATP5I expression in the liver, which suggests that, in crossbred YW, non-additive gene expression is down-regulated and decreases ATP production through oxidative phosphorylation, resulting in negative heterosis for feed intake and efficiency. CONCLUSIONS: Our results demonstrate that non-additively expressed genes and lncRNA involved in oxidative phosphorylation in the hypothalamus, liver, and duodenum mucosa are key regulators of the negative heterosis for feed intake and RFI in layer chickens. These findings should facilitate the rational choice of suitable parents for producing crossbred chickens.


Asunto(s)
Pollos , ARN Largo no Codificante , Animales , Pollos/genética , ARN Largo no Codificante/genética , Vigor Híbrido , Perfilación de la Expresión Génica/veterinaria , Ingestión de Alimentos/genética , Alimentación Animal/análisis
20.
Altern Ther Health Med ; 29(8): 310-314, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37632953

RESUMEN

Objective: To investigate the expression of E7 protein and its relationship with the progression and prognosis of cervical pre-cancerous lesions in patients with human papillomavirus (HPV) 16/18 infections. Methods: A total of 211 patients with positive HPV 16/18 were included in this study. Patients were categorized into three groups based on colposcopy results: NILM (Negative for Intraepithelial Lesion or Malignancy), LSIL (Low-Grade Squamous Intraepithelial Lesion), and HSIL (High-Grade Squamous Intraepithelial Lesion). E7 protein levels were quantified using Immunochromatographic Assay and compared using ANOVA. Cervical E7 protein levels were assessed before and one year after cervical cone biopsy in the HSIL group. Results: Among HPV 16/18-positive patients with normal Cervical Thinprep Cytologic Test (TCT) results, E7 protein content exhibited abnormal and significant values (P = .001). Mean E7 protein levels for the NILM, LSIL, and HSIL groups were 44.52 ng/mL, 114.60 ng/mL, and 389.20 ng/mL, respectively, and showed statistical significance (P = .000). In the HSIL group, E7 protein levels in HPV-negative patients were significantly lower one year after cervical cone biopsy compared to before (P = .001). However, HPV-positive patients displayed no significant alteration in E7 protein levels before and after biopsy (P = .08). Conclusions: E7 protein levels in detached cervical cells are closely associated with the severity and prognosis of cervical pre-cancerous lesions, suggesting their potential role as a biomarker for monitoring cervical lesion development.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Papillomavirus Humano 16 , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/diagnóstico , Infecciones por Papillomavirus/patología , Papillomavirus Humano 18 , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA