Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 97(11): e0130623, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37943055

RESUMEN

IMPORTANCE: In this study, we have found that the existence of Smyd3 promoted the replication of SCRV. Additionally, we report that Smyd3 negatively regulates the NF-κB and IRF3 signaling pathway by facilitating the degradation of TAK1 in fish. Our findings suggest that Smyd3 interacts with TAK1. Further investigations have revealed that Smyd3 specifically mediates K48-linked ubiquitination of TAK1 and enhances TAK1 degradation, resulting in a significant inhibition of the NF-κB and IRF3 signaling pathway. These results not only contribute to the advancement of fish anti-viral immunity but also provide new evidence for understanding the mechanism of TAK1 in mammals.


Asunto(s)
Enfermedades de los Peces , Factor 3 Regulador del Interferón , Quinasas Quinasa Quinasa PAM , FN-kappa B , Transducción de Señal , Animales , Quinasas Quinasa Quinasa PAM/metabolismo , FN-kappa B/metabolismo , Ubiquitinación , Enfermedades de los Peces/virología , Peces , Rhabdoviridae , Factor 3 Regulador del Interferón/metabolismo
2.
Cytokine ; 181: 156669, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38875750

RESUMEN

OBJECTIVES: Alveolar echinococcosis (AE) represents one of the deadliest helminthic infections, characterized by an insidious onset and high lethality. METHODS: This study utilized the Gene Expression Omnibus (GEO) database, applied Weighted Correlation Network Analysis (WGCNA) and Differential Expression Analysis (DEA), and employed the Matthews Correlation Coefficient (MCC) to identify CCL17 and CCL19 as key genes in AE. Immunohistochemistry and immunofluorescence co-localization techniques were used to examine the expression of CCL17 and CCL19 in liver tissue lesions of AE patients. Additionally, a mouse model of multilocular echinococcus larvae infection was developed to study the temporal expression patterns of these genes, along with liver fibrosis and inflammatory responses. RESULTS: The in vitro model simulating echinococcal larva infection mirrored the hepatic microenvironment post-infection with multilocular echinococcal tapeworms. Quantitative RT-PCR analysis showed that liver fibrosis occurred in AE patients, with proximal activation and increased expression of CCL17 and CCL19 over time post-infection. Notably, expression peaked during the late stages of infection. Similarly, F4/80, a macrophage marker, exhibited corresponding trends in expression. Upon stimulation of normal hepatocytes by vesicular larvae in cellular experiments, there was a significant increase in CCL17 and CCL19 expression at 12 h post-infection, mirroring the upregulation observed with F4/80. CONCLUSION: CCL17 and CCL19 facilitate macrophage aggregation via the chemokine pathway and their increased expression correlates with the progression of infection, suggesting their potential as biomarkers for AE progression.

3.
Environ Sci Technol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916402

RESUMEN

Geogenic arsenic (As) in groundwater is widespread, affecting drinking water and irrigation supplies globally, with food security and safety concerns on the rise. Here, we present push-pull tests that demonstrate field-scale As immobilization through the injection of small amounts of ferrous iron (Fe) and nitrate, two readily available agricultural fertilizers. Such injections into an aquifer with As-rich (200 ± 52 µg/L) reducing groundwater led to the formation of a regenerable As reactive filter in situ, producing 15 m3 of groundwater meeting the irrigation water quality standard of 50 µg/L. Concurrently, sediment magnetic properties were markedly enhanced around the well screen, pointing to neo-formed magnetite-like minerals. A reactive transport modeling approach was used to quantitatively evaluate the experimental observations and assess potential strategies for larger-scale implementation. The modeling results demonstrate that As removal was primarily achieved by adsorption onto neo-formed minerals and that an increased adsorption site density coincides with the finer-grained textures of the target aquifer. Up-scaled model simulations with 80-fold more Fe-nitrate reactants suggest that enough As-safe water can be produced to irrigate 1000 m2 of arid land for one season of water-intense rice cultivation at a low cost without causing undue contamination in surface soils that threatens agricultural sustainability.

4.
J Cell Mol Med ; 27(22): 3578-3590, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37605453

RESUMEN

Gastric cancer peritoneal metastases (GCPM) is a leading cause of GC-related death. Early detection of GCPM is critical for improving the prognosis of advanced GC. Differentially expressed genes (DEGs) were identified in the GSE62254 database to distinguish between GCPM and non-GCPM. The gastric cancer peritoneal metastases signature (GCPMs) was developed using DEGs. We analysed the effectiveness of GCPMs as indicators for prognosis, chemotherapy, and immune therapy response in GC patients. Subsequently, we analysed the correlation between GCPMs and immune microenvironment as well as immune escape in GC patients. Random forest model and immunohistochemistry was utilized to identify the crucial genes that can aid in the diagnosis of GCPM. We identified five DEGs and utilized their expression to construct GCPMs. Patients with high GCPMs had a higher likelihood of a poor prognosis, while those with low GCPMs appeared to potentially benefit more from chemotherapy. GCPMs were a dependable marker for predicting the response to immunotherapy. Additionally, GCPMs was found to be significantly linked to stromal score and cancer-associated fibroblasts. SYNPO2 has been identified as the gene with the highest significance in the diagnosis of GCPM. Immunohistochemistry suggests that SYNPO2-positive expression in tumour cells, fibroblasts, inflammatory cell may be associated with promoting peritoneal metastasis in GC. GCPMs have shown to be a promising biomarker for predicting the prognosis and response of GC patients to chemotherapy and immunotherapy. The use of GCPMs for individual tumour evaluation may pave the way for personalized treatment for GC patients in the future.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Peritoneales , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/terapia , Inmunoterapia , Peritoneo , Microambiente Tumoral/genética
5.
Magn Reson Med ; 89(1): 384-395, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36111354

RESUMEN

PURPOSE: To investigate the effects of gadolinium (Gd) retention of macrocyclic (gadobutrol) or linear (gadopentetate) Gd-based contrast agents (GBCAs) on neuron loss, neurological deficits, and sensory behavior in mice with or without stroke. METHODS: Ninety C57BL/6 mice underwent sham (n = 36) or transient middle cerebral artery occlusion (tMCAO) (n = 54) surgery and then received intraperitoneal injections of 5.0 mmol/kg gadobutrol, 5.0 mmol/kg gadopentetate or saline (10 ml/kg/administration) per day for 3 consecutive days. The Gd concentration in the ischemic cerebrum was quantified by inductively coupled plasma mass spectrometry on Day 1 and Day 28 after the last injection (post-injection, p. i.). Neuron loss, glia activation and neurological deficits were assessed on Day 1 and 28 p. i. Sensory behavior was also assessed on Day 28 p. i. RESULTS: Gd concentrations were higher in the brains of tMCAO mice than in those of sham mice on Days 1 p. i. of both GBCAs (gadobutrol, p < 0.05; gadopentetate, p < 0.001) and 28 p. i of gadopentetate. (p < 0.001). Sham or tMCAO mice injected with GBCAs showed no significant difference in neuron loss, glia activation, neurological deficits, brain atrophy, or hippocampus-dependent memory (all p > 0.05). Both gadobutrol and gadopentetate induced mechanical and heat hyperalgesia in sham mice (all p < 0.05). However, mechanical hyperalgesia but rather heat hyperalgesia was found in tMCAO mice with the highest force tested (1.0 g) and statistically significant in both paws (right and left) with gadopentetate only (p < 0.05). CONCLUSIONS: Neither gadobutrol nor gadopentetate worsened neuron loss, glia activation, brain atrophy, neurological deficits, or hippocampus-dependent memory after tMCAO. However, GBCA administration induced mechanical hyperalgesia in sham and tMCAO mice although in the same level, which may be an important consideration for patients with central post-stroke pain and those who are sensitive to pain and about to receive multiple GBCA administrations.


Asunto(s)
Cerebro , Compuestos Organometálicos , Animales , Ratones , Atrofia , Encéfalo , Medios de Contraste , Gadolinio , Gadolinio DTPA , Hiperalgesia , Isquemia , Ratones Endogámicos C57BL , Neuronas , Dolor
6.
J Biol Phys ; 49(4): 463-482, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37572243

RESUMEN

Excessive neural synchronization of neural populations in the beta (ß) frequency range (12-35 Hz) is intimately related to the symptoms of hypokinesia in Parkinson's disease (PD). Studies have shown that delayed feedback stimulation strategies can interrupt excessive neural synchronization and effectively alleviate symptoms associated with PD dyskinesia. Work on optimizing delayed feedback algorithms continues to progress, yet it remains challenging to further improve the inhibitory effect with reduced energy expenditure. Therefore, we first established a neural mass model of the cortex-basal ganglia-thalamus-pedunculopontine nucleus (CBGTh-PPN) closed-loop system, which can reflect the internal properties of cortical and basal ganglia neurons and their intrinsic connections with thalamic and pedunculopontine nucleus neurons. Second, the inhibitory effects of three delayed feedback schemes based on the external globus pallidum (GPe) on ß oscillations were investigated separately and compared with those based on the subthalamic nucleus (STN) only. Our results show that all four delayed feedback schemes achieve effective suppression of pathological ß oscillations when using the linear delayed feedback algorithm. The comparison revealed that the three GPe-based delayed feedback stimulation strategies were able to have a greater range of oscillation suppression with reduced energy consumption, thus improving control performance effectively, suggesting that they may be more effective for the relief of Parkinson's motor symptoms in practical applications.


Asunto(s)
Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Retroalimentación , Ganglios Basales/patología , Ganglios Basales/fisiología , Tálamo/patología , Tálamo/fisiología , Núcleo Subtalámico/patología , Núcleo Subtalámico/fisiología , Enfermedad de Parkinson/patología
7.
Appl Math Comput ; : 128210, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38620200

RESUMEN

In view of the spread of corona virus disease 2019 (COVID-19), this paper proposes a fractional-order generalized SEIR model. The non-negativity of the solution of the model is discussed. Based on the established threshold R0, the existence of the disease-free equilibrium and endemic equilibrium is analyzed. Then, sufficient conditions are established to ensure the local asymptotic stability of the equilibria. The parameters of the model are identified based on the statistical data of COVID-19 cases. Furthermore, the validity of the model for describing the COVID-19 outbreak is verified. Meanwhile, the accuracy of the relevant theoretical results are also verified. Considering the relevant strategies of COVID-19 prevention and control, the fractional optimal control problem (FOCP) is proposed. Numerical schemes for Riemann-Liouville (R-L) fractional-order adjoint system with transversal conditions is presented. Based on the relevant statistical data, the corresponding FOCP is numerically solved, and the control effect of the COVID-19 outbreak under the optimal control strategy is discussed.

8.
BMC Neurosci ; 23(1): 78, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36536272

RESUMEN

BACKGROUND: Electromagnetic induction has recently been considered as an important factor affecting the activity of neurons. However, as an important form of intervention in epilepsy treatment, few people have linked the two, especially the related dynamic mechanisms have not been explained clearly. METHODS: Considering that electromagnetic induction has some brain area dependence, we proposed a modified two-compartment cortical thalamus model and set eight different key bifurcation parameters to study the transition mechanisms of epilepsy. We compared and analyzed the application and getting rid of memristors of single-compartment and coupled models. In particular, we plotted bifurcation diagrams to analyze the dynamic mechanisms behind abundant discharge activities, which mainly involved Hopf bifurcations (HB), fold of cycle bifurcations (LPC) and torus bifurcations (TR). RESULTS: The results show that the coupled model can trigger more discharge states due to the driving effect between compartments. Moreover, the most remarkable finding of this study is that the memristor shows two sides. On the one hand, it may reduce tonic discharges. On the other hand, it may cause new pathological states. CONCLUSIONS: The work explains the control effect of memristors on different brain regions and lays a theoretical foundation for future targeted therapy. Finally, it is hoped that our findings will provide new insights into the role of electromagnetic induction in absence seizures.


Asunto(s)
Epilepsia Tipo Ausencia , Humanos , Convulsiones , Encéfalo , Neuronas , Fenómenos Electromagnéticos , Electroencefalografía
9.
Acta Pharmacol Sin ; 43(6): 1349-1359, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34697419

RESUMEN

Pericytes are present tight around the intervals of capillaries, play an essential role in stabilizing the blood-brain barrier, regulating blood flow and immunomodulation, and persistent contraction of pericytes eventually leads to impaired blood flow and poor clinical outcomes in ischemic stroke. We previously show that iptakalim, an ATP-sensitive potassium (K-ATP) channel opener, exerts protective effects in neurons, and glia against ischemia-induced injury. In this study we investigated the impacts of iptakalim on pericytes contraction in stroke. Mice were subjected to cerebral artery occlusion (MCAO), then administered iptakalim (10 mg/kg, ip). We showed that iptakalim administration significantly promoted recovery of cerebral blood flow after cerebral ischemia and reperfusion. Furthermore, we found that iptakalim significantly inhibited pericytes contraction, decreased the number of obstructed capillaries, and improved cerebral microcirculation. Using a collagen gel contraction assay, we demonstrated that cultured pericytes subjected to oxygen-glucose deprivation (OGD) consistently contracted from 3 h till 24 h during reoxygenation, whereas iptakalim treatment (10 µM) notably restrained pericyte contraction from 6 h during reoxygenation. We further showed that iptakalim treatment promoted K-ATP channel opening via suppressing SUR2/EPAC1 complex formation. Consequently, it reduced calcium influx and ET-1 release. Taken together, our results demonstrate that iptakalim, targeted K-ATP channels, can improve microvascular disturbance by inhibiting pericyte contraction after ischemic stroke. Our work reveals that iptakalim might be developed as a promising pericyte regulator for treatment of stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Adenosina Trifosfato , Animales , Ratones , Microcirculación , Pericitos , Propilaminas , Accidente Cerebrovascular/tratamiento farmacológico
10.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36142731

RESUMEN

As energy metabolism regulation factor, peroxisome proliferator-activated receptor (PPAR) is thought to be a potential target for the treatment of depression. The present study was performed to evaluate the effects of activating PPARß/δ, the most highly expressed subtype in the brain, in depressive in vivo and in vitro models. We observed that PPARß/δ agonist GW0742 significantly alleviated depressive behaviors in mice and promoted the formation of autophagosomes around the damaged mitochondria in hippocampal astrocytes. Our in vitro experiments showed that GW0742 could reduce mitochondrial oxidative stress, and thereby attenuate endoplasmic reticulum (ER) stress-mediated apoptosis pathway via inhibiting IRE1α phosphorylation, subsequently protect against astrocytic apoptosis and loss. Furthermore, we found that PPARß/δ agonist induces astrocytic mitophagy companied with the upregulated UCP2 expressions. Knocking down UCP2 in astrocytes could block the anti-apoptosis and pro-mitophagy effects of GW0742. In conclusion, our findings reveal PPARß/δ activation protects against ER stress-induced astrocytic apoptosis via enhancing UCP2-mediated mitophagy, which contribute to the anti-depressive action. The present study provides a new insight for depression therapy.


Asunto(s)
PPAR delta , PPAR-beta , Animales , Astrocitos/metabolismo , Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Ratones , Mitofagia , PPAR delta/metabolismo , PPAR-beta/metabolismo , Fenoles , Proteínas Serina-Treonina Quinasas , Compuestos de Sulfhidrilo , Tiazoles , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
11.
J Cell Mol Med ; 25(20): 9753-9766, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34514714

RESUMEN

Oridonin, a natural diterpenoid compound extracted from a Chinese herb, has been proved to exert anti-oxidative stress effects in various disease models. The aim of the present study was to investigate the protective effects of oridonin on oxidative stress-induced endothelial injury in ischaemic stroke. We found oridonin repaired blood-brain barrier (BBB) integrity presented with upregulation of tight junction proteins (TJ proteins) expression, inhibited the infiltration of periphery inflammatory cells and neuroinflammation and thereby reduced infarct volume in ischaemic stroke mice. Furthermore, our results showed that oridonin could protect against oxidative stress-induced endothelial injury via promoting nuclear translocation of nuclear factor-erythroid 2 related factor 2 (Nrf-2). The specific mechanism could be the activation of AKT(Ser473)/GSK3ß(Ser9)/Fyn signalling pathway. Our findings revealed the therapeutic effect and mechanism of oridonin in ischaemic stroke, which provided fundamental evidence for developing the extracted compound of Chinese herbal medicine into an innovative drug for ischaemic stroke treatment.


Asunto(s)
Diterpenos de Tipo Kaurano/farmacología , Endotelio/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Biomarcadores , Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Endotelio/efectos de los fármacos , Endotelio/patología , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Inmunohistoquímica , Accidente Cerebrovascular Isquémico/etiología , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxígeno/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo
12.
J Nat Prod ; 84(4): 1294-1305, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33635072

RESUMEN

Glucosamine hydrochloride (GAH), one of the most basic and important derivatives of chitin, is obtained by hydrolysis of chitin in concentrated hydrochloric acid. At present, little is known about how GAH functions in skeletal development. In this report, we demonstrate that GAH, extracted from the cell wall of Agaricus bisporus, acts in a dose-dependent manner to promote not only cartilage and bone development in larvae but also caudal fin regeneration in adult fish. Furthermore, GAH treatment causes a significant increase in expression of bone-related marker genes, indicating its important role in promoting skeletal development. We show that in both larval and adult osteoporosis models induced by high iron osteogenic defects are significantly ameliorated after treatment with GAH, which regulates expression of a series of bone-related genes. Finally, we demonstrate that GAH promotes skeletal development and injury repair through bone morphogenetic protein (Bmp) signaling, and it works at the downstream of the receptor level. Taken together, our findings not only provide a strong research foundation and strategy for the screening of natural osteoporosis drugs and product development using a zebrafish model but also establish the potential for the development of Agaricus bisporus-derived GAH as a new drug for osteoporosis treatment.


Asunto(s)
Agaricus/química , Proteínas Morfogenéticas Óseas/metabolismo , Huesos/efectos de los fármacos , Glucosamina/farmacología , Osteoporosis/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Larva/efectos de los fármacos , Regeneración , Esqueleto/efectos de los fármacos , Pez Cebra
13.
Clin Exp Pharmacol Physiol ; 45(6): 573-580, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29164657

RESUMEN

Some studies have revealed that nicotine can damage the male reproductive system through various means including oxidative stress, which is a primary factor in the pathogenesis of male infertility. The strong anti-oxidative capacity of resveratrol has been demonstrated previously, but its role in the context of male reproduction remains inconclusive. To explore the biological role of resveratrol in protecting male reproductive function and the potential underlying mechanism, nicotine-induced Leydig cells were used as a cell model of oxidative damage. The data showed that resveratrol treatment increased cell viability, SOD activity and anti-apoptotic activity in nicotine-stressed Leydig cells. This effect was accompanied by the upregulation of autophagy, which was illustrated by MDC-LysoTracker red staining. Moreover, pretreating with 3-methyladenine (3-MA), an autophagy inhibitor, attenuated resveratrol-induced Leydig cells autophagy and promoted apoptosis. Apart from this, resveratrol enhanced AMPK phosphorylation but reduced mTOR phosphorylation. Subsequently, upon inhibiting AMPK phosphorylation by AMPK inhibitors, Leydig cell autophagy induced by resveratrol was obviously abolished. In conclusion, resveratrol may exert its cytoprotective role against oxidative injury by the activation of autophagy via AMPK/mTOR pathway.


Asunto(s)
Autofagia/efectos de los fármacos , Citoprotección/efectos de los fármacos , Células Intersticiales del Testículo/citología , Células Intersticiales del Testículo/efectos de los fármacos , Nicotina/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Resveratrol/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba/efectos de los fármacos
14.
Pediatr Cardiol ; 36(7): 1423-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25981561

RESUMEN

This study aims to estimate plasma levels of acylated ghrelin in children with pulmonary hypertension (PH) associated with congenital heart disease (CHD) and to correlate the levels of acylated ghrelin with endothelin-1 (ET-1), nitric oxide (NO), and clinical hemodynamic parameters. We investigated the plasma concentration of acylated ghrelin, ET-1, NO, and the hemodynamic parameters in 20 children with CHD, 20 children with PH-CHD, and 20 normal children. Plasma-acylated ghrelin and NO levels were significantly higher in CHD group than in control subjects (P < 0.001). Moreover, plasma-acylated ghrelin, ET-1, and NO levels were significantly elevated in PH-CHD group compared with the CHD group (P < 0.05). In PH-CHD children, plasma-acylated ghrelin levels correlated positively with pulmonary artery systolic pressure (PASP; r = 0.740, P < 0.001), pulmonary artery diastolic pressure (PADP; r = 0.613, P = 0.004), right ventricular systolic pressure (RVSP; r = 0.642, P = 0.002), mean pulmonary arterial hypertension (mPAP; r = 0.685, P = 0.001), right ventricle diameter (RVD; r = 0.473, P = 0.035), pulmonary artery trunk diameter (PAD; r = 0.613, P = 0.004), NO (r = 0.463, P = 0.04), and ET-1 (r = 0.524, P = 0.018). Plasma-acylated ghrelin levels were elevated both in CHD and in PH-CHD. Increased acylated ghrelin levels correlated positively with ET-1, NO, PASP, PADP, RVSP, mPAP, RVD, and PAD. Acylated ghrelin may be a new biomarker of PH-CHD.


Asunto(s)
Endotelina-1/sangre , Ghrelina/sangre , Cardiopatías Congénitas/sangre , Hipertensión Pulmonar/fisiopatología , Óxido Nítrico/sangre , Arteria Pulmonar/fisiopatología , Biomarcadores , Cateterismo Cardíaco , Estudios de Casos y Controles , Preescolar , Ecocardiografía , Femenino , Cardiopatías Congénitas/complicaciones , Hemodinámica , Humanos , Lactante , Masculino
15.
Sci Total Environ ; 912: 169203, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38086476

RESUMEN

The microbiological ecology of a low-nutrient shallow aquifer with high arsenic content in the Yinchuan Plain was investigated in this study. Amplicon sequencing data from five samples (depths: 1.5 m, 3.5 m, 11.2 m, 19.3 m, and 25.5 m) revealed diverse and adaptable microbial community. Among the microbial community, Comamonas was the most prominent, accounting for 10.52 % of the total. This genus displayed high growth rates, with a maximum growth rate of 12.06 d-1 and a corresponding doubling time of 1.38 days, as determined through an analysis of codon usage bias. Functional annotation of Metagenome-Assembled Genomes (MAGs) for samples at 1.5 m and 11.2 m depths revealed Comamonas' metabolic versatility, including various carbon pathways, assimilative sulfate reduction (ASR), and dissimilatory reduction to ammonium (DNRA). The TPM (Transcripts Per Kilobase of exon model per Million mapped reads) of MAGs at 11.2 m sample was 15.7 and 12.3. The presence of arsenic resistance genes in Comamonas aligns with sediment arsenic levels (65.8 mg/kg for 1.5 m depth, 32.8 mg/kg for 11.2 m depth). This study highlights the role of Comamonas as a 'generalist' bacteria in challenging oligotrophic sediments, emphasizing the significance of such organisms in community stability and ecological functions. ENVIRONMENTAL IMPLICATION: Low-biomass limits the microbial activity and biogeochemical study in oligotrophic environments, which is the typical condition for underground aquatic ecosystems. Facilitated by growth rate estimation, our research focuses on active functional microorganisms and their biogeochemical metabolic in oligotrophic aquifer sediments, revealing their impact on the environment and response to arsenic threats. Findings illuminate the metabolic advantage of a 'generalist life-style' in carbon-scarce environments and contribute to a broader understanding of bacterial ecosystems and environmental impacts in oligotrophic aquifer sediments worldwide.


Asunto(s)
Arsénico , Microbiota , Metagenoma , Arsénico/análisis , Carbono/metabolismo , Bacterias/metabolismo , Sedimentos Geológicos/química
16.
Int Immunopharmacol ; 131: 111808, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38457984

RESUMEN

The pathogen of alveolar echinococcosis (AE) is Echinococcus multilocularis (E. multilocularis), which has the characteristics of diffuse infiltration and growth and has a high mortality rate. At present, the role of macrophages in AE infection has attracted more and more attention, but the new biomarkers and polarization mechanisms of macrophages are rarely studied. In this study, CIBERSORT and WGCNA algorithms were used to establish a weighted gene co-expression network, and MTLN was identified as a biological marker of M2-type macrophages, which participated in energy metabolism of macrophages and mediated inflammatory response, but the role of MTLN in AE was not studied. In this study, liver tissue samples from AE patients were collected and immunofluorescence co-localization showed the relationship between MTLN and macrophage distribution. E. multilocularis infected mouse model was established to analyze the expression of MTLN, liver fibrosis, and inflammatory reaction after E. multilocularis infection. The cell experiment simulated the liver microenvironment of E. multilocularis infected human body and analyzed the expression of MTLN by QRT-PCR and western blot in vitro. The data showed that liver fibrosis occurred in AE patients, and MTLN was activated near the focus. After E. multilocularis infected mice, the expression of MTLN increased with time. In the cell experiment, after the antigen of E. multilocularis protoscolex stimulated normal liver cells, the expression of MTLN increased 48 h, at this time, M2 was up-regulated and M1 was down-regulated. Therefore, MTLN may be the key gene to regulate the polarization of M2 macrophages and cause fibrosis.


Asunto(s)
Equinococosis , Echinococcus multilocularis , Humanos , Ratones , Animales , Equinococosis/genética , Hepatocitos , Cirrosis Hepática , Echinococcus multilocularis/genética
17.
Int J Surg ; 110(6): 3382-3391, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38597388

RESUMEN

BACKGROUND: The efficacy of laparoscopic completion total gastrectomy (LCTG) for remnant gastric cancer (RGC) remains controversial. METHODS: The primary outcome was postoperative morbidity within 30 days after surgery. Secondary outcomes included 3-year disease-free survival (DFS), 3-year overall survival (OS), and recurrence. Inverse probability treatment weighted (IPTW) was used to balance the baseline between LCTG and OCTG. RESULTS: Final analysis included 46 patients with RGC who underwent LCTG at the FJMUUH between June 2016 and June 2020. The historical control group comprised of 160 patients who underwent open completion total gastrectomy (OCTG) in the six tertiary teaching hospitals from CRGC-01 study. After IPTW, no significant difference was observed between the LCTG and OCTG groups in terms of incidence (LCTG vs. OCTG: 28.0 vs. 35.0%, P =0.379) or severity of complications within 30 days after surgery. Compared with OCTG, LCTG resulted in better short-term outcomes and faster postoperative recovery. However, the textbook outcome rate was comparable between the two groups (45.9 vs. 32.8%, P =0.107). Additionally, the 3-year DFS and 3-year OS of LCTG were comparable to those of OCTG (DFS: log-rank P =0.173; OS: log-rank P =0.319). No significant differences in recurrence type, mean recurrence time, or 3-year cumulative hazard of recurrence were observed between the two groups (all P >0.05). Subgroup analyses and concurrent comparisons demonstrated similar trends. CONCLUSIONS: This prospective study suggested that LCTG was noninferior to OCTG in both short-term and long-term outcomes. In experienced centers, LCTG may be considered as a viable treatment option for RGC.


Asunto(s)
Estudios de Factibilidad , Gastrectomía , Laparoscopía , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/cirugía , Neoplasias Gástricas/patología , Gastrectomía/métodos , Gastrectomía/efectos adversos , Masculino , Laparoscopía/efectos adversos , Laparoscopía/métodos , Femenino , Estudios Prospectivos , Persona de Mediana Edad , Anciano , Estudios de Seguimiento , Resultado del Tratamiento , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Muñón Gástrico/cirugía , Muñón Gástrico/patología , Supervivencia sin Enfermedad
18.
Int J Surg ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652275

RESUMEN

BACKGROUND: The safety and efficacy of neoadjuvant immunochemotherapy (nICT) for locally advanced gastric cancer (LAGC) remain controversial. METHODS: Patients with LAGC who received either nICT or neoadjuvant chemotherapy (nCT) at 3 tertiary referral teaching hospitals in China between January 2016 and October 2022 were analysed. After propensity-score matching (PSM), comparing the radiological response, pathological response rate, perioperative outcomes, and early recurrence between the two groups. RESULTS: After PSM, 585 patients were included, with 195 and 390 patients comprising the nICT and nCT groups, respectively. The nICT group exhibited a higher objective response rate (79.5% versus [vs.] 59.0%; P<0.001), pathological complete response rate (14.36% vs. 6.41%; P=0.002) and major pathological response rate (39.49% vs. 26.15%; P=0.001) compared with the nCT group. The incidence of surgical complications (17.44% vs. 16.15%, P=0.694) and proportion of perioperative textbook outcomes (80.0% vs. 81.0%; P=0.767) were similar in both groups. The nICT group had a significantly lower proportion of early recurrence than the nCT group (29.7% vs. 40.8%; P=0.047). Furthermore, the multivariable logistic analysis revealed that immunotherapy was an independent protective factor against early recurrence (odds ratio 0.62 [95% CI 0.41-0.92]; P=0.018). No significant difference was found in neoadjuvant therapy drug toxicity between the two groups (51.79% vs. 45.38%; P=0.143). CONCLUSIONS: Compared with nCT, nICT is safe and effective, which significantly enhanced objective and pathological response rates, and reduced the risk for early recurrence among patients with LAGC. TRIAL REGISTRATION: Clinical Trials.gov.

19.
Water Res ; 242: 120193, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37327547

RESUMEN

Frequent occurrence of trace organic contaminants in aquatic environments, such as sulfonamide antibiotics in rivers receiving reclaimed water, is concerning. Natural attenuation by soil and sediment is increasingly relied upon. In the case of riverbank filtration for water purification, the reliability of antibiotic attenuation has been called into question due to incomplete understanding of their degradation processes. This study investigated influence of substrates and redox evolution along infiltration path on biotransformation of sulfonamides. Eight sand columns (length: 28 cm) with a riverbed sediment layer at 3-8 cm were fed by groundwater-sourced tap water spiked with 1 µg/L of sulfadiazine (SDZ), sulfamethazine (SMZ), and sulfamethoxazole (SMX) each, with or without amendments of dissolved organic carbon (5 mg-C/L of 1:1 yeast and humics) or ammonium (5 mg-N/L). Two flow rates were tested over 120 days (0.5 mL/min and 0.1 mL/min). Iron-reducing conditions persisted in all columns for 27 days during the initial high flow period due to respiration of sediment organics, evolving to less reducing conditions until the subsequent low flow period to resume more reducing conditions. With surplus substrates, the spatial and temporal patterns of redox conditions differentiated among columns. The removal of SDZ and SMZ in effluents was usually low (15 ± 11%) even with carbon addition (14 ± 9%), increasing to 33 ± 23% with ammonium addition. By contrast, SMX removal was higher and more consistent among columns (46 ± 21%), with the maximum of 64 ± 9% under iron-reducing conditions. When sulfonamide removal was compared between columns for the same redox zones during infiltration, their enhancements were always associated with the availability of dissolved or particulate substrates, suggesting co-metabolism. Manipulation of the exposure time to optimal redox conditions with substrate amendments, rather than to simply prolong the overall residence time, is recommended for nature-based solutions to tackle target antibiotics.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Antibacterianos , Reproducibilidad de los Resultados , Compuestos Orgánicos/metabolismo , Contaminantes Químicos del Agua/análisis , Sulfanilamida , Sulfonamidas , Sulfametoxazol , Sulfadiazina , Hierro
20.
J Ophthalmol ; 2023: 1397107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139083

RESUMEN

Objective: To investigate the clinical characteristics and pathogenic genetic mutations of a Chinese family with anterior segment mesenchymal dysgenesis and congenital posterior polar cataract. Methods: Through family investigation, the family members were examined via slit lamp anterior segment imaging and screened for eye and other diseases by eye B-ultrasound. Genetic test was performed on the blood samples of the fourth family generation (23 people) via whole exome sequencing (trio-WES) and Sanger sequencing. Results: Among the 36 members in four family generations, there were 11 living cases with different degrees of ocular abnormalities, such as cataracts, leukoplakia, and small cornea. All patients who received the genetic test had the heterozygous frameshift mutation c.640_656dup (p.G220Pfs∗95) on exon 4 of the PITX3 gene. This mutation was cosegregated with the clinical phenotypes in the family and thus might be one of the genetic factors that cause the corresponding ocular abnormalities in this family. Conclusion: The congenital posterior polar cataract with or without anterior interstitial dysplasia (ASMD) of this family was inherited in an autosomal dominant manner, and the frameshift mutation (c.640_656dup) in the PITX3 gene was the cause of ocular abnormalities observed in this family. This study is of great significance for guiding prenatal diagnosis and disease treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA