Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Plant Biotechnol J ; 21(5): 1005-1021, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36668687

RESUMEN

Trees constitute promising renewable feedstocks for biorefinery using biochemical conversion, but their recalcitrance restricts their attractiveness for the industry. To obtain trees with reduced recalcitrance, large-scale genetic engineering experiments were performed in hybrid aspen blindly targeting genes expressed during wood formation and 32 lines representing seven constructs were selected for characterization in the field. Here we report phenotypes of five-year old trees considering 49 traits related to growth and wood properties. The best performing construct considering growth and glucose yield in saccharification with acid pretreatment had suppressed expression of the gene encoding an uncharacterized 2-oxoglutarate-dependent dioxygenase (2OGD). It showed minor changes in wood chemistry but increased nanoporosity and glucose conversion. Suppressed levels of SUCROSE SYNTHASE, (SuSy), CINNAMATE 4-HYDROXYLASE (C4H) and increased levels of GTPase activating protein for ADP-ribosylation factor ZAC led to significant growth reductions and anatomical abnormalities. However, C4H and SuSy constructs greatly improved glucose yields in saccharification without and with pretreatment, respectively. Traits associated with high glucose yields were different for saccharification with and without pretreatment. While carbohydrates, phenolics and tension wood contents positively impacted the yields without pretreatment and growth, lignin content and S/G ratio were negative factors, the yields with pretreatment positively correlated with S lignin and negatively with carbohydrate contents. The genotypes with high glucose yields had increased nanoporosity and mGlcA/Xyl ratio, and some had shorter polymers extractable with subcritical water compared to wild-type. The pilot-scale industrial-like pretreatment of best-performing 2OGD construct confirmed its superior sugar yields, supporting our strategy.


Asunto(s)
Lignina , Populus , Lignina/metabolismo , Populus/genética , Populus/metabolismo , Madera/genética , Madera/metabolismo , Glucosa/metabolismo , Ingeniería Genética
2.
Plant Physiol ; 182(4): 1946-1965, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32005783

RESUMEN

Xyloglucan is the major hemicellulose of dicotyledon primary cell walls, affecting the load-bearing framework with the participation of xyloglucan endo-transglycosylase/hydrolases (XTHs). We used loss- and gain-of function approaches to study functions of XTH4 and XTH9 abundantly expressed in cambial regions during secondary growth of Arabidopsis (Arabidopsis thaliana). In secondarily thickened hypocotyls, these enzymes had positive effects on vessel element expansion and fiber intrusive growth. They also stimulated secondary wall thickening but reduced secondary xylem production. Cell wall analyses of inflorescence stems revealed changes in lignin, cellulose, and matrix sugar composition indicating an overall increase in secondary versus primary walls in mutants, indicative of higher xylem production compared with the wild type (since secondary walls were thinner). Intriguingly, the number of secondary cell wall layers compared with the wild type was increased in xth9 and reduced in xth4, whereas the double mutant xth4x9 displayed an intermediate number of layers. These changes correlated with specific Raman signals from the walls, indicating changes in lignin and cellulose. Secondary walls were affected also in the interfascicular fibers, where neither XTH4 nor XTH9 was expressed, indicating that these effects were indirect. Transcripts involved in secondary wall biosynthesis and cell wall integrity sensing, including THESEUS1 and WALL ASSOCIATED KINASE2, were highly induced in the mutants, indicating that deficiency in XTH4 and XTH9 triggers cell wall integrity signaling, which, we propose, stimulates xylem cell production and modulates secondary wall thickening. Prominent effects of XTH4 and XTH9 on secondary xylem support the hypothesis that altered xyloglucan affects wood properties both directly and via cell wall integrity sensing.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Celulosa/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Glucanos/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Xilanos/metabolismo , Xilema/metabolismo
3.
New Phytol ; 228(5): 1559-1572, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32648607

RESUMEN

Wood, or secondary xylem, is the product of xylogenesis, a developmental process that begins with the proliferation of cambial derivatives and ends with mature xylem fibers and vessels with lignified secondary cell walls. Fully mature xylem has undergone a series of cellular processes, including cell division, cell expansion, secondary wall formation, lignification and programmed cell death. A complex network of interactions between transcriptional regulators and signal transduction pathways controls wood formation. However, the role of metabolites during this developmental process has not been comprehensively characterized. To evaluate the role of metabolites during wood formation, we performed a high spatial resolution metabolomics study of the wood-forming zone of Populus tremula, including laser dissected aspen ray and fiber cells. We show that metabolites show specific patterns within the wood-forming zone, following the differentiation process from cell division to cell death. The data from profiled laser dissected aspen ray and fiber cells suggests that these two cell types host distinctly different metabolic processes. Furthermore, by integrating previously published transcriptomic and proteomic profiles generated from the same trees, we provide an integrative picture of molecular processes, for example, deamination of phenylalanine during lignification is of critical importance for nitrogen metabolism during wood formation.


Asunto(s)
Populus , Proteómica , Madera , Cámbium , Regulación de la Expresión Génica de las Plantas , Populus/genética , Xilema
4.
Plant Cell ; 29(7): 1585-1604, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28655750

RESUMEN

Trees represent the largest terrestrial carbon sink and a renewable source of ligno-cellulose. There is significant scope for yield and quality improvement in these largely undomesticated species, and efforts to engineer elite varieties will benefit from improved understanding of the transcriptional network underlying cambial growth and wood formation. We generated high-spatial-resolution RNA sequencing data spanning the secondary phloem, vascular cambium, and wood-forming tissues of Populus tremula The transcriptome comprised 28,294 expressed, annotated genes, 78 novel protein-coding genes, and 567 putative long intergenic noncoding RNAs. Most paralogs originating from the Salicaceae whole-genome duplication had diverged expression, with the exception of those highly expressed during secondary cell wall deposition. Coexpression network analyses revealed that regulation of the transcriptome underlying cambial growth and wood formation comprises numerous modules forming a continuum of active processes across the tissues. A comparative analysis revealed that a majority of these modules are conserved in Picea abies The high spatial resolution of our data enabled identification of novel roles for characterized genes involved in xylan and cellulose biosynthesis, regulators of xylem vessel and fiber differentiation and lignification. An associated web resource (AspWood, http://aspwood.popgenie.org) provides interactive tools for exploring the expression profiles and coexpression network.


Asunto(s)
Populus/genética , Transcriptoma , Madera/crecimiento & desarrollo , Madera/genética , Pared Celular/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Internet , Meristema/genética , Polisacáridos/genética , Polisacáridos/metabolismo , Populus/citología , Populus/crecimiento & desarrollo , Madera/citología , Xilema/genética
5.
Plant Physiol ; 177(3): 1096-1107, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29760198

RESUMEN

Cellulose is synthesized at the plasma membrane by cellulose synthase complexes (CSCs) containing cellulose synthases (CESAs). Genetic analysis and CESA isoform quantification indicate that cellulose in the secondary cell walls of Arabidopsis (Arabidopsis thaliana) is synthesized by isoforms CESA4, CESA7, and CESA8 in equimolar amounts. Here, we used quantitative proteomics to investigate whether the CSC model based on Arabidopsis secondary cell wall CESA stoichiometry can be applied to the angiosperm tree aspen (Populus tremula) and the gymnosperm tree Norway spruce (Picea abies). In the developing xylem of aspen, the secondary cell wall CESA stoichiometry was 3:2:1 for PtCESA8a/b:PtCESA4:PtCESA7a/b, while in Norway spruce, the stoichiometry was 1:1:1, as observed previously in Arabidopsis. Furthermore, in aspen tension wood, the secondary cell wall CESA stoichiometry changed to 8:3:1 for PtCESA8a/b:PtCESA4:PtCESA7a/b. PtCESA8b represented 73% of the total secondary cell wall CESA pool, and quantitative polymerase chain reaction analysis of CESA transcripts in cryosectioned tension wood revealed increased PtCESA8b expression during the formation of the cellulose-enriched gelatinous layer, while the transcripts of PtCESA4, PtCESA7a/b, and PtCESA8a decreased. A wide-angle x-ray scattering analysis showed that the shift in CESA stoichiometry in tension wood coincided with an increase in crystalline cellulose microfibril diameter, suggesting that the CSC CESA composition influences microfibril properties. The aspen CESA stoichiometry results raise the possibility of alternative CSC models and suggest that homomeric PtCESA8b complexes are responsible for cellulose biosynthesis in the gelatinous layer in tension wood.


Asunto(s)
Arabidopsis/enzimología , Glucosiltransferasas/metabolismo , Picea/enzimología , Proteínas de Plantas/metabolismo , Populus/enzimología , Arabidopsis/citología , Proteínas de Arabidopsis/metabolismo , Pared Celular/enzimología , Glucosiltransferasas/aislamiento & purificación , Péptidos/análisis , Péptidos/metabolismo , Picea/citología , Proteínas de Plantas/aislamiento & purificación , Populus/citología , Proteómica/métodos , Dispersión de Radiación , Especificidad de la Especie , Xilema/metabolismo
6.
Nature ; 497(7451): 579-84, 2013 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-23698360

RESUMEN

Conifers have dominated forests for more than 200 million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis thaliana, and there is no evidence of a recent whole-genome duplication in the gymnosperm lineage. Instead, the large genome size seems to result from the slow and steady accumulation of a diverse set of long-terminal repeat transposable elements, possibly owing to the lack of an efficient elimination mechanism. Comparative sequencing of Pinus sylvestris, Abies sibirica, Juniperus communis, Taxus baccata and Gnetum gnemon reveals that the transposable element diversity is shared among extant conifers. Expression of 24-nucleotide small RNAs, previously implicated in transposable element silencing, is tissue-specific and much lower than in other plants. We further identify numerous long (>10,000 base pairs) introns, gene-like fragments, uncharacterized long non-coding RNAs and short RNAs. This opens up new genomic avenues for conifer forestry and breeding.


Asunto(s)
Evolución Molecular , Genoma de Planta/genética , Picea/genética , Secuencia Conservada/genética , Elementos Transponibles de ADN/genética , Silenciador del Gen , Genes de Plantas/genética , Genómica , Internet , Intrones/genética , Fenotipo , ARN no Traducido/genética , Análisis de Secuencia de ADN , Secuencias Repetidas Terminales/genética , Transcripción Genética/genética
7.
New Phytol ; 218(3): 999-1014, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29528503

RESUMEN

The phytohormone ethylene impacts secondary stem growth in plants by stimulating cambial activity, xylem development and fiber over vessel formation. We report the effect of ethylene on secondary cell wall formation and the molecular connection between ethylene signaling and wood formation. We applied exogenous ethylene or its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) to wild-type and ethylene-insensitive hybrid aspen trees (Populus tremula × tremuloides) and studied secondary cell wall anatomy, chemistry and ultrastructure. We furthermore analyzed the transcriptome (RNA Seq) after ACC application to wild-type and ethylene-insensitive trees. We demonstrate that ACC and ethylene induce gelatinous layers (G-layers) and alter the fiber cell wall cellulose microfibril angle. G-layers are tertiary wall layers rich in cellulose, typically found in tension wood of aspen trees. A vast majority of transcripts affected by ACC are downstream of ethylene perception and include a large number of transcription factors (TFs). Motif-analyses reveal potential connections between ethylene TFs (Ethylene Response Factors (ERFs), ETHYLENE INSENSITIVE 3/ETHYLENE INSENSITIVE3-LIKE1 (EIN3/EIL1)) and wood formation. G-layer formation upon ethylene application suggests that the increase in ethylene biosynthesis observed during tension wood formation is important for its formation. Ethylene-regulated TFs of the ERF and EIN3/EIL1 type could transmit the ethylene signal.


Asunto(s)
Etilenos/metabolismo , Hibridación Genética , Populus/metabolismo , Transducción de Señal , Madera/metabolismo , Aminoácidos Cíclicos/farmacología , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Pared Celular/ultraestructura , Celulosa/metabolismo , Simulación por Computador , Genes de Plantas , Populus/genética , Populus/ultraestructura , Análisis de Componente Principal , Regiones Promotoras Genéticas/genética , Espectroscopía Infrarroja por Transformada de Fourier , Agua/farmacología , Madera/efectos de los fármacos , Madera/crecimiento & desarrollo , Madera/ultraestructura , Xilema/efectos de los fármacos , Xilema/metabolismo , Xilema/ultraestructura
8.
Plant Physiol ; 173(2): 1409-1419, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27923986

RESUMEN

Tyloses are ingrowths of parenchyma cells into the lumen of embolized xylem vessels, thereby protecting the remaining xylem from pathogens. They are found in heartwood, sapwood, and in abscission zones and can be induced by various stresses, but their molecular triggers are unknown. Here, we report that down-regulation of PECTIN METHYLESTERASE1 (PtxtPME1) in aspen (Populus tremula × tremuloides) triggers the formation of tyloses and activation of oxidative stress. We tested whether any of the oxidative stress-related hormones could induce tyloses in intact plantlets grown in sterile culture. Jasmonates, including jasmonic acid (JA) and methyl jasmonate, induced the formation of tyloses, whereas treatments with salicylic acid (SA) and 1-aminocyclopropane-1-carboxylic acid (ACC) were ineffective. SA abolished the induction of tyloses by JA, whereas ACC was synergistic with JA. The ability of ACC to stimulate tyloses formation when combined with JA depended on ethylene (ET) signaling, as shown by a decrease in the response in ET-insensitive plants. Measurements of internal ACC and JA concentrations in wild-type and ET-insensitive plants treated simultaneously with these two compounds indicated that ACC and JA regulate each other's concentration in an ET-dependent manner. The findings indicate that jasmonates acting synergistically with ethylene are the key molecular triggers of tyloses.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Celulosa/análogos & derivados , Populus/fisiología , Aminoácidos Cíclicos/metabolismo , Aminoácidos Cíclicos/farmacología , Hidrolasas de Éster Carboxílico/genética , Celulosa/metabolismo , Ciclopentanos/metabolismo , Etilenos/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxilipinas/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Populus/efectos de los fármacos , Populus/genética , Ácido Salicílico/metabolismo
9.
BMC Plant Biol ; 17(1): 110, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28662679

RESUMEN

BACKGROUND: Genomic prediction is a genomics assisted breeding methodology that can increase genetic gains by accelerating the breeding cycle and potentially improving the accuracy of breeding values. In this study, we use 41,304 informative SNPs genotyped in a Eucalyptus breeding population involving 90 E.grandis and 78 E.urophylla parents and their 949 F1 hybrids to develop genomic prediction models for eight phenotypic traits - basic density and pulp yield, circumference at breast height and height and tree volume scored at age three and six years. We assessed the impact of different genomic prediction methods, the composition and size of the training and validation set and the number and genomic location of SNPs on the predictive ability (PA). RESULTS: Heritabilities estimated using the realized genomic relationship matrix (GRM) were considerably higher than estimates based on the expected pedigree, mainly due to inconsistencies in the expected pedigree that were readily corrected by the GRM. Moreover, the GRM more precisely capture Mendelian sampling among related individuals, such that the genetic covariance was based on the true proportion of the genome shared between individuals. PA improved considerably when increasing the size of the training set and by enhancing relatedness to the validation set. Prediction models trained on pure species parents could not predict well in F1 hybrids, indicating that model training has to be carried out in hybrid populations if one is to predict in hybrid selection candidates. The different genomic prediction methods provided similar results for all traits, therefore either GBLUP or rrBLUP represents better compromises between computational time and prediction efficiency. Only slight improvement was observed in PA when more than 5000 SNPs were used for all traits. Using SNPs in intergenic regions provided slightly better PA than using SNPs sampled exclusively in genic regions. CONCLUSIONS: The size and composition of the training set and number of SNPs used are the two most important factors for model prediction, compared to the statistical methods and the genomic location of SNPs. Furthermore, training the prediction model based on pure parental species only provide limited ability to predict traits in interspecific hybrids. Our results provide additional promising perspectives for the implementation of genomic prediction in Eucalyptus breeding programs by the selection of interspecific hybrids.


Asunto(s)
Eucalyptus/crecimiento & desarrollo , Hibridación Genética , Modelos Biológicos , Eucalyptus/genética , Genoma de Planta , Fenotipo , Polimorfismo de Nucleótido Simple , Madera/crecimiento & desarrollo
10.
J Exp Bot ; 68(13): 3405-3417, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28633298

RESUMEN

Tension wood (TW) is a specialized tissue with contractile properties that is formed by the vascular cambium in response to gravitational stimuli. We quantitatively analysed the proteomes of Populus tremula cambium and its xylem cell derivatives in stems forming normal wood (NW) and TW to reveal the mechanisms underlying TW formation. Phloem-, cambium-, and wood-forming tissues were sampled by tangential cryosectioning and pooled into nine independent samples. The proteomes of TW and NW samples were similar in the phloem and cambium samples, but diverged early during xylogenesis, demonstrating that reprogramming is an integral part of TW formation. For example, 14-3-3, reactive oxygen species, ribosomal and ATPase complex proteins were found to be up-regulated at early stages of xylem differentiation during TW formation. At later stages of xylem differentiation, proteins involved in the biosynthesis of cellulose and enzymes involved in the biosynthesis of rhamnogalacturonan-I, rhamnogalacturonan-II, arabinogalactan-II and fasciclin-like arabinogalactan proteins were up-regulated in TW. Surprisingly, two isoforms of exostosin family proteins with putative xylan xylosyl transferase function and several lignin biosynthesis proteins were also up-regulated, even though xylan and lignin are known to be less abundant in TW than in NW. These data provided new insight into the processes behind TW formation.


Asunto(s)
Proteínas de Plantas/metabolismo , Populus/metabolismo , Proteoma , Cámbium/crecimiento & desarrollo , Cámbium/metabolismo , Populus/crecimiento & desarrollo , Madera/crecimiento & desarrollo , Madera/metabolismo , Xilema/crecimiento & desarrollo , Xilema/metabolismo
11.
BMC Genomics ; 17: 119, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26887814

RESUMEN

BACKGROUND: Wood development is of outstanding interest both to basic research and industry due to the associated cellulose and lignin biomass production. Efforts to elucidate wood formation (which is essential for numerous aspects of both pure and applied plant science) have been made using transcriptomic analyses and/or low-resolution sampling. However, transcriptomic data do not correlate perfectly with levels of expressed proteins due to effects of post-translational modifications and variations in turnover rates. In addition, high-resolution analysis is needed to characterize key transitions. In order to identify protein profiles across the developmental region of wood formation, an in-depth and tissue specific sampling was performed. RESULTS: We examined protein profiles, using an ultra-performance liquid chromatography/quadrupole time of flight mass spectrometry system, in high-resolution tangential sections spanning all wood development zones in Populus tremula from undifferentiated cambium to mature phloem and xylem, including cell expansion and cell death zones. In total, we analyzed 482 sections, 20-160 µm thick, from four 47-year-old trees growing wild in Sweden. We obtained high quality expression profiles for 3,082 proteins exhibiting consistency across the replicates, considering that the trees were growing in an uncontrolled environment. A combination of Principal Component Analysis (PCA), Orthogonal Projections to Latent Structures (OPLS) modeling and an enhanced stepwise linear modeling approach identified several major transitions in global protein expression profiles, pinpointing (for example) locations of the cambial division leading to phloem and xylem cells, and secondary cell wall formation zones. We also identified key proteins and associated pathways underlying these developmental landmarks. For example, many of the lignocellulosic related proteins were upregulated in the expansion to the early developmental xylem zone, and for laccases with a rapid decrease in early xylem zones. We observed upregulation of two forms of xylem cysteine protease (Potri.002G005700.1 and Potri.005G256000.2; Pt-XCP2.1) in early xylem and their downregulation in late maturing xylem. Our data also show that Pt-KOR1.3 (Potri.003G151700.2) exhibits an expression pattern that supports the hypothesis put forward in previous studies that this is a key xyloglucanase involved in cellulose biosynthesis in primary cell walls and reduction of cellulose crystallinity in secondary walls. CONCLUSION: Our novel multivariate approach highlights important processes and provides confirmatory insights into the molecular foundations of wood development.


Asunto(s)
Proteínas de Plantas/metabolismo , Populus/crecimiento & desarrollo , Proteoma/metabolismo , Madera/crecimiento & desarrollo , Cámbium , Celulosa/biosíntesis , Cromatografía Liquida , Espectrometría de Masas , Modelos Biológicos , Floema/crecimiento & desarrollo , Proteómica , Suecia , Xilema/crecimiento & desarrollo
12.
Plant Cell ; 25(4): 1314-28, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23572543

RESUMEN

Postmortem lignification of xylem tracheary elements (TEs) has been debated for decades. Here, we provide evidence in Zinnia elegans TE cell cultures, using pharmacological inhibitors and in intact Z. elegans plants using Fourier transform infrared microspectroscopy, that TE lignification occurs postmortem (i.e., after TE programmed cell death). In situ RT-PCR verified expression of the lignin monomer biosynthetic cinnamoyl CoA reductase and cinnamyl alcohol dehydrogenase in not only the lignifying TEs but also in the unlignified non-TE cells of Z. elegans TE cell cultures and in living, parenchymatic xylem cells that surround TEs in stems. These cells were also shown to have the capacity to synthesize and transport lignin monomers and reactive oxygen species to the cell walls of dead TEs. Differential gene expression analysis in Z. elegans TE cell cultures and concomitant functional analysis in Arabidopsis thaliana resulted in identification of several genes that were expressed in the non-TE cells and that affected lignin chemistry on the basis of pyrolysis-gas chromatography/mass spectrometry analysis. These data suggest that living, parenchymatic xylem cells contribute to TE lignification in a non-cell-autonomous manner, thus enabling the postmortem lignification of TEs.


Asunto(s)
Asteraceae/metabolismo , Lignina/metabolismo , Tallos de la Planta/metabolismo , Xilema/metabolismo , Acetilcisteína/farmacología , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Apoptosis , Arabidopsis/genética , Arabidopsis/metabolismo , Asteraceae/citología , Asteraceae/genética , Benzoatos/farmacología , Pared Celular/metabolismo , Células Cultivadas , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Compuestos Onio/farmacología , Tallos de la Planta/citología , Tallos de la Planta/genética , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectroscopía Infrarroja por Transformada de Fourier , Tiosulfatos/farmacología , Xilema/citología , Xilema/genética
13.
Physiol Plant ; 156(2): 127-138, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26477543

RESUMEN

High-throughput analytical techniques to assess the chemistry of lignocellulosic plant material are crucial to plant cell-wall research. We have established an analytical platform for this purpose and demonstrated its usefulness with two applications. The system is based on analytical pyrolysis, coupled to gas chromatography/mass spectrometry - a technique particularly suited for analysis of lignocellulose. Automated multivariate-based data-processing methods are used to obtain results within a few hours after analysis, with an experimental batch of 500 analyzed samples. The usefulness of multivariate sample discrimination methods and hierarchical clustering of samples is demonstrated. We have analyzed an Arabidopsis mutant collection consisting of 300 samples representing 31 genotypes. The mutant collection is presented through cluster analysis, based on chemotypic difference, with respect to wild type. Further, we have analyzed 500 thin sections from five biological replicate trees to create a spatial highly resolved profile of the proportions of syringyl-, guaiacyl- and p-hydroxyphenyl lignin across phloem, developing and mature wood in aspen. The combination of biologically easy to interpret information, the low demand of sample amount and the flexibility in sample types amenable to analysis makes this technique a valuable extension to the range of established high-throughput biomaterial analytical platforms.

14.
Plant J ; 73(1): 63-76, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22967312

RESUMEN

The transcription factor MYB103 was previously identified as a member of the transcriptional network regulating secondary wall biosynthesis in xylem tissues of Arabidopsis, and was proposed to act on cellulose biosynthesis. It is a direct transcriptional target of the transcription factor SECONDARY WALL ASSOCIATED NAC DOMAIN PROTEIN 1 (SND1), and 35S-driven dominant repression or over-expression of MYB103 modifies secondary wall thickness. We identified two myb103 T-DNA insertion mutants and chemically characterized their lignocellulose by pyrolysis/GC/MS, 2D NMR, FT-IR microspectroscopy and wet chemistry. The mutants developed normally but exhibited a 70-75% decrease in syringyl (S) lignin. The level of guaiacyl (G) lignin was co-ordinately increased, so that total Klason lignin was not affected. The transcript abundance of FERULATE-5-HYDROXYLASE (F5H), the key gene in biosynthesis of S lignin, was strongly decreased in the myb103 mutants, and the metabolomes of the myb103 mutant and an F5H null mutant were very similar. Other than modification of the lignin S to G ratio, there were only very minor changes in the composition of secondary cell-wall polymers in the inflorescence stem. In conclusion, we demonstrate that F5H expression and hence biosynthesis of S lignin are dependent on MYB103.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/biosíntesis , Lignina/biosíntesis , Tallos de la Planta/metabolismo , Arabidopsis/fisiología , Pared Celular/metabolismo , Celulosa/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Datos de Secuencia Molecular , Tallos de la Planta/fisiología , Factores de Transcripción/fisiología
15.
Glycobiology ; 24(6): 494-506, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24637390

RESUMEN

O-Acetylglucuronoxylans (AcGX) in Arabidopsis thaliana carry acetyl residues on the 2-O and/or 3-O positions of the xylopyranosyl (Xylp) units, but the distribution of different O-acetylated Xylp units is partly unclear. We studied a possible correlation of xylan acetylation and the activities of different glycosyltransferases involved in xylan biosynthesis by analyzing the distribution of O-acetyl substituents on AcGX from Arabidopsis wild-type and mutants irx7, irx9-1, irx10, irx14 and gux1gux2. The relative contents of the Xylp structural units were determined with quantitative two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance spectroscopy. In the wild type, the degree of acetylation (DA) was 60%. Mono- and diacetylated Xylp units constituted 44 and 6% of the AcGX backbone, respectively; while (4-O-methyl)-glucopyranosyluronic acid (1 → 2)-linked Xylp units, most of which also carry 3-O-acetylation, represented 13%. The DA was decreased in irx7, irx9-1 and irx14 due to the decrease in monoacetylation (2-O and 3-O), indicating a relationship between acetylation and other AcGX biosynthetic processes. The possible interactions that could lead to such changes have been discussed. No change in DA was observed in irx10 and gux1gux2, but monoacetylation was nonetheless elevated in gux1gux2. This indicates that acetylation occurs after addition of GlcpA to the xylan backbone. Mass fragmentation analysis suggests that the prevalent acetylation pattern is the acetyl group added on every other Xylp unit.


Asunto(s)
Glicosiltransferasas/biosíntesis , Xilanos/biosíntesis , Acetilación , Arabidopsis/enzimología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Mutación , Xilanos/química , Xilanos/metabolismo
16.
New Phytol ; 202(1): 270-286, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24383411

RESUMEN

The plant hormones ethylene, jasmonic acid and salicylic acid have interconnecting roles during the response of plant tissues to mutualistic and pathogenic symbionts. We used morphological studies of transgenic- or hormone-treated Populus roots as well as whole-genome oligoarrays to examine how these hormones affect root colonization by the mutualistic ectomycorrhizal fungus Laccaria bicolor S238N. We found that genes regulated by ethylene, jasmonic acid and salicylic acid were regulated in the late stages of the interaction between L. bicolor and poplar. Both ethylene and jasmonic acid treatments were found to impede fungal colonization of roots, and this effect was correlated to an increase in the expression of certain transcription factors (e.g. ETHYLENE RESPONSE FACTOR1) and a decrease in the expression of genes associated with microbial perception and cell wall modification. Further, we found that ethylene and jasmonic acid showed extensive transcriptional cross-talk, cross-talk that was opposed by salicylic acid signaling. We conclude that ethylene and jasmonic acid pathways are induced late in the colonization of root tissues in order to limit fungal growth within roots. This induction is probably an adaptive response by the plant such that its growth and vigor are not compromised by the fungus.


Asunto(s)
Ciclopentanos/farmacología , Etilenos/farmacología , Laccaria/fisiología , Oxilipinas/farmacología , Populus/microbiología , Populus/fisiología , Simbiosis/efectos de los fármacos , Aminoácidos Cíclicos/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Recuento de Colonia Microbiana , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Laccaria/efectos de los fármacos , Laccaria/crecimiento & desarrollo , Micorrizas/efectos de los fármacos , Micorrizas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Populus/efectos de los fármacos , Populus/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ácido Salicílico/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transcripción Genética/efectos de los fármacos
17.
New Phytol ; 203(4): 1220-1230, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24920335

RESUMEN

The biosynthesis of wood in aspen (Populus) depends on the metabolism of sucrose, which is the main transported form of carbon from source tissues. The largest fraction of the wood biomass is cellulose, which is synthesized from UDP-glucose. Sucrose synthase (SUS) has been proposed previously to interact directly with cellulose synthase complexes and specifically supply UDP-glucose for cellulose biosynthesis. To investigate the role of SUS in wood biosynthesis, we characterized transgenic lines of hybrid aspen with strongly reduced SUS activity in developing wood. No dramatic growth phenotypes in glasshouse-grown trees were observed, but chemical fingerprinting with pyrolysis-GC/MS, together with micromechanical analysis, showed notable changes in chemistry and ultrastructure of the wood in the transgenic lines. Wet chemical analysis showed that the dry weight percentage composition of wood polymers was not changed significantly. However, a decrease in wood density was observed and, consequently, the content of lignin, hemicellulose and cellulose was decreased per wood volume. The decrease in density was explained by a looser structure of fibre cell walls as shown by increased wall shrinkage on drying. The results show that SUS is not essential for cellulose biosynthesis, but plays a role in defining the total carbon incorporation to wood cell walls.


Asunto(s)
Pared Celular/metabolismo , Celulosa/biosíntesis , Glucosiltransferasas/deficiencia , Populus/enzimología , Populus/crecimiento & desarrollo , Madera/enzimología , Madera/crecimiento & desarrollo , Arabidopsis/enzimología , Fenómenos Biomecánicos , Cruzamientos Genéticos , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Populus/anatomía & histología , Populus/genética , Interferencia de ARN , Solubilidad , Transcriptoma/genética , Madera/anatomía & histología , Madera/genética
18.
J Struct Biol ; 183(3): 419-428, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23867392

RESUMEN

The orientation distribution of cellulose microfibrils in the plant cell wall is a key parameter for understanding anisotropic plant growth and mechanical behavior. However, precisely visualizing cellulose orientation in the plant cell wall has ever been a challenge due to the small size of the cellulose microfibrils and the complex network of polymers in the plant cell wall. X-ray diffraction is one of the most frequently used methods for analyzing cellulose orientation in single cells and plant tissues, but the interpretation of the diffraction images is complex. Traditionally, circular or square cells and Gaussian orientation of the cellulose microfibrils have been assumed to elucidate cellulose orientation from the diffraction images. However, the complex tissue structures of common model plant systems such as Arabidopsis or aspen (Populus) require a more sophisticated approach. We present an evaluation procedure which takes into account the precise cell geometry and is able to deal with complex microfibril orientation distributions. The evaluation procedure reveals the entire orientation distribution of the cellulose microfibrils, reflecting different orientations within the multi-layered cell wall. By analyzing aspen wood and Arabidopsis stems we demonstrate the versatility of this method and show that simplifying assumptions on geometry and orientation distributions can lead to errors in the calculated microfibril orientation pattern. The simulation routine is intended to be used as a valuable tool for nanostructural analysis of plant cell walls and is freely available from the authors on request.


Asunto(s)
Arabidopsis/ultraestructura , Celulosa/ultraestructura , Populus/ultraestructura , Pared Celular , Microfibrillas/ultraestructura , Tallos de la Planta/ultraestructura , Madera/ultraestructura , Difracción de Rayos X
19.
Plant J ; 70(6): 967-77, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22288715

RESUMEN

Sucrose is the main transported form of carbon in several plant species, including Populus species. Sucrose metabolism in developing wood has therefore a central role in carbon partitioning to stem biomass. Half of the sucrose-derived carbon is in the form of fructose, but metabolism of fructose has received little attention as a factor in carbon partitioning to walls of wood cells. We show that RNAi-mediated reduction of FRK2 activity in developing wood of hybrid aspen (Populus tremula × tremuloides) led to the accumulation of soluble neutral sugars and a decrease in hexose phosphates and UDP-glucose, indicating that carbon flux to cell-wall polysaccharide precursors is decreased. Reduced FRK2 activity also led to thinner fiber cell walls with a reduction in the proportion of cellulose. No pleiotropic effects on stem height or diameter were observed. The results establish a central role for FRK2 activity in carbon flux to wood cellulose.


Asunto(s)
Carbono/metabolismo , Celulosa/metabolismo , Fructoquinasas/metabolismo , Populus/enzimología , Madera/metabolismo , Metabolismo de los Hidratos de Carbono , Pared Celular/metabolismo , Fructoquinasas/genética , Regulación de la Expresión Génica de las Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Metaboloma , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/metabolismo , Populus/genética , Interferencia de ARN , Sacarosa/metabolismo
20.
New Phytol ; 200(2): 511-522, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23815789

RESUMEN

Ethylene Response Factors (ERFs) are a large family of transcription factors that mediate responses to ethylene. Ethylene affects many aspects of wood development and is involved in tension wood formation. Thus ERFs could be key players connecting ethylene action to wood development. We identified 170 gene models encoding ERFs in the Populus trichocarpa genome. The transcriptional responses of ERF genes to ethylene treatments were determined in stem tissues of hybrid aspen (Populus tremula × tremuloides) by qPCR. Selected ethylene-responsive ERFs were overexpressed in wood-forming tissues and characterized for growth and wood chemotypes by FT-IR. Fifty ERFs in Populus showed more than five-fold increased transcript accumulation in response to ethylene treatments. Twenty-six ERFs were selected for further analyses. A majority of these were induced during tension wood formation. Overexpression of ERFs 18, 21, 30, 85 and 139 in wood-forming tissues of hybrid aspen modified the wood chemotype. Moreover, overexpression of ERF139 caused a dwarf-phenotype with altered wood development, and overexpression of ERF18, 34 and 35 slightly increased stem diameter. We identified ethylene-induced ERFs that respond to tension wood formation, and modify wood formation when overexpressed. This provides support for their role in ethylene-mediated regulation of wood development.


Asunto(s)
Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Proteínas de Plantas/genética , Populus/genética , Secuencia de Aminoácidos , Aminoácidos Cíclicos/farmacología , Expresión Génica , Perfilación de la Expresión Génica , Proteínas de Plantas/metabolismo , Tallos de la Planta/anatomía & histología , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Populus/anatomía & histología , Populus/crecimiento & desarrollo , Populus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Madera/anatomía & histología , Madera/genética , Madera/crecimiento & desarrollo , Madera/metabolismo , Xilema/anatomía & histología , Xilema/genética , Xilema/crecimiento & desarrollo , Xilema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA