Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Chemistry ; 30(7): e202302994, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37955549

RESUMEN

We present an in-depth study of the sterically demanding Cp-synthon (8-H-GuaH)Li isolated from natural product guaiazulene (Gua) as a ligand transfer reagent towards late transition metal complex precursors. The synthesis and full characterization of selected, essentially unexplored homo- and heteroleptic 8-H-guaiazulenide complexes of iron, ruthenium, cobalt, rhodium, platinum, copper and zinc are discussed in detail. In order to demonstrate their potential in catalytic applications, [(GuaH)PtMe3 ] was selected. The latter proved an even higher catalytic activity in light induced olefin hydrosilylation at catalyst loads as low as 5 ppm than classical [CpPtMe3 ] in a typical test reaction of silicone elastomer fabrication. Our results demonstrate that traditional petrochemical based Cp metal chemistry and catalysis can be replaced, sometimes even outmatched by superior catalysts based on cheap building blocks from renewable feedstock.

2.
Acc Chem Res ; 54(15): 3108-3123, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34308625

RESUMEN

ConspectusOne of the constant challenges of synthetic chemistry is the molecular design and synthesis of nonionic, metal-free superbases as chemically stable neutral organic compounds of moderate molecular weight, intrinsically high thermodynamic basicity, adaptable kinetic basicity, and weak or tunable nucleophilicity at their nitrogen, phosphorus, or carbon basicity centers. Such superbases can catalyze numerous reactions, ranging from C-C bond formation to cycloadditions and polymerization, to name just a few. Additional benefits of organic superbases, as opposed to their inorganic counterparts, are their solubility in organic reaction media, mild reaction conditions, and higher selectivity. Approaching such superbasic compounds remains a continuous challenge. However, recent advances in synthetic methodology and theoretical understanding have resulted in new design principles and synthetic strategies toward superbases. Our computational contributions have demonstrated that the gas-phase basicity region of 350 kcal mol-1 and even beyond is easily reachable by organosuperbases. However, despite record-high basicities, the physical limitations of many of these compounds become quickly evident. The typically large molecular weight of these molecules and their sensitivity to ordinary reaction conditions prevent them from being practical, even though their preparation is often not too difficult. Thus, obviously structural limitations with respect to molecular weight and structural complexity must be imposed on the design of new synthetically useful organic superbases, but strategies for increasing their basicity remain important.The contemporary design of novel organic superbases is illustrated by phosphazenyl phosphanes displaying gas-phase basicities (GB) above 300 kcal mol-1 but having molecular weights well below 1000 g·mol-1. This approach is based on a reconsideration of phosphorus(III) compounds, which goes along with increasing their stability in solution. Another example is the preparation of carbodiphosphoranes incorporating pyrrolidine, tetramethylguanidine, or hexamethylphosphazene as a substituent. With gas-phase proton affinities of up to 300 kcal mol-1, they are among the top nonionic carbon bases on the basicity scale. Remarkably, the high basicity of these compounds is achieved at molecular weights of around 600 g·mol-1. Another approach to achieving high basicity through the cooperative effect of multiple intramolecular hydrogen bonding, which increases the stabilization of conjugate acids, has recently been confirmed.This Account focuses on our efforts to produce superbasic molecules that embody many desirable traits, but other groups' approaches will also be discussed. We reveal the crucial structural features of superbases and place them on known basicity scales. We discuss the emerging potential and current limits of their application and give a general outlook into the future.

3.
Chemistry ; 27(33): 8517-8527, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33851453

RESUMEN

This research presents the highly regioselective syntheses of 1,2-dicarboxylated cyclopentadienide salts [Cat]2 [C5 H3 (CO2 )2 H] by reaction of a variety of organic cation methylcarbonate salts [Cat]OCO2 Me (Cat=NR4 + , PR4 + , Im+ ) with cyclopentadiene (CpH) or by simply reacting organic cation cyclopentadienides Cat[Cp] (Cat=NR4 + , PR4 + , Im+ ) with CO2 . One characteristic feature of these dianionic ligands is the acidic proton delocalized in an intramolecular hydrogen bridge (IHB) between the two carboxyl groups, as studied by 1 H NMR spectroscopy and XRD analyses. The reaction cannot be stopped after the first carboxylation. Therefore, we propose a Kolbe-Schmitt phenol-carboxylation related mechanism where the acidic proton of the monocarboxylic acid intermediate plays an ortho-directing and CO2 activating role for the second kinetically accelerated CO2 addition step exclusively in ortho position. The same and related thiocarboxylates [Cat]2 [C5 H3 (COS)2 H] are obtained by reaction of COS with Cat[Cp] (Cat=NR4 + , PR4 + , Im+ ). A preliminary study on [Cat]2 [C5 H3 (CO2 )2 H] reveals, that its soft and hard coordination sites can selectively be addressed by soft Lewis acids (Mo0 , Ru2+ ) and hard Lewis acids (Al3+ , La3+ ).

4.
Chemistry ; 27(49): 12610-12618, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34180559

RESUMEN

The synthesis of 2,9-diaza-1,3,8,10-tetratriflato-dibenzoperylene (DDP 3 a) and corresponding 2,9-dimethyl-1,3,8,10-tetratriflato-dibenzoperylene (DBP 3 b) has been developed at multigram scale via reduction of one of the industrially most important high-performance dyes, perylene-3,4,9,10-tetracarboxylic diimide (PTCDI), and of the corresponding dihydroxy peropyrenequinone precursor. The focus of this paper is on the reactivity pattern of 3 a as key intermediate towards highly functionalized 2,9-diazadibenzopyrelenes (DDPs) obtained via catalytic substitution of four triflate by aryl, heteroaryl, alkynyl, aminyl, and O-phosphanyl substituents. The influence of electron-donating substituents (OSiMe3 , OPt-Bu2 , N-piperidinyl), electron-withdrawing (OTf, 3,5-bis-trifluoromethyl-phenyl), and of electron-rich π-conjugated (2-thienyl, 4-tert-butylphenyl, trimethylsilyl-ethynyl) substituents on optoelectronic and structural properties of these functionalized DDPs has been investigated via XRD analyses, UV/Vis, PL spectroscopy, and by electroanalytical CV. These results were correlated to results of DFT and TD-DFT calculations. Thus, functionalized DPPs with easily tunable HOMO and LUMO energies and gap became available via a new and reliable synthetic strategy starting from readily available PTCDI.

5.
Chemistry ; 27(43): 11065-11075, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34033166

RESUMEN

The chromophore class of 1,3,8,10-tetrasubstituted peropyrenes was effectively synthesized from peropyrenequinone via a Zn-mediated reductive aromatization approach. In one step, a symmetric functionalization of the peropyrene backbone introducing silylethers (2,3), pivaloyl (4), triflyl (5) and also phosphinite (6) groups was established. Furthermore, the potential of using 4 and 5 in transition metal catalysed cross couplings was explored leading to 1,3,8,10-tetraaryl (8-11) and tetraalkynyl (7) peropyrenes. The influence of various substituents on the optoelectronic properties of these π-system extended peropyrenes was investigated in solid state by means of X-ray crystallography, in solution by means of UV-Vis and fluorescence spectroscopy and by their redox properties studied via cyclic voltammetry. By comparison with DFT and TD-DFT calculations, it could be elucidated that introduction of a broad variety of substituents in such versatile one or two step procedures leads to peropyrenes with easily tunable HOMO and LUMO energies ranging in a gap window of 0.8 eV. The frontier molecular orbital energies identify the target molecules as promising candidates for hole transporting semiconductors.


Asunto(s)
Cristalografía por Rayos X , Catálisis , Teoría Funcional de la Densidad , Oxidación-Reducción
6.
Angew Chem Int Ed Engl ; 60(24): 13631-13635, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33724640

RESUMEN

Herein we report a versatile concept for the synthesis of fourfold functionalized, soluble pyrenes, peropyrenes, terropyrenes, and quarterropyrenes. They were obtained by a modular stepwise approach towards the rylene scaffold via Suzuki-Miyaura cross coupling, oxidative cyclodehydrogenation in the presence of caesium hydroxide under air, and finally zinc-mediated reductive silylation. The silylated reaction products were characterized by X-ray crystallography. The first example of a synthesized and crystallized quarterropyrene is presented and its oxidation reaction investigated. The functionalized ropyrenes were systematically characterized by means of UV/Vis-NIR and photoluminescence spectroscopy showing a bathochromic shift of 80 nm per naphthalene unit and a nearly linear increase of the extinction coefficients. Cyclic voltammograms and DFT calculations identify them as electron-rich dyes and show a narrowing of the electrochemically determined HOMO-LUMO gap and lower oxidation potentials for the higher homologues.

7.
J Am Chem Soc ; 142(2): 894-899, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31840996

RESUMEN

The synthesis of cycloarenes in solution is challenging because of their low solubility and the often hindered cyclodehydrogenation reaction of their nonplanar precursors. Using an alternative on-surface synthesis protocol, we achieved an unprecedented double-stranded hexagonal cycloarene containing 108 sp2 carbon atoms. Its synthesis is based on hierarchical Ullmann coupling and cyclodehydrogenation of a specially designed precursor on a Au(111) surface. The structure and other properties of the cycloarene are investigated by scanning tunneling microscopy/spectroscopy, atomic force microscopy, and density functional theory calculations.

8.
Inorg Chem ; 59(23): 17565-17572, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33197182

RESUMEN

The syntheses and XRD molecular structures of a complete series of silylsulfido metalates Cat[M(SSiMe3)2] (M = Cu, Ag, Au) and corresponding silylselenido metalates Cat[M(SeSiMe3)2] (M = Cu, Ag, Au) comprising lattice stabilizing organic cations (Cat = Ph4P+ or PPN+) are reported. Much to our surprise these homoleptic cuprates, argentates, and aurates are stable enough to be isolated even in the absence of any strongly binding phosphines or N-heterocyclic carbenes as coligands. Their metal atoms are coordinated by two silylchalcogenido ligands in a linear fashion. The silyl moieties of all anions show an unexpected gauche conformation of the silyl substituents with respect to the central axis Si-[E-M-E]-Si in the solid state. The energetic preference for the gauche conformation is confirmed by quantum chemical calculations and amounts to about 2-6 kJ/mol, thus revealing a rather shallow potential mainly depending on electronic effects of the metal. Furthermore, 2D HMQC methods were applied to detect the otherwise nonobservable NMR shifts of the 29Si and 77Se nuclei of the silylselenido compounds. Preliminary investigations reveal that these thermally and protolytically labile chalcogenido metalates are valuable precursors for the precipitation of binary coinage metal chalcogenide nanoparticles from organic solution and for coinage metal cluster syntheses.

9.
Inorg Chem ; 59(6): 3428-3436, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-31967797

RESUMEN

Phase-pure crystalline Bi2Se3 and Bi2Te3 nanoparticles are formed in reactions of [C4C1Im]3[Bi3I12] (C4C1Im = 1-butyl-3-methylimidazolium) with [C4C1Pyr][ESiMe3] (E = Se or Te; C4C1Pyr = 1-butyl-1-methylpyrrolidinium) in the ionic liquid (IL) [C4C1Im]I. The resulting crystalline tetradymite-type nanoparticles exhibit stoichiometric Bi:E (E = Se or Te) molar ratios (2:3). Because all synthetic steps were performed under strict inert gas conditions, the surfaces of the Bi2Se3 and Bi2Te3 nanoparticles are free of metal oxide species. As proven by infrared and X-ray photoelectron spectroscopy analyses, the nanoparticle surfaces reveal only minor organic contamination from solvent residues ([C4C1Im]I). The nanomaterials show high Seebeck coefficients of -124 µV K-1 (Bi2Se3) and -155 µV K-1 (Bi2Te3) and feature high electrical conductivities (328 and 946 S cm-1, respectively) at the highest tested temperature (240 °C). The corresponding thermal conductivities (0.8 and 2.3 W m-1 K-1, respectively, at 30 °C) are comparable to those of single crystals and recently reported ab initio calculations, which is in remarkable contrast to typical findings of nanograined bulk materials obtained from compacted nanoparticles. These findings emphasize the low level of impurities, surface contamination, and, in general, defects produced by the synthetic approach reported here. The figure of merit in the in-plane direction of the compacted pellets reached peak values 0.45 for Bi2Se3 and 0.4 for Bi2Te3.

10.
Inorg Chem ; 59(17): 12054-12064, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32822178

RESUMEN

Previous reports in the literature describe that the crystallization of hexaphenyl carbodiphosphorane (CDPPh) from a variety of solvents gives a "bent" geometry for the P-C-P moiety as the solid-state molecular structure. However, a linear structure is observed when CDPPh is crystallized from benzene. Here, we report detailed spectroscopic and theoretical studies on the linear and bent structures. X-ray powder diffraction examinations show a phase transition of linear CDPPh upon the loss of co-crystallized benzene molecules, which is accompanied by the bending of the P-C-P unit. Studies on the linear and bent structures (i.e., X-ray powder diffraction, solid-state NMR, UV-vis spectroscopy, and IR spectroscopy) show significant differences in their properties. Investigations of the solid-state structures with density functional theory-based methods (PBE-D3) point toward subtle dispersion effects being responsible for this solvent-induced bond-bending isomerism in CDPPh.

11.
Molecules ; 25(17)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32883039

RESUMEN

A series of dinuclear copper(I) N,C,N- and P,C,P-carbodiphosphorane (CDP) complexes using multidentate ligands CDP(Py)2 (1) and (CDP(CH2PPh2)2 (13) have been isolated and characterized. Detailed structural information was gained by single-crystal XRD analyses of nine representative examples. The common structural motive is the central double ylidic carbon atom with its characteristic two lone pairs involved in the binding of two geminal L-Cu(I) fragments at Cu-Cu distances in the range 2.55-2.67 Å. In order to enhance conformational rigidity within the characteristic Cu-C-Cu triangle, two types of chelating side arms were symmetrically attached to each phosphorus atom: two 2-pyridyl functions in ligand CDP(Py)2 (1) and its dinuclear copper complexes 2-9 and 11, as well as two diphenylphosphinomethylene functions in ligand CDP(CH2PPh2)2 (13) and its di- and mononuclear complexes 14-18. Neutral complexes were typically obtained via the reaction of 1 with Cu(I) species CuCl, CuI, and CuSPh or via the salt elimination reaction of [(CuCl)2(CDP(Py)2] (2) with sodium carbazolate. Cationic Cu(I) complexes were prepared upon treating 1 with two equivalents of [Cu(NCMe)4]PF6, followed by the addition of either two equivalents of an aryl phosphine (PPh3, P(C6H4OMe)3) or one equivalent of bisphosphine ligands bis[(2-diphenylphosphino)phenyl] ether (DPEPhos), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (XantPhos), or 1,1'-bis(diphenyl-phosphino) ferrocene (dppf). For the first time, carbodiphosphorane CDP(CH2PPh2)2 (13) could be isolated upon treating its precursor [CH(dppm)2]Cl (12) with NaNH2 in liquid NH3. A protonated and a deprotonated derivative of ligand 13 were prepared, and their coordination was compared to neutral CDP ligand 13. NMR analysis and DFT calculations reveal that the most stable tautomer of 13 does not show a CDP (or carbone) structure in its uncoordinated base form. For most of the prepared complexes, photoluminescence upon irradiation with UV light at room temperature was observed. Quantum yields (ΦPL) were determined to be 36% for dicationic [(CuPPh3)2(CDP(Py)2)](PF6)2 (4) and 60% for neutral [(CuSPh)2(CDP(CH2PPh2)2] (16).


Asunto(s)
Cobre/química , Luminiscencia , Fosforanos/química , Ligandos , Fosforanos/síntesis química , Teoría Cuántica , Análisis Espectral , Temperatura , Difracción de Rayos X
12.
Inorg Chem ; 58(22): 15385-15392, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31687815

RESUMEN

We communicate the synthesis and full characterization of so far unknown tetrakis(trimethylsilylsulfido) and -(trimethylsilylselenido) gallates and indates in form of their organic salts Cat+[M(ESiMe3)4]- (M = Ga, In; E = S, Se; Cat = dimethylpyrrolidinium (DMPyr+), Ph4P+, (dppe)2Cu+, (dmpe)2Cu+). These thermally metastable silylchalcogenolatometalates can act as modular precursors for an ionic-liquid- or organic-solution-based low-temperature synthesis of multinary metal chalcogenide materials such as the CIGS species Cu(InxGa1-x)(SySe1-y)2.

13.
Angew Chem Int Ed Engl ; 58(30): 10335-10339, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31037821

RESUMEN

It was discovered that phosphazenyl phosphines (PAPs) can be stronger P-superbases than the corresponding Schwesinger type phosphazene N-superbases. A simple synthetic access to this class of PR3 derivatives including their homologization is described. XRD structures, proton affinities (PA), and gas-phase basicities (GB) as well as calculated and experimental pK BH + values in THF are presented. In contrast to their N-basic counterparts, PAPs are also privileged ligands in transition metal chemistry. In fact, they are currently the strongest uncharged P-donors known, exceeding classical and more recently discovered ligands such as PtBu3 and imidazolin-2-ylidenaminophosphines (IAPs) with respect to their low Tolman electronic parameters (TEPs) and large cone angles.

14.
Org Biomol Chem ; 16(35): 6586-6599, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30168830

RESUMEN

Herein, we present a series of isomerically pure, peripherally alkyl substituted, soluble and low aggregating azaphthalocyanines as well as their new, smaller hybrid homologues, azasubphthalocyanines. The focus lies on the effect of the systematically increasing number of aza building blocks [-N[double bond, length as m-dash]] replacing the non-peripheral [-CH[double bond, length as m-dash]] units and their influence on the physical and photophysical properties of these chromophores. The absolute and relative HOMO-LUMO energies of azaphthalocyanines were analyzed using UV-Vis and CV and compared to the density functional theory calculations (B3LYP, TD-DFT). The lowering of the HOMO level is revealed as the determining factor for the trend in the adsorption energies by electronic structure analysis. Crystals of substituted subphthalocyanines, N2-Pc*H2 and N4-[Pc*Zn·H2O], were obtained out of DCM. For the synthesis of the valuable tetramethyltetralin phthalocyanine building block a new highly efficient synthesis involving a nearly quantitative CoII catalyzed aerobic autoxidation step is introduced replacing inefficient KMnO4/pyridine as the oxidant.

15.
Chemistry ; 23(11): 2591-2598, 2017 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-28128480

RESUMEN

The linkage of two P2 -phosphazenyl groups through a C2 -symmetric (R,R)-1,2-diaminocyclohexane (DACH) backbone yielded the new chiral superbases DACH-P2 NMe2 and DACH-P2 Pyr (Pyr=pyrrolidinyl). These bases were prepared by a Kirsanov reaction and studied with respect to their spectroscopic and structural characteristics. Theoretical calculations concerning their basicity properties revealed remarkable pKBH+ values of 38.1 and 39.9 on the acetonitrile scale; this makes them the strongest nonionic chiral superbases known to date.

16.
Phys Chem Chem Phys ; 19(3): 2495-2502, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28058441

RESUMEN

The operation of organic optoelectronic devices relies notably on the bulk properties of compound molecular species, but even more so on the influence of interfaces thereof since it is at the interface where elemental electronic processes take place. Their identification and characterization thereby requires that these critical sections of a device are well defined and can be prepared with low defect density. In this context titanyl phthalocyanine (TiOPc) arises as an excellent candidate that reveals the formation of a stable bilayer structure with a characteristic "up-down" molecular arrangement that optimizes the dipole-dipole interaction within the bilayer. In our experimental study, long-range ordered TiOPc bilayers have been grown on Ag(111) surfaces and analyzed using infrared absorption spectroscopy and scanning tunneling microscopy. By monitoring the prominent Ti[double bond, length as m-dash]O stretching mode in IRAS and identifying local configurations in STM, a microscopic model for the growth of TiOPc bilayers on Ag(111) is suggested. We demonstrate that defect structures within these bilayers lead to characteristic vibrational signatures which react sensitively to the local environment of the molecules. Thermal desorption spectroscopy reveals a high thermal stability of the TiOPc bilayer up to 500 K, which is attributed to hydrogen bonds between oxygen of the titanyl unit and the hydrogen rim of phthalocyanines in the second layer, in addition to contributions arising from the oppositely oriented axial dipole moments and the ubiquitous van der Waals interactions.

17.
Angew Chem Int Ed Engl ; 56(11): 3090-3093, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28229512

RESUMEN

Herein we present the first superbase MHPN with two interacting P-ylide entities. Unlike classical proton sponges, this novel compound class has carbon atoms as basicity centers which are forced into close proximity by a naphthalene scaffold. The bisylide exhibits an experimental pKBH+  value of 33.3±0.2 on the MeCN scale and a calculated gas-phase proton affinity of 277.9 kcal mol-1 (M062X/6-311+G**//M062X/6-31G*+ZPVE method) exceeding that of the corresponding monoylide by nearly 15 kcal mol-1 . The origin of the unexpectedly high basicity of the new bisylide was investigated by NMR spectroscopic methods, single-crystal X-ray diffraction as well as theoretical calculations and can be partly attributed to the rapid exchange of the "acidic" proton between the two basic carbon atoms after protonation.

18.
Chemistry ; 22(12): 4218-30, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26879604

RESUMEN

We present the synthesis and thorough characterization of ionic liquids and organic salts based on hydrochalcogenide HE(-) (E=S, Se, Te) anions. Our approach is based on halide-, metal-, and water-free decarboxylation of methylcarbonate precursors under acidic conditions, resulting from the easily dissociating reagents H2 E. The compounds were characterized by elemental analysis, multinuclear NMR spectroscopy, thermal and single-crystal XRD analyses. The hydrosulfide salts were investigated with respect to their ability to dissolve elemental sulfur in varying stoichiometry. Thus-prepared polysulfide ILs were also analyzed by UV/Vis spectroscopy and cyclic voltammetry.

19.
Chemistry ; 22(45): 16292-16303, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27717038

RESUMEN

Depending on the amount of methanol present in solution, CO2 adducts of N-heterocyclic carbenes (NHCs) and N-heterocyclic olefins (NHOs) have been found to be in fully reversible equilibrium with the corresponding methyl carbonate salts [EMIm][OCO2 Me] and [EMMIm][OCO2 Me]. The reactivity pattern of representative 1-ethyl-3-methyl-NHO-CO2 adduct 4 has been investigated and compared with the corresponding NHC-CO2 zwitterion: The protonation of 4 with HX led to the imidazolium salts [NHO-CO2 H][X], which underwent decarboxylation to [EMMIm][X] in the presence of nucleophilic catalysts. NHO-CO2 zwitterion 4 can act as an efficient carboxylating agent towards CH acids such as acetonitrile. The [EMMIm] cyanoacetate and [EMMIm]2 cyanomalonate salts formed exemplify the first C-C bond-forming carboxylation reactions with NHO-activated CO2 . The reaction of the free NHO with dimethyl carbonate selectively led to methoxycarbonylated NHO, which is a perfect precursor for the synthesis of functionalized ILs [NHO-CO2 Me][X]. The first NHO-SO2 adduct was synthesized and structurally characterized; it showed a similar reactivity pattern, which allowed the synthesis of imidazolium methyl sulfites upon reaction with methanol.

20.
Inorg Chem ; 55(13): 6725-30, 2016 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-27299466

RESUMEN

K2Hg6Se7, Na2Hg3S2.51Se1.49, K2Hg3S1.03Se2.97, and K2Hg3S2.69Se1.31 were prepared by ionothermal treatment of K2Hg2Se3, Na2HgSe2, and K2Hg3Se4, respectively, in a nonclassical hydrosulfide ionic liquid (EMIm)(SH). In contrast to their lighter congeners, the title compounds could so far not be synthesized by inorganic polychalcogenide salt flux techniques. The applied method hence mimics polychalcogenide flux conditions, while operating at much lower temperatures below the decomposition temperature of the ionic liquid. It might thus be viewed as a pseudo-flux approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA