Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 324(5): F433-F445, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36927118

RESUMEN

Use of immunosuppressant calcineurin inhibitors (CNIs) is limited by irreversible kidney damage, hallmarked by renal fibrosis. CNIs directly damage many renal cell types. Given the diverse renal cell populations, additional targeted cell types and signaling mechanisms warrant further investigation. We hypothesized that fibroblasts contribute to CNI-induced renal fibrosis and propagate profibrotic effects via the transforming growth factor-ß (TGF-ß)/Smad signaling axis. To test this, kidney damage-resistant mice (C57BL/6) received tacrolimus (10 mg/kg) or vehicle for 21 days. Renal damage markers and signaling mediators were assessed. To investigate their role in renal damage, mouse renal fibroblasts were exposed to tacrolimus (1 nM) or vehicle for 24 h. Morphological and functional changes in addition to downstream signaling events were assessed. Tacrolimus-treated kidneys displayed evidence of renal fibrosis. Moreover, α-smooth muscle actin expression was significantly increased, suggesting the presence of fibroblast activation. TGF-ß receptor activation and downstream Smad2/3 signaling were also upregulated. Consistent with in vivo findings, tacrolimus-treated renal fibroblasts displayed a phenotypic switch known as fibroblast-to-myofibroblast transition (FMT), as α-smooth muscle actin, actin stress fibers, cell motility, and collagen type IV expression were significantly increased. These findings were accompanied by concomitant induction of TGF-ß signaling. Pharmacological inhibition of the downstream TGF-ß effector Smad3 attenuated tacrolimus-induced phenotypic changes. Collectively, these findings suggest that 1) tacrolimus inhibits the calcineurin/nuclear factor of activated T cells axis while inducing TGF-ß1 ligand secretion and receptor activation in renal fibroblasts; 2) aberrant TGF-ß receptor activation stimulates Smad-mediated production of myofibroblast markers, notable features of FMT; and 3) FMT contributes to extracellular matrix expansion in tacrolimus-induced renal fibrosis. These results incorporate renal fibroblasts into the growing list of CNI-targeted cell types and identify renal FMT as a process mediated via a TGF-ß-dependent mechanism.NEW & NOTEWORTHY Renal fibrosis, a detrimental feature of irreversible kidney damage, remains a sinister consequence of long-term calcineurin inhibitor (CNI) immunosuppressive therapy. Our study not only incorporates renal fibroblasts into the growing list of cell types negatively impacted by CNIs but also identifies renal fibroblast-to-myofibroblast transition as a process mediated via a TGF-ß-dependent mechanism. This insight will direct future studies investigating the feasibility of inhibiting TGF-ß signaling to maintain CNI-mediated immunosuppression while ultimately preserving kidney health.


Asunto(s)
Miofibroblastos , Insuficiencia Renal , Tacrolimus , Factor de Crecimiento Transformador beta1 , Animales , Ratones , Actinas/metabolismo , Inhibidores de la Calcineurina/farmacología , Fibroblastos/metabolismo , Fibrosis , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Tacrolimus/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Insuficiencia Renal/patología
2.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499770

RESUMEN

Myelin forming around axons provides electrical insulation and ensures rapid and efficient transmission of electrical impulses. Disruptions to myelinated nerves often result in nerve conduction failure along with neurological symptoms and long-term disability. In the central nervous system, calpains, a family of calcium dependent cysteine proteases, have been shown to have a role in developmental myelination and in demyelinating diseases. The roles of calpains in myelination and demyelination in the peripheral nervous system remain unclear. Here, we show a transient increase of activated CAPN1, a major calpain isoform, in postnatal rat sciatic nerves when myelin is actively formed. Expression of the endogenous calpain inhibitor, calpastatin, showed a steady decrease throughout the period of peripheral nerve development. In the sciatic nerves of Trembler-J mice characterized by dysmyelination, expression levels of CAPN1 and calpastatin and calpain activity were significantly increased. In lysolecithin-induced acute demyelination in adult rat sciatic nerves, we show an increase of CAPN1 and decrease of calpastatin expression. These changes in the calpain-calpastatin system are distinct from those during central nervous system development or in acute axonal degeneration in peripheral nerves. Our results suggest that the calpain-calpastatin system has putative roles in myelination and demyelinating diseases of peripheral nerves.


Asunto(s)
Enfermedades Desmielinizantes , Roedores , Animales , Ratones , Ratas , Roedores/metabolismo , Calpaína/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Axones/metabolismo , Vaina de Mielina/metabolismo , Nervio Ciático/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo
3.
J Neurosci ; 38(27): 6063-6075, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29853631

RESUMEN

Action potential conduction along myelinated axons depends on high densities of voltage-gated Na+ channels at the nodes of Ranvier. Flanking each node, paranodal junctions (paranodes) are formed between axons and Schwann cells in the peripheral nervous system (PNS) or oligodendrocytes in the CNS. Paranodal junctions contribute to both node assembly and maintenance. Despite their importance, the molecular mechanisms responsible for paranode assembly and maintenance remain poorly understood. ßII spectrin is expressed in diverse cells and is an essential part of the submembranous cytoskeleton. Here, we show that Schwann cell ßII spectrin is highly enriched at paranodes. To elucidate the roles of glial ßII spectrin, we generated mutant mice lacking ßII spectrin in myelinating glial cells by crossing mice with a floxed allele of Sptbn1 with Cnp-Cre mice, and analyzed both male and female mice. Juvenile (4 weeks) and middle-aged (60 weeks) mutant mice showed reduced grip strength and sciatic nerve conduction slowing, whereas no phenotype was observed between 8 and 24 weeks of age. Consistent with these findings, immunofluorescence microscopy revealed disorganized paranodes in the PNS and CNS of both postnatal day 13 and middle-aged mutant mice, but not in young adult mutant mice. Electron microscopy confirmed partial loss of transverse bands at the paranodal axoglial junction in the middle-aged mutant mice in both the PNS and CNS. These findings demonstrate that a spectrin-based cytoskeleton in myelinating glia contributes to formation and maintenance of paranodal junctions.SIGNIFICANCE STATEMENT Myelinating glia form paranodal axoglial junctions that flank both sides of the nodes of Ranvier. These junctions contribute to node formation and maintenance and are essential for proper nervous system function. We found that a submembranous spectrin cytoskeleton is highly enriched at paranodes in Schwann cells. Ablation of ßII spectrin in myelinating glial cells disrupted the paranodal cell adhesion complex in both peripheral and CNSs, resulting in muscle weakness and sciatic nerve conduction slowing in juvenile and middle-aged mice. Our data show that a spectrin-based submembranous cytoskeleton in myelinating glia plays important roles in paranode formation and maintenance.


Asunto(s)
Axones/metabolismo , Citoesqueleto/metabolismo , Neuroglía/metabolismo , Espectrina/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Nódulos de Ranvier
4.
Neurobiol Dis ; 127: 76-86, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30807826

RESUMEN

Painful diabetic neuropathy (PDN) is a devastating neurological complication of diabetes. Methylglyoxal (MG) is a reactive metabolite whose elevation in the plasma corresponds to PDN in patients and pain-like behavior in rodent models of type 1 and type 2 diabetes. Here, we addressed the MG-related spinal mechanisms of PDN in type 2 diabetes using db/db mice, an established model of type 2 diabetes, and intrathecal injection of MG in conventional C57BL/6J mice. Administration of either a MG scavenger (GERP10) or a vector overexpressing glyoxalase 1, the catabolic enzyme for MG, attenuated heat hypersensitivity in db/db mice. In C57BL/6J mice, intrathecal administration of MG produced signs of both evoked (heat and mechanical hypersensitivity) and affective (conditioned place avoidance) pain. MG-induced Ca2+ mobilization in lamina II dorsal horn neurons of C57BL/6J mice was exacerbated in db/db, suggestive of MG-evoked central sensitization. Pharmacological and/or genetic inhibition of transient receptor potential ankyrin subtype 1 (TRPA1), adenylyl cyclase type 1 (AC1), protein kinase A (PKA), or exchange protein directly activated by cyclic adenosine monophosphate (Epac) blocked MG-evoked hypersensitivity in C57BL/6J mice. Similarly, intrathecal administration of GERP10, or inhibitors of TRPA1 (HC030031), AC1 (NB001), or Epac (HJC-0197) attenuated hypersensitivity in db/db mice. We conclude that MG and sensitization of a spinal TRPA1-AC1-Epac signaling cascade facilitate PDN in db/db mice. Our results warrant clinical investigation of MG scavengers, glyoxalase inducers, and spinally-directed pharmacological inhibitors of a MG-TRPA1-AC1-Epac pathway for the treatment of PDN in type 2 diabetes.


Asunto(s)
Adenilil Ciclasas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neuropatías Diabéticas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Piruvaldehído/metabolismo , Canal Catiónico TRPA1/metabolismo , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Masculino , Ratones , Dimensión del Dolor , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Piruvaldehído/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
5.
Adv Exp Med Biol ; 1190: 65-83, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31760639

RESUMEN

Propagation of action potentials along axons is optimized through interactions between neurons and myelinating glial cells. Myelination drives division of the axons into distinct molecular domains including nodes of Ranvier. The high density of voltage-gated sodium channels at nodes generates action potentials allowing for rapid and efficient saltatory nerve conduction. At paranodes flanking both sides of the nodes, myelinating glial cells interact with axons, forming junctions that are essential for node formation and maintenance. Recent studies indicate that the disruption of these specialized axonal domains is involved in the pathophysiology of various neurological diseases. Loss of paranodal axoglial junctions due to genetic mutations or autoimmune attack against the paranodal proteins leads to nerve conduction failure and neurological symptoms. Breakdown of nodal and paranodal proteins by calpains, the calcium-dependent cysteine proteases, may be a common mechanism involved in various nervous system diseases and injuries. This chapter reviews recent progress in neurobiology and pathophysiology of specialized axonal domains along myelinated nerve fibers.


Asunto(s)
Axones/fisiología , Fibras Nerviosas Mielínicas/fisiología , Conducción Nerviosa , Axones/patología , Humanos , Fibras Nerviosas Mielínicas/patología , Neuroglía/patología , Neuroglía/fisiología
6.
Muscle Nerve ; 55(4): 544-554, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27463510

RESUMEN

INTRODUCTION: Peripheral nerves are often exposed to mechanical stress leading to compression neuropathies. The pathophysiology underlying nerve dysfunction by chronic compression is largely unknown. METHODS: We analyzed molecular organization and fine structures at and near nodes of Ranvier in a compression neuropathy model in which a silastic tube was placed around the mouse sciatic nerve. RESULTS: Immunofluorescence study showed that clusters of cell adhesion complex forming paranodal axoglial junctions were dispersed and overlapped frequently with juxtaparanodal components. These paranodal changes occurred without internodal myelin damage. The distribution and pattern of paranodal disruption suggests that these changes are the direct result of mechanical stress. Electron microscopy confirmed loss of paranodal axoglial junctions. CONCLUSIONS: Our data show that chronic nerve compression disrupts paranodal junctions and axonal domains required for proper peripheral nerve function. These results provide important clues toward better understanding of the pathophysiology underlying nerve dysfunction in compression neuropathies. Muscle Nerve 55: 544-554, 2017.


Asunto(s)
Artrogriposis/patología , Artrogriposis/fisiopatología , Moléculas de Adhesión Celular/metabolismo , Potenciales Evocados Motores/fisiología , Neuropatía Hereditaria Motora y Sensorial/patología , Neuropatía Hereditaria Motora y Sensorial/fisiopatología , Nódulos de Ranvier/metabolismo , Animales , Ancirinas/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Modelos Animales de Enfermedad , Femenino , Lateralidad Funcional , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Factores de Crecimiento Nervioso/metabolismo , Conducción Nerviosa/fisiología , Nódulos de Ranvier/patología , Nódulos de Ranvier/ultraestructura , Nervio Ciático/patología , Nervio Ciático/fisiopatología , Nervio Ciático/ultraestructura , Canales de Potasio Shab/metabolismo
7.
FASEB J ; 29(7): 3040-53, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25846372

RESUMEN

Every cell expresses a molecularly diverse surface glycan coat (glycocalyx) comprising its interface with its cellular environment. In vertebrates, the terminal sugars of the glycocalyx are often sialic acids, 9-carbon backbone anionic sugars implicated in intermolecular and intercellular interactions. The vertebrate brain is particularly enriched in sialic acid-containing glycolipids termed gangliosides. Human congenital disorders of ganglioside biosynthesis result in paraplegia, epilepsy, and intellectual disability. To better understand sialoglycan functions in the nervous system, we studied brain anatomy, histology, biochemistry, and behavior in mice with engineered mutations in St3gal2 and St3gal3, sialyltransferase genes responsible for terminal sialylation of gangliosides and some glycoproteins. St3gal2/3 double-null mice displayed dysmyelination marked by a 40% reduction in major myelin proteins, 30% fewer myelinated axons, a 33% decrease in myelin thickness, and molecular disruptions at nodes of Ranvier. In part, these changes may be due to dysregulation of ganglioside-mediated oligodendroglial precursor cell proliferation. Neuronal markers were also reduced up to 40%, and hippocampal neurons had smaller dendritic arbors. Young adult St3gal2/3 double-null mice displayed impaired motor coordination, disturbed gait, and profound cognitive disability. Comparisons among sialyltransferase mutant mice provide insights into the functional roles of brain gangliosides and sialoglycoproteins consistent with related human congenital disorders.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferasas/deficiencia , Sialiltransferasas/genética , Animales , Astrocitos/metabolismo , Conducta Animal/fisiología , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Gangliósidos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Microglía/metabolismo , Modelos Animales , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Sialoglicoproteínas/metabolismo , Sialiltransferasas/metabolismo , beta-Galactosida alfa-2,3-Sialiltransferasa
8.
Proc Natl Acad Sci U S A ; 108(19): 8009-14, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21518878

RESUMEN

During peripheral nerve development, Schwann cells ensheathe axons and form myelin to enable rapid and efficient action potential propagation. Although myelination requires profound changes in Schwann cell shape, how neuron-glia interactions converge on the Schwann cell cytoskeleton to induce these changes is unknown. Here, we demonstrate that the submembranous cytoskeletal proteins αII and ßII spectrin are polarized in Schwann cells and colocalize with signaling molecules known to modulate myelination in vitro. Silencing expression of these spectrins inhibited myelination in vitro, and remyelination in vivo. Furthermore, myelination was disrupted in motor nerves of zebrafish lacking αII spectrin. Finally, we demonstrate that loss of spectrin significantly reduces both F-actin in the Schwann cell cytoskeleton and the Nectin-like protein, Necl4, at the contact site between Schwann cells and axons. Therefore, we propose αII and ßII spectrin in Schwann cells integrate the neuron-glia interactions mediated by membrane proteins into the actin-dependent cytoskeletal rearrangements necessary for myelination.


Asunto(s)
Vaina de Mielina/fisiología , Nervios Periféricos/fisiología , Células de Schwann/fisiología , Espectrina/fisiología , Actinas/antagonistas & inhibidores , Actinas/fisiología , Animales , Secuencia de Bases , Polaridad Celular , Citoesqueleto/fisiología , Técnicas de Silenciamiento del Gen , Mutación , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Células de Schwann/citología , Nervio Ciático/citología , Nervio Ciático/lesiones , Nervio Ciático/fisiología , Espectrina/antagonistas & inhibidores , Espectrina/deficiencia , Espectrina/genética , Pez Cebra/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
9.
J Neurosci ; 30(43): 14476-81, 2010 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-20980605

RESUMEN

Oligodendrocyte myelin glycoprotein (OMgp) is expressed by both neurons and oligodendrocytes in the CNS. It has been implicated in growth cone collapse and neurite outgrowth inhibition by signaling through the Nogo receptor and paired Ig-like receptor B (PirB). OMgp was also reported to be an extracellular matrix (ECM) protein surrounding CNS nodes of Ranvier and proposed to function as (1) an inhibitor of nodal collateral sprouting and (2) an important contributor to proper nodal and paranodal architecture. However, we show here that the anti-OMgp antiserum used in previous studies to define the functions of OMgp at nodes is not specific. Among all reported nodal ECM components, the antiserum exhibited strong cross-reactivity against versican V2 isoform, a chondroitin sulfate proteoglycan. Furthermore, the OMgp antiserum labeled OMgp-null nodes, but not nodes from versican V2-deficient mice, and preadsorption of the OMgp antiserum with recombinant versican V2 blocked nodal labeling. Analysis of CNS nodes in OMgp-null mice failed to reveal any nodal or paranodal defects, or increased nodal collateral sprouting, indicating that OMgp does not participate in CNS node of Ranvier assembly or maintenance. We successfully identified a highly specific anti-OMgp antibody and observed OMgp staining in white matter only after initiation of myelination. OMgp immunoreactivity decorated the surface of mature myelinated axons, but was excluded from compact myelin and nodes. Together, our results strongly argue against the nodal localization of OMgp and its proposed functions at nodes, and reveal OMgp's authentic localization relative to nodes and myelin.


Asunto(s)
Glicoproteína Asociada a Mielina/fisiología , Nódulos de Ranvier/fisiología , Animales , Anticuerpos Bloqueadores/farmacología , Especificidad de Anticuerpos , Axones/fisiología , Axones/ultraestructura , Western Blotting , Reacciones Cruzadas , Matriz Extracelular/fisiología , Proteínas Ligadas a GPI , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Microscopía Electrónica , Proteínas de la Mielina , Vaina de Mielina/fisiología , Glicoproteína Asociada a Mielina/genética , Glicoproteína Mielina-Oligodendrócito , Equilibrio Postural/genética , Equilibrio Postural/fisiología , Nódulos de Ranvier/genética , Versicanos/genética , Versicanos/fisiología
10.
Elife ; 102021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33689679

RESUMEN

TDP-43 is extensively studied in neurons in physiological and pathological contexts. However, emerging evidence indicates that glial cells are also reliant on TDP-43 function. We demonstrate that deletion of TDP-43 in Schwann cells results in a dramatic delay in peripheral nerve conduction causing significant motor deficits in mice, which is directly attributed to the absence of paranodal axoglial junctions. By contrast, paranodes in the central nervous system are unaltered in oligodendrocytes lacking TDP-43. Mechanistically, TDP-43 binds directly to Neurofascin mRNA, encoding the cell adhesion molecule essential for paranode assembly and maintenance. Loss of TDP-43 triggers the retention of a previously unidentified cryptic exon, which targets Neurofascin mRNA for nonsense-mediated decay. Thus, TDP-43 is required for neurofascin expression, proper assembly and maintenance of paranodes, and rapid saltatory conduction. Our findings provide a framework and mechanism for how Schwann cell-autonomous dysfunction in nerve conduction is directly caused by TDP-43 loss-of-function.


Asunto(s)
Proteínas de Unión al ADN/genética , Exones , Uniones Intercelulares/metabolismo , Conducción Nerviosa , Células de Schwann/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Femenino , Masculino , Ratones
11.
eNeuro ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34531281

RESUMEN

Recent evidence suggests that alteration of axon initial segment (AIS) geometry (i.e., length or location along the axon) contributes to CNS dysfunction in neurological diseases. For example, AIS length is shorter in the prefrontal cortex of type 2 diabetic mice with cognitive impairment. To determine the key type 2 diabetes-related factor that produces AIS shortening we modified levels of insulin, glucose, or the reactive glucose metabolite methylglyoxal in cultures of dissociated cortices from male and female mice and quantified AIS geometry using immunofluorescent imaging of the AIS proteins AnkyrinG and ßIV spectrin. Neither insulin nor glucose modification altered AIS length. Exposure to 100 but not 1 or 10 µm methylglyoxal for 24 h resulted in accumulation of the methylglyoxal-derived advanced glycation end-product hydroimidazolone and produced reversible AIS shortening without cell death. Methylglyoxal-evoked AIS shortening occurred in both excitatory and putative inhibitory neuron populations and in the presence of tetrodotoxin (TTX). In single-cell recordings resting membrane potential was depolarized at 0.5-3 h and returned to normal at 24 h. In multielectrode array (MEA) recordings methylglyoxal produced an immediate ∼300% increase in spiking and bursting rates that returned to normal within 2 min, followed by a ∼20% reduction of network activity at 0.5-3 h and restoration of activity to baseline levels at 24 h. AIS length was unchanged at 0.5-3 h despite the presence of depolarization and network activity reduction. Nevertheless, these results suggest that methylglyoxal could be a key mediator of AIS shortening and disruptor of neuronal function during type 2 diabetes.


Asunto(s)
Segmento Inicial del Axón , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animales , Femenino , Masculino , Ratones , Neuronas , Piruvaldehído
12.
Neuron ; 106(5): 806-815.e6, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32209430

RESUMEN

During development of the peripheral nervous system (PNS), Schwann-cell-secreted gliomedin induces the clustering of Na+ channels at the edges of each myelin segment to form nodes of Ranvier. Here we show that bone morphogenetic protein-1 (BMP1)/Tolloid (TLD)-like proteinases confine Na+ channel clustering to these sites by negatively regulating the activity of gliomedin. Eliminating the Bmp1/TLD cleavage site in gliomedin or treating myelinating cultures with a Bmp1/TLD inhibitor results in the formation of numerous ectopic Na+ channel clusters along axons that are devoid of myelin segments. Furthermore, genetic deletion of Bmp1 and Tll1 genes in mice using a Schwann-cell-specific Cre causes ectopic clustering of nodal proteins, premature formation of heminodes around early ensheathing Schwann cells, and altered nerve conduction during development. Our results demonstrate that by inactivating gliomedin, Bmp1/TLD functions as an additional regulatory mechanism to ensure the correct spatial and temporal assembly of PNS nodes of Ranvier.


Asunto(s)
Proteína Morfogenética Ósea 1/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Vaina de Mielina/metabolismo , Nódulos de Ranvier/metabolismo , Metaloproteinasas Similares a Tolloid/genética , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Proteína Morfogenética Ósea 1/metabolismo , Ratones , Ratones Noqueados , Conducción Nerviosa , Sistema Nervioso Periférico , Transporte de Proteínas , Células de Schwann/metabolismo , Metaloproteinasas Similares a Tolloid/metabolismo
13.
Behav Brain Res ; 371: 111978, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31141724

RESUMEN

Impaired executive function is a major peril for patients with type 2 diabetes, reducing quality of life and ability for diabetes management. Despite the significance of this impairment, few animal models of type 2 diabetes examine domains of executive function such as cognitive flexibility or working memory. Here, we evaluated these executive function domains in db/db mice, an established model of type 2 diabetes, at 10 and 24 weeks of age. The db/db mice showed impaired cognitive flexibility in the Morris water maze reversal phase. However, the db/db mice did not show apparent working memory disturbance in the spatial working memory version of the Morris water maze or in the radial water maze. We also examined axon initial segments (AIS) and nodes of Ranvier, key axonal domains for action potential initiation and propagation. AIS were significantly shortened in medial prefrontal cortex and hippocampus of 26-week-old db/db mice compared with controls, similar to our previous findings in 10-week-old mice. Nodes of Ranvier in corpus callosum, previously shown to be unchanged at 10 weeks, were elongated at 26 weeks, suggesting an important role for this domain in disease progression. Together, the findings help establish db/db mice as a model of impaired cognitive flexibility in type 2 diabetes and advance our understanding of its pathophysiology.


Asunto(s)
Cognición/fisiología , Diabetes Mellitus Experimental/psicología , Memoria a Corto Plazo/fisiología , Animales , Encéfalo/fisiología , Trastornos del Conocimiento/fisiopatología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/psicología , Modelos Animales de Enfermedad , Función Ejecutiva/fisiología , Hipocampo/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos , Corteza Prefrontal/fisiología
14.
J Neurosci ; 27(15): 3956-67, 2007 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-17428969

RESUMEN

Voltage-gated Na+ (Na(v)) channels are highly concentrated at nodes of Ranvier in myelinated axons and facilitate rapid action potential conduction. Autoantibodies to gangliosides such as GM1 have been proposed to disrupt nodal Nav channels and lead to Guillain-Barré syndrome, an autoimmune neuropathy characterized by acute limb weakness. To test this hypothesis, we examined the molecular organization of nodes in a disease model caused by immunization with gangliosides. At the acute phase with progressing limb weakness, Na(v) channel clusters were disrupted or disappeared at abnormally lengthened nodes concomitant with deposition of IgG and complement products. Paranodal axoglial junctions, the nodal cytoskeleton, and Schwann cell microvilli, all of which stabilize Na(v) channel clusters, were also disrupted. The nodal molecules disappeared in lesions with complement deposition but no localization of macrophages. During recovery, complement deposition at nodes decreased, and Na(v) channels redistributed on both sides of affected nodes. These results suggest that Na(v) channel alterations occur as a consequence of complement-mediated disruption of interactions between axons and Schwann cells. Our findings support the idea that acute motor axonal neuropathy is a disease that specifically disrupts the nodes of Ranvier.


Asunto(s)
Autoanticuerpos/fisiología , Proteínas del Sistema Complemento/fisiología , Gangliósido G(M1)/inmunología , Nódulos de Ranvier/patología , Canales de Sodio/metabolismo , Animales , Masculino , Fibras Nerviosas/inmunología , Fibras Nerviosas/metabolismo , Fibras Nerviosas/patología , Nervios Periféricos/inmunología , Nervios Periféricos/metabolismo , Nervios Periféricos/patología , Conejos , Nódulos de Ranvier/inmunología , Nódulos de Ranvier/metabolismo
15.
J Neuroimmunol ; 205(1-2): 101-4, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18973956

RESUMEN

Complement-mediated disruption of voltage-gated sodium channels at the nodes of Ranvier acts in the development of acute motor axonal neuropathy. Nafamostat mesilate, a synthetic serine protease inhibitor, used in clinical practice for more than 20 years, has anti-complement activity. Acute motor axonal neuropathy rabbits obtained by GM1 ganglioside sensitization were or were not given nafamostat mesilate intravenously. Complement deposition and sodium channel disruption in the spinal anterior roots were significantly less frequent in the treated rabbits than in the controls. Nafamostat mesilate inhibited complement deposition and prevented sodium channel disruption. This provided the rationale for a clinical trial.


Asunto(s)
Inactivadores del Complemento/farmacología , Guanidinas/farmacología , Síndrome de Guillain-Barré/patología , Nódulos de Ranvier/efectos de los fármacos , Canales de Sodio/metabolismo , Animales , Benzamidinas , Complemento C3/metabolismo , Inactivadores del Complemento/uso terapéutico , Modelos Animales de Enfermedad , Guanidinas/uso terapéutico , Síndrome de Guillain-Barré/tratamiento farmacológico , Síndrome de Guillain-Barré/fisiopatología , Bombas de Infusión Implantables , Conejos , Distribución Aleatoria , Nódulos de Ranvier/metabolismo
16.
Exp Biol Med (Maywood) ; 233(4): 394-400, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18367627

RESUMEN

In myelinated nerve fibers, action potential initiation and propagation requires that voltage-gated ion channels be clustered at high density in the axon initial segments and nodes of Ranvier. The molecular organization of these subdomains depends on specialized cytoskeletal and scaffolding proteins such as spectrins, ankyrins, and 4.1 proteins. These cytoskeletal proteins are considered to be important for 1) formation, localization, and maintenance of specific integral membrane protein complexes, 2) a barrier restricting the diffusion of both cytoplasmic and membrane proteins to distinct regions or compartments of the cell, and 3) stabilization of axonal membrane integrity. Increased insights into the role of the cytoskeleton could provide important clues about the pathophysiology of various neurological disorders.


Asunto(s)
Ancirinas/metabolismo , Citoesqueleto/metabolismo , Fibras Nerviosas Mielínicas , Espectrina/metabolismo , Potenciales de Acción/fisiología , Animales , Polaridad Celular , Citoesqueleto/ultraestructura , Humanos , Canales Iónicos/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/ultraestructura , Enfermedades del Sistema Nervioso/metabolismo , Neuroglía/metabolismo , Neuroglía/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura , Nódulos de Ranvier/metabolismo , Nódulos de Ranvier/ultraestructura
17.
Pediatr Neurol ; 39(1): 67-70, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18555178

RESUMEN

Guillain-Barré syndrome is divided into two subtypes: acute inflammatory demyelinating polyneuropathy, and acute motor axonal neuropathy. Autoantibodies to gangliosides GM1, GM1b, GD1a, or GalNAc-GD1a were proposed as serologic markers of acute motor axonal neuropathy in adults. In a previous study of Japanese children with Guillain-Barré syndrome, acute motor axonal neuropathy was associated with anti-GM1 immunoglobulin G antibodies. Larger, comprehensive studies are required to confirm this finding. The present study revealed that immunoglobulin G antibodies were against GM1 (34%), GM1b (22%), GD1a (25%), GalNAc-GD1a (13%), and any of these (44%) in 32 Japanese children with Guillain-Barré syndrome. Patients who had the autoantibodies more often manifested previous diarrhea (71% vs 11%, P = 0.001), acute motor axonal neuropathy (64% vs 11%, P = 0.003), and slower recovery (healthy at final follow-up: 29% vs 78%, P = 0.011; able to run with minor signs, 64% vs 11%, P = 0.003) than patients who did not. The clinical features were consistent with those in adults carrying anti-ganglioside antibodies. Anti-ganglioside antibody testing may help predict outcomes in pediatric patients with Guillain-Barré syndrome who prefer not to undergo repeated nerve-conduction studies.


Asunto(s)
Axones/patología , Síndrome de Guillain-Barré/sangre , Síndrome de Guillain-Barré/patología , Adolescente , Autoanticuerpos/sangre , Biomarcadores/sangre , Infecciones por Campylobacter/inmunología , Campylobacter jejuni/inmunología , Niño , Preescolar , Electrodiagnóstico , Electroencefalografía , Femenino , Gangliósidos/inmunología , Humanos , Inmunoglobulinas/sangre , Lactante , Masculino , Pronóstico
18.
ASN Neuro ; 10: 1759091418766175, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29673258

RESUMEN

Nodes of Ranvier and associated paranodal and juxtaparanodal domains along myelinated axons are essential for normal function of the peripheral and central nervous systems. Disruption of these domains as well as increases in the reactive carbonyl species methylglyoxal are implicated as a pathophysiology common to a wide variety of neurological diseases. Here, using an ex vivo nerve exposure model, we show that increasing methylglyoxal produces paranodal disruption, evidenced by disorganized immunostaining of axoglial cell-adhesion proteins, in both sciatic and optic nerves from wild-type mice. Consistent with previous studies showing that increase of methylglyoxal can alter intracellular calcium homeostasis, we found upregulated activity of the calcium-activated protease calpain in sciatic nerves after methylglyoxal exposure. Methylglyoxal exposure altered clusters of proteins that are known as calpain substrates: ezrin in Schwann cell microvilli at the perinodal area and zonula occludens 1 in Schwann cell autotypic junctions at paranodes. Finally, treatment with the calpain inhibitor calpeptin ameliorated methylglyoxal-evoked ezrin loss and paranodal disruption in both sciatic and optic nerves. Our findings strongly suggest that elevated methylglyoxal levels and subsequent calpain activation contribute to the disruption of specialized axoglial domains along myelinated nerve fibers in neurological diseases.


Asunto(s)
Axones/efectos de los fármacos , Calpaína/metabolismo , Unión Neuroefectora/efectos de los fármacos , Neuroglía/efectos de los fármacos , Piruvaldehído/farmacología , Nódulos de Ranvier/efectos de los fármacos , Animales , Axones/metabolismo , Proteínas del Citoesqueleto/metabolismo , Dipéptidos/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas In Vitro , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/farmacología , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/metabolismo , Neuroglía/metabolismo , Nervio Óptico/citología , Pan paniscus/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Nervio Ciático/citología , Proteína de la Zonula Occludens-1/metabolismo
19.
Front Cell Neurosci ; 12: 146, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29937715

RESUMEN

Cognitive and mood impairments are common central nervous system complications of type 2 diabetes, although the neuronal mechanism(s) remains elusive. Previous studies focused mainly on neuronal inputs such as altered synaptic plasticity. Axon initial segment (AIS) is a specialized functional domain within neurons that regulates neuronal outputs. Structural changes of AIS have been implicated as a key pathophysiological event in various psychiatric and neurological disorders. Here we evaluated the structural integrity of the AIS in brains of db/db mice, an established animal model of type 2 diabetes associated with cognitive and mood impairments. We assessed the AIS before (5 weeks of age) and after (10 weeks) the development of type 2 diabetes, and after daily exercise treatment of diabetic condition. We found that the development of type 2 diabetes is associated with significant AIS shortening in both medial prefrontal cortex and hippocampus, as evident by immunostaining of the AIS structural protein ßIV spectrin. AIS shortening occurs in the absence of altered neuronal and AIS protein levels. We found no change in nodes of Ranvier, another neuronal functional domain sharing a molecular organization similar to the AIS. This is the first study to identify AIS alteration in type 2 diabetes condition. Since AIS shortening is known to lower neuronal excitability, our results may provide a new avenue for understanding and treating cognitive and mood impairments in type 2 diabetes.

20.
J Neurosci ; 26(19): 5230-9, 2006 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-16687515

RESUMEN

Paranodal junctions of myelinated nerve fibers are important for saltatory conduction and function as paracellular and membrane protein diffusion barriers flanking nodes of Ranvier. The formation of these specialized axoglial contacts depends on the presence of three cell adhesion molecules: neurofascin 155 on the glial membrane and a complex of Caspr and contactin on the axon. We isolated axonal and glial membranes highly enriched in these paranodal proteins and then used mass spectrometry to identify additional proteins associated with the paranodal axoglial junction. This strategy led to the identification of three novel components of the paranodal cytoskeleton: ankyrinB, alphaII spectrin, and betaII spectrin. Biochemical and immunohistochemical analyses revealed that these proteins associate with protein 4.1B in a macromolecular complex that is concentrated at central and peripheral paranodal junctions in the adult and during early myelination. Furthermore, we show that the paranodal localization of ankyrinB is disrupted in Caspr-null mice with aberrant paranodal junctions, demonstrating that paranodal neuron-glia interactions regulate the organization of the underlying cytoskeleton. In contrast, genetic disruption of the juxtaparanodal protein Caspr2 or the nodal cytoskeletal protein betaIV spectrin did not alter the paranodal cytoskeleton. Our results demonstrate that the paranodal junction contains specialized cytoskeletal components that may be important to stabilize axon-glia interactions and contribute to the membrane protein diffusion barrier found at paranodes.


Asunto(s)
Ancirinas/metabolismo , Axones/metabolismo , Uniones Comunicantes/metabolismo , Neuroglía/metabolismo , Nódulos de Ranvier/metabolismo , Espectrina/metabolismo , Animales , Células Cultivadas , Citoesqueleto/metabolismo , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA