RESUMEN
PURPOSE: To assess the early metabolic response of the primary tumor using Gallium-68 (68Ga)-labeled-prostate-specific membrane antigen positron emission tomography (68Ga-PSMA-PET/CT), as well as the relationship between PSMA change in the primary tumor and PSA response after definitive radiotherapy (RT), either alone or in combination with androgen deprivation therapy (ADT) in intermediate risk prostate cancer (IR-PCa) patients. METHODS: The clinical data of 71 IR-PCa patients treated with RT alone (36 patients, 50.7%) or RT and ADT (35 patients, 49.3%) were retrospectively analyzed. The difference between pre- and Posttreatment primary tumor PSMA expression and serum PSA values measured 4 months after completion of treatment were compared between treatment arms. Correlation between primary tumor metabolic response and serum PSA changes was analyzed. RESULTS: The median duration between pre- and Posttreatment 68Ga-PSMA-PET/CT for the entire patient population was 6.9 months (range, 5.6-8.4 months), and it was similar in both treatment arms. A decrease in primary tumor maximum standardized uptake value (SUVmax) was seen in 66 patients (93.0%), with a median value of 61.2%, which is significantly lower in patients undergoing RT alone than those undergoing RT and ADT (45.1 ± 30.6% vs. 59.1 ± 24.7%; p = 0.004). The complete metabolic response rate was significantly higher in patients undergoing RT and ADT than those treated with RT alone (40% vs. 0%; p < 0.001). Although moderate and positive correlation between pretreatment SUVmax and oosttreatment SUVmax was observed, there was no significant correlation between SUV change and PSA change. For patients treated with RT and ADT, posttreatment SUVmax was significantly lower and SUV change was significantly higher in patients with PSA nadir than in those without. CONCLUSIONS: Our preliminary results show that RT, with or without ADT, significantly reduces primary tumor SUVmax and serum PSA levels. Nonetheless, our findings indicate that early treatment response using 68Ga-PSMA-PET/CT is not feasible for those treated with RT alone, and it may only be useful in better distinguishing patients with and without PSA nadir for those who received both RT and ADT.
RESUMEN
BACKGROUND: Alterations in the PIK3/Akt/mTOR pathway are commonly seen in metastatic castration-sensitive prostate cancer (mCSPC), however their role in outcomes is unknown. We aim to evaluate the prognostic significance as well as the genetic landscape of PIK3/Akt/mTOR pathway alteration in mCSPC. METHODS: Fourhundred and seventy-two patients with mCSPC were included who underwent next generation sequencing. PIK3/Akt/mTor pathway alterations were defined as mutations in Akt1, mTOR, PIK3CA, PIK3CB, PIK3R1, PTEN, TSC1, and TSC2. Endpoints of interests were radiographic progression-free survival (rPFS), time to development of castration resistant prostate cancer (tdCRPC), and overall survival (OS). Kaplan-Meier analysis was performed and Cox regression hazard ratios (HR) were calculated. RESULTS: One hundred and fifty-two (31.9%) patients harbored a PIK3/Akt/mTOR pathway alteration. Median rPFS and tdCRPC were 23.7 and 21.0 months in PIK3/Akt/mTOR altered compared to 32.8 (p = 0.08) and 32.1 months (p = 0.002) in wildtype tumors. On multivariable analysis PIK3/Akt/mTOR pathway alterations were associated with tdCRPC (HR 1.43, 95% CI, 1.05-1.94, p = 0.02), but not rPFS [Hazard ratio (HR) 1.20, 95% confidence interval (CI), 0.90-1.60, p = 0.21]. PIK3/Akt/mTOR pathway alterations were more likely to be associated with concurrent mutations in TP53 (40% vs. 28%, p = 0.01) and TMPRSS2-ERG (37% vs. 26%, p = 0.02) than tumors without PIK3/Akt/mTOR pathway alterations. Concurrent mutations were typically associated with shorter median times to rPFS and tdCRPC. DAVID analysis showed p53 signaling and angiogenesis pathways were enriched in PIK3/Akt/mTOR pathway altered tumors while beta-catenin binding and altered BRCA pathway were enriched in PIK3/Akt/mTOR pathway wildtype tumors. CONCLUSIONS: PIK3/Akt/mTOR pathway alterations were common in mCSPC and associated with poorer prognosis. The genetic landscape of PIK3/Akt/mTOR pathway altered tumors differed from wildtype tumors. Additional studies are needed to better understand and target the PIK3/Akt/mTOR pathway in mCSPC.
Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR , Humanos , Masculino , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Anciano , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Persona de Mediana Edad , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Transducción de Señal , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Mutación , Pronóstico , Metástasis de la Neoplasia , Anciano de 80 o más AñosRESUMEN
PURPOSE: Despite well-informed work in several malignancies, the phenotypic effects of TP53 mutations in metastatic castration-sensitive prostate cancer (mCSPC) progression and metastasis are not clear. We characterized the structure-function and clinical impact of TP53 mutations in mCSPC. PATIENTS AND METHODS: We performed an international retrospective review of men with mCSPC who underwent next-generation sequencing and were stratified according to TP53 mutational status and metastatic burden. Clinical outcomes included radiographic progression-free survival (rPFS) and overall survival (OS) evaluated with Kaplan-Meier and multivariable Cox regression. We also utilized isogenic cancer cell lines to assess the effect of TP53 mutations and APR-246 treatment on migration, invasion, colony formation in vitro, and tumor growth in vivo. Preclinical experimental observations were compared using t-tests and ANOVA. RESULTS: Dominant-negative (DN) TP53 mutations were enriched in patients with synchronous (vs. metachronous) (20.7% vs. 6.3%, p < 0.01) and polymetastatic (vs. oligometastatic) (14.4% vs. 7.9%, p < 0.01) disease. On multivariable analysis, DN mutations were associated with worse rPFS (hazards ratio [HR] = 1.97, 95% confidence interval [CI]: 1.31-2.98) and overall survival [OS] (HR = 2.05, 95% CI: 1.14-3.68) compared to TP53 wild type (WT). In vitro, 22Rv1 TP53 R175H cells possessed stronger migration, invasion, colony formation ability, and cellular movement pathway enrichment in RNA sequencing analysis compared to 22Rv1 TP53 WT cells. Treatment with APR-246 reversed the effects of TP53 mutations in vitro and inhibited 22Rv1 TP53 R175H tumor growth in vivo in a dosage-dependent manner. CONCLUSIONS: DN TP53 mutations correlated with worse prognosis in prostate cancer patients and higher metastatic potential, which could be counteracted by APR-246 treatment suggesting a potential future therapeutic avenue.
Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Pronóstico , Supervivencia sin Progresión , Mutación , Relación Estructura-Actividad , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Our ability to prognosticate the clinical course of patients with cancer has historically been limited to clinical, histopathological, and radiographic features. It has long been clear however, that these data alone do not adequately capture the heterogeneity and breadth of disease trajectories experienced by patients. The advent of efficient genomic sequencing has led to a revolution in cancer care as we try to understand and personalize treatment specific to patient clinico-genomic phenotypes. Within prostate cancer, emerging evidence suggests that tumor genomics (e.g., DNA, RNA, and epigenetics) can be utilized to inform clinical decision making. In addition to providing discriminatory information about prognosis, it is likely tumor genomics also hold a key in predicting response to oncologic therapies which could be used to further tailor treatment recommendations. Herein we review select literature surrounding the use of tumor genomics within the management of prostate cancer, specifically leaning toward analytically validated and clinically tested genomic biomarkers utilized in radiotherapy and/or adjunctive therapies given with radiotherapy.
Asunto(s)
Neoplasias de la Próstata , Biomarcadores de Tumor/genética , Toma de Decisiones Clínicas , Genómica , Humanos , Masculino , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/radioterapiaRESUMEN
In the present study, we investigated the effect of CDK inhibitors (ribociclib, palbociclib, seliciclib, AZD5438, and dinaciclib) on malignant human glioma cells for cell viability, apoptosis, oxidative stress, and mitochondrial function using various assays. None of the CDK inhibitors induced cell death at a clinically relevant concentration. However, low nanomolar concentrations of dinaciclib showed higher cytotoxic activity against Bcl-xL silenced cells in a time- and concentration-dependent manner. This effect was not seen with other CDK inhibitors. The apoptosis-inducing capability of dinaciclib in Bcl-xL silenced cells was evidenced by cell shrinkage, mitochondrial dysfunction, DNA damage, and increased phosphatidylserine externalization. Dinaciclib was found to disrupt mitochondrial membrane potential, resulting in the release of cytochrome c, AIF, and smac/DIABLO into the cytoplasm. This was accompanied by the downregulation of cyclin-D1, D3, and total Rb. Dinaciclib caused cell cycle arrest in a time- and concentration-dependent manner and with accumulation of cells in the sub-G1 phase. Our results also revealed that dinaciclib, but not ribociclib or palbociclib or seliciclib or AZD5438 induced intrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bax and Bak), resulting in the activation of caspases and cleavage of PARP. We also found an additional mechanism for the dinaciclib-induced augmentation of apoptosis due to abrogation RAD51-cyclin D1 interaction, specifically proteolysis of the DNA repair proteins RAD51 and Ku80. Our results suggest that successfully interfering with Bcl-xL function may restore sensitivity to dinaciclib and could hold the promise for an effective combination therapeutic strategy.
Asunto(s)
Apoptosis/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Autoantígeno Ku/metabolismo , Mitocondrias/metabolismo , Compuestos de Piridinio/farmacología , Recombinasa Rad51/metabolismo , Proteína bcl-X/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Óxidos N-Cíclicos , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Glioma/genética , Glioma/metabolismo , Glioma/patología , Humanos , Indolizinas , Autoantígeno Ku/genética , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteolisis , Interferencia de ARN , Recombinasa Rad51/genética , Regulación hacia Arriba/efectos de los fármacos , Proteína bcl-X/genéticaRESUMEN
Because the anti-apoptotic protein Bcl-xL is overexpressed in glioma, one might expect that inhibiting or silencing this gene would promote tumor cell killing. However, our studies have shown that this approach has limited independent activity, but may tip the balance in favor of apoptosis induction in response to other therapeutic interventions. To address this issue, we performed a pharmacological screen using a panel of signaling inhibitors and chemotherapeutic agents in Bcl-xL silenced cells. Although limited apoptosis induction was observed with a series of inhibitors for receptor tyrosine kinases, PKC inhibitors, Src family members, JAK/STAT, histone deacetylase, the PI3K/Akt/mTOR pathway, MAP kinase, CDK, heat shock proteins, proteasomal processing, and various conventional chemotherapeutic agents, we observed a dramatic potentiation of apoptosis in Bcl-xL silenced cells with the survivin inhibitor, YM155. Treatment with YM155 increased the release of cytochrome c, smac/DIABLO and apoptosis inducing-factor, and promoted loss of mitochondrial membrane potential, activation of Bax, recruitment of LC3-II to the autophagosomes and apoptosis in Bcl-xL silenced cells. We also found an additional mechanism for the augmentation of apoptosis due to abrogation of DNA double-strand break repair mediated by Rad51 repression and enhanced accumulation of γH2AX. In summary, our observations may provide a new insight into the link between Bcl-xL and survivin inhibition for the development of novel therapies for glioma. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Glioma/tratamiento farmacológico , Imidazoles/farmacología , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Naftoquinonas/farmacología , Proteína bcl-X/genética , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Citocromos c/metabolismo , Silenciador del Gen , Glioma/genética , Glioma/metabolismo , Glioma/patología , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Survivin , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
This study aims to assess the viability of salvage stereotactic radiosurgery (SRS) for recurrent malignant gliomas through assessing overall survival, local control and toxicity. We performed a retrospective review of 65 patients with 76 lesions (55 high-grade, 21 low-grade) treated with salvage SRS between 2002 and 2012. Median follow-up from salvage SRS was 14.9 months (IQR: 0.9-28.1), 8.3 months (IQR: 4.0-13.3) and 8.5 months (IQR: 3.9-15.8) for low-grade, high-grade, and combined, respectively. A 12-month overall survival from salvage SRS was 68.4, 38.7 and 47.3% for low-grade, high-grade and combined respectively. A total of 6-month local control was 86.2, 53.8 and 65.3% for low-grade, high-grade and combined, respectively. Our results indicate salvage SRS can provide acceptable survival and local control with minimal toxicity.
Asunto(s)
Glioma/patología , Glioma/radioterapia , Radiocirugia , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Femenino , Glioma/genética , Glioma/mortalidad , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Recurrencia Local de Neoplasia , Estadificación de Neoplasias , Radiocirugia/efectos adversos , Radiocirugia/métodos , Retratamiento , Terapia Recuperativa , Análisis de Supervivencia , Resultado del TratamientoRESUMEN
The prognosis for malignant glioma, the most common brain tumor, is still poor, underscoring the need to develop novel treatment strategies. Because glioma cells commonly exhibit genomic alterations involving genes that regulate cell-cycle control, there is a strong rationale for examining the potential efficacy of strategies to counteract this process. In this study, we examined the antiproliferative effects of the cyclin-dependent kinase inhibitor dinaciclib in malignant human glioma cell lines, with intact, deleted, or mutated p53 or phosphatase and tensin homolog on chromosome 10; intact or deleted or p14ARF or wild-type or amplified epidermal growth factor receptor. Dinaciclib inhibited cell proliferation and induced cell-cycle arrest at the G2/M checkpoint, independent of p53 mutational status. In a standard 72-hour 3-[4,5-dimethylthiazol- 2yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H, tetrazolium (MTS) assay, at clinically relevant concentrations, dose-dependent antiproliferative effects were observed, but cell death was not induced. Moreover, the combination of conventional chemotherapeutic agents and various growth-signaling inhibitors with dinaciclib did not yield synergistic cytotoxicity. In contrast, combination of the Bcl-2/Bcl-xL inhibitors ABT-263 (4-[4-[[2-(4-chlorophenyl)-5,5-dimethylcyclohexen-1-yl]methyl]piperazin-1-yl]-N-[4-[[(2R)-4-morpholin-4-yl-1-phenylsulfanylbutan-2-yl]amino]-3-(trifluoromethylsulfonyl)phenyl]sulfonylbenzamide) or ABT-737 (4-[4-[[2-(4-chlorophenyl)phenyl]methyl]piperazin-1-yl]-N-[4-[[(2R)-4-(dimethylamino)-1-phenylsulfanylbutan-2-yl]amino]-3-nitrophenyl]sulfonylbenzamide) with dinaciclib potentiated the apoptotic response induced by each single drug. The synergistic killing by ABT-737 with dinaciclib led to cell death accompanied by the hallmarks of apoptosis, including an early loss of the mitochondrial transmembrane potential; the release of cytochrome c, smac/DIABLO, and apoptosis-inducing factor; phosphatidylserine exposure on the plasma membrane surface and activation of caspases and poly ADP-ribose polymerase. Mechanistic studies revealed that dinaciclib promoted proteasomal degradation of Mcl-1. These observations may have important clinical implications for the design of experimental treatment protocols for malignant human glioma.
Asunto(s)
Compuestos de Bifenilo/administración & dosificación , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Glioma/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Nitrofenoles/administración & dosificación , Complejo de la Endopetidasa Proteasomal/metabolismo , Compuestos de Piridinio/administración & dosificación , Sulfonamidas/administración & dosificación , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Óxidos N-Cíclicos , Quinasas Ciclina-Dependientes/metabolismo , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Glioma/tratamiento farmacológico , Humanos , Indolizinas , Piperazinas/administración & dosificaciónRESUMEN
BACKGROUND: Standard of care management for synchronous metastatic castration-sensitive prostate cancer (mCSPC) includes androgen deprivation therapy with a second-generation antiandrogen therapy and/or docetaxel. Recently, randomized data have demonstrated that prostate-directed therapy (PDT) is associated with an improvement in overall survival (OS) among patients with low-volume metastatic disease. Tumor genomics represents an additional dimension to define the clinical trajectory of patients with mCSPC. OBJECTIVE: To evaluate a high-risk (HiRi) genomic signature to predict the benefit from PDT. DESIGN, SETTING, AND PARTICIPANTS: We performed a single-institution retrospective review of men with synchronous low-volume mCSPC who underwent DNA panel sequencing of their tumor. Patients were classified according to the presence of HiRi mutation including pathogenic mutations in TP53, ATM, BRCA1, BRCA2, or Rb1. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The primary endpoint was to determine the effect of PDT on OS in patients with and without a HiRi mutation. A survival analysis was performed with the Kaplan-Meier method compared with log-rank test and multivariable Cox regression. The interaction between HiRi mutation and PDT was evaluated. RESULTS AND LIMITATIONS: A total of 101 patients with synchronous low-volume CSPC were included with a median follow-up of 44 mo. Approximately half of patients were found to have a HiRi pathogenic mutation (49%). Patients with HiRi mutations demonstrated median OS of 73 versus 66.8 mo (p = 0.3) for no PDT versus PDT. Conversely, patients without a HiRi mutation demonstrated a significant improvement in OS of 60 versus 105.3 mo (p < 0.001) for no PDT versus PDT. The p value for interaction for OS between PDT and HiRi mutation was statistically significant (p < 0.001). Limitations include the retrospective nature of the study. CONCLUSIONS: Here, we have identified a HiRi genomic biomarker that appears predictive for the lack of benefit from PDT in men with synchronous low-volume mCSPC. Further work validating these results is warranted. PATIENT SUMMARY: In this report, we evaluated a high-risk genomic biomarker to predict the benefit from prostate-directed therapy for men with synchronous low-volume metastatic castration-sensitive prostate cancer. We found that men without a high-risk mutation appear to experience a greater clinical benefit from prostate-directed therapy than those with a high-risk mutation.
Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Próstata/cirugía , Próstata/patología , Antagonistas de Andrógenos/uso terapéutico , Estudios Retrospectivos , Biomarcadores de Tumor/genética , CastraciónRESUMEN
PURPOSE: This study investigated imaging biomarkers derived from PSMA-PET acquired pre- and post-metastasis-directed therapy (MDT) to predict 2-year metastasis-free survival (MFS), which provides valuable early response assessment to improve patient outcomes. MATERIALS/METHODS: An international cohort of 117 oligometastatic castration-sensitive prostate cancer (omCSPC) patients, comprising 34 from John Hopkins Hospital (JHH) and 83 from Baskent University (BU), were treated with stereotactic ablative radiation therapy (SABR) MDT with both pre- and post-MDT PSMA-PET/CT scans acquired. PET radiomic features were analyzed from a CT-PET fusion defined gross tumor volume ((GTV) or zone 1), and a 5 mm expansion ring area outside the GTV (zone 2). A total of 1748 PET radiomic features were extracted from these zones. The six most significant features selected using the Chi2 method, along with five clinical parameters (age, Gleason score, number of total lesions, untreated lesions, and pre-MDT prostate-specific antigen (PSA)) were extracted as inputs to the models. Various machine learning models, including Random Forest, Decision Tree, Support Vector Machine, and Naïve Bayesian, were employed for 2-year MFS prediction and tested using leave-one-out and cross-institution validation. RESULTS: Six radiomic features, including Total Energy, Entropy, and Standard Deviation from pre-PSMA-PET zone 1, Total Energy and Contrast from post-PSMA-PET zone 1, and Entropy from pre-PSMA-PET zone 2, along with five clinical parameters were selected for predicting 2-year MFS. In a leave-one-out test with all the patients, random forest achieved an accuracy of 80 % and an AUC of 0.82 in predicting 2-year MFS. In cross-institution validation, the model correctly predicted 2-year MFS events with an accuracy of 75 % and an AUC of 0.77 for patients from JHH, and an accuracy of 78 % and an AUC of 0.80 for BU patients, respectively. CONCLUSION: Our study demonstrated the promise of using pre- and post-MDT PSMA-PET-based imaging biomarkers for MFS prediction for omCSPC patients.
Asunto(s)
Aprendizaje Automático , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Masculino , Anciano , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Persona de Mediana Edad , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Antígenos de Superficie/análisis , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/mortalidad , Metástasis de la Neoplasia , Radiocirugia/métodos , Anciano de 80 o más Años , RadiómicaRESUMEN
PURPOSE: We investigated the impact of prostate-specific membrane antigen (PSMA) PET/CT compared with conventional imaging on treatment outcomes for node-positive prostate cancer (PCa) patients who underwent androgen deprivation therapy (ADT) and external radiotherapy (RT). PATIENTS AND METHODS: A multicentric, retrospective study recruited patients with node-positive PCa patients who underwent conventional radiological evaluation or PSMA PET/CT and received ADT and RT at 3 hospitals from 2009 to 2021 were enrolled. Patients underwent prostate and pelvis RT, accompanied by a minimum of 6 months of ADT. The primary endpoints were progression-free survival (PFS) and PCa-specific survival (PCSS). Cox regression analyzed the association of survival with potential prognostic factors, whereas logistic regression identified the predictors of bone and lymph node metastasis. RESULTS: The median follow-up time was 64.0 months. The majority of patients (64.1%) underwent PSMA PET/CT for staging. The 5-year rates of PFS and PCSS were 63.7% and 83.7%, respectively. Disease progression was observed in 90 patients (36.3%). In multivariable analysis, ADT duration of less than 24 months and post-RT prostate-specific antigen (PSA) nadir were prognostic for PFS. Early clinical T stage and PSMA PET/CT predicted better PCSS. Patients staged with PSMA PET/CT had exhibited significantly higher 5-year PCSS rates than compared with those staged with conventional imaging (95.1% vs 76.9%; P = 0.01). Shorter ADT duration and higher PSA levels after RT independently predicted bone metastasis in multivariable logistic regression. Advanced T stage, shorter ADT duration, and higher PSA levels after neoadjuvant ADT predicted nonregional lymph node recurrence. CONCLUSIONS: ADT with pelvis RT is an effective treatment option for node-positive PCa patients. The PSMA PET/CT outperformed conventional imaging in PCSS, emphasizing the importance of precise clinical staging for patients undergoing definitive RT.
Asunto(s)
Antígenos de Superficie , Glutamato Carboxipeptidasa II , Metástasis Linfática , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/tratamiento farmacológico , Anciano , Estudios Retrospectivos , Resultado del Tratamiento , Antígenos de Superficie/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Persona de Mediana Edad , Anciano de 80 o más AñosRESUMEN
BACKGROUND: Metastasis-directed therapy (MDT) is increasingly being used in oligometastatic castration-sensitive prostate cancer (omCSPC). However, it is currently unclear how to optimally integrate MDT with the standard of care of systemic hormonal therapy. OBJECTIVE: To report long-term outcomes of MDT alone versus MDT and a defined course of androgen deprivation therapy (ADT) in omCSPC. DESIGN, SETTING, AND PARTICIPANTS: Here, a multicenter, international retrospective cohort of omCSPC as defined by conventional imaging was reported. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Biochemical progression-free survival (bPFS), distant progression-free survival (dPFS), and combined biochemical or distant progression-free survival (cPFS) were evaluated with Kaplan-Meier and multivariable Cox proportional hazard regression models. RESULTS AND LIMITATIONS: A total of 263 patients were included, 105 with MDT + ADT and 158 with MDT alone. The majority of patients had metachronous disease (90.5%). Five-year bPFS, dPFS, and cPFS were, respectively, 24%, 41%, and 19% in patients treated with MDT + ADT and 11% (hazard ratio [HR] 0.48, 95% confidence interval [CI] 0.36-0.64), 29% (HR 0.56, 95% CI 0.40-0.78), and 9% (HR 0.50, 95% CI 0.38-0.67) in patients treated with MDT alone. On a multivariable analysis adjusting for pretreatment variables, the use of ADT was associated with improved bPFS (HR 0.43, p < 0.001), dPFS (HR 0.45, p = 0.002), and cPFS (HR 0.44, p < 0.001). CONCLUSIONS: In this large multi-institutional report, the addition of concurrent ADT to MDT appears to improve time to prostate-specific antigen progression and distant recurrence, noting that about 10% patients had durable control with MDT alone. Ongoing phase 3 studies will help further define treatment options for omCSPC. PATIENT SUMMARY: Here, we report a large retrospective review evaluating the outcomes of metastasis-directed therapy with or without a limited course of androgen deprivation for patients with oligometastatic castration-sensitive prostate cancer. This international multi-institutional review demonstrates that the addition of androgen deprivation therapy to metastasis-directed therapy (MDT) improves progression-free survival. While a proportion of patients appear to have long-term disease control with MDT alone, further work in biomarker discovery is required to better identify which patients would be appropriate for de-escalated therapy.
RESUMEN
Purpose: Emerging data suggest that metastasis-directed therapy (MDT) improves outcomes in patients with oligometastatic castration-sensitive prostate cancer (omCSPC). Prostate-specific membrane antigen positron emission tomography (PSMA-PET) can detect occult metastatic disease, and PSMA response has been proposed as a biomarker for treatment response. Herein, we identify and validate a PSMA-PET biomarker for metastasis-free survival (MFS) following MDT in omCSPC. Methods and Materials: We performed an international multi-institutional retrospective study of patients with omCSPC, defined as ≤3 lesions, treated with metastasis-directed stereotactic ablative radiation who underwent PSMA-PET/computed tomography (CT) before and after (median, 6.2 months; range, 2.4-10.9 months) treatment. Pre- and post-MDT PSMA-PET/CT maximum standardized uptake value (SUVmax) was measured for all lesions, and PSMA response was defined as the percent change in SUVmax of the least responsive lesion. PSMA response was both evaluated as a continuous variable and dichotomized into PSMA responders, with a complete/partial response (at least a 30% reduction in SUVmax), and PSMA nonresponders, with stable/progressive disease (less than a 30% reduction in SUVmax). PSMA response was correlated with conventional imaging-defined metastasis-free survival (MFS) via Kaplan-Meier and Cox regression analysis. Results: A total of 131 patients with 261 treated metastases were included in the analysis, with a median follow-up of 29 months (IQR, 18.5-41.3 months). After stereotactic ablative radiation, 70.2% of patients were classified as PSMA responders. Multivariable analysis demonstrated that PSMA response as a continuous variable was associated with a significantly worse MFS (hazard ratio = 1.003; 95% CI, 1.001-1.006; P = .016). Patients classified as PSMA responders were found to have a significantly improved median MFS of 39.9 versus 12 months (P = .001) compared with PSMA nonresponders. Our study is limited as it is a retrospective review of a heterogenous population. Conclusions: After stereotactic ablative radiation, PSMA-PET response appears to be a radiographic biomarker that correlates with MFS in omCSPC. This approach holds promise for guiding clinical management of omCSPC and should be validated in a prospective setting.
RESUMEN
Chemoradiation therapy (CRT) is a treatment for muscle-invasive bladder cancer (MIBC). Using a novel transcriptomic profiling panel, we validated prognostic immune biomarkers to CRT using 70 pretreatment tumor samples from prospective trials of MIBC (NRG/RTOG 0524 and 0712). Disease-free survival (DFS) and overall survival (OS) were estimated via the Kaplan-Meier method and stratified by genes correlated with immune cell activation. Cox proportional-hazards models were used to assess group differences. Clustering of gene expression profiles revealed that the cluster with high immune cell content was associated with longer DFS (hazard ratio [HR] 0.53, 95% confidence interval [CI] 0.26-1.10; p = 0.071) and OS (HR 0.48, 95% CI 0.24-0.97; p = 0.040) than the cluster with low immune cell content. Higher expression of T-cell infiltration genes (CD8A and ICOS) was associated with longer DFS (HR 0.40, 95% CI 0.21-0.75; p = 0.005) and OS (HR 0.49, 95% CI 0.25-0.94; p = 0.033). Higher IDO1 expression (IFNγ signature) was also associated with longer DFS (HR 0.44, 95% CI 0.24-0.88; p = 0.021) and OS (HR 0.49, 95% CI 0.24-0.99; p = 0.048). These findings should be validated in prospective CRT trials that include biomarkers, particularly for trials incorporating immunotherapy for MIBC. PATIENT SUMMARY: We analyzed patient samples from two clinical trials (NRG/RTOG 0524 and 0712) of chemoradiation for muscle-invasive bladder cancer using a novel method to assess immune cells in the tumor microenvironment. Higher expression of genes associated with immune activation and high overall immune-cell content were associated with better disease-free survival and overall survival for patients treated with chemoradiation.
Asunto(s)
Quimioradioterapia , Invasividad Neoplásica , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/terapia , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/mortalidad , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Pronóstico , Masculino , Femenino , Anciano , Persona de Mediana Edad , Linfocitos Infiltrantes de Tumor/inmunología , Supervivencia sin EnfermedadRESUMEN
BACKGROUND AND OBJECTIVE: Oligometastatic castration-sensitive prostate cancer (omCSPC) represents an early state in the progression of metastatic disease for which patients experience better outcomes in comparison to those with higher disease burden. Despite the generally more indolent nature, there is still much heterogeneity, with some patients experiencing a more aggressive clinical course unexplained by clinical features alone. Our aim was to investigate correlation of tumor genomics with the mode of progression (MOP) and pattern of failure (POF) following first treatment (metastasis-directed and/or systemic therapy) for omCSPC. METHODS: We performed an international multi-institutional retrospective study of men treated for metachronous omCSPC who underwent tumor next-generation sequencing with at least 1 yr of follow-up after their first treatment. Descriptive MOP and POF results are reported with respect to the presence of genomic alterations in pathways of interest. MOP was defined as class I, long-term control (LTC; no radiographic progression at last follow-up), class II, oligoprogression (1-3 lesions), or class III, polyprogression (≥4 lesions). POF included the location of lesions at first failure. Genomic pathways of interest included TP53, ATM, RB1, BRCA1/2, SPOP, and WNT (APC, CTNNB1, RNF43). Genomic associations with MOP/POF were compared using χ2 tests. Exploratory analyses revealed that the COSMIC mutational signature and differential gene expression were also correlated with MOP/POF. Overall survival (OS) was calculated via the Kaplan-Meier method from the time of first failure. KEY FINDINGS AND CLINICAL IMPLICATIONS: We included 267 patients in our analysis; the majority had either one (47%) or two (30%) metastatic lesions at oligometastasis. The 3-yr OS rate was significantly associated with MOP (71% for polyprogression vs 91% for oligoprogression; p = 0.005). TP53 mutation was associated with a significantly lower LTC rate (27.6% vs 42.3%; p = 0.04) and RB1 mutation was associated with a high rate of polyprogression (50% vs 19.9%; p = 0.022). Regarding POF, bone failure was significantly more common with tumors harboring TP53 mutations (44.8% vs25.9%; p = 0.005) and less common with SPOP mutations (7.1% vs 31.4%; p = 0.007). Visceral failure was more common with tumors harboring either WNT pathway mutations (17.2% vs 6.8%, p = 0.05) or SPOP mutations (17.9% vs 6.3%; p = 0.04). Finally, visceral and bone failures were associated with distinct gene-expression profiles. CONCLUSIONS AND CLINICAL IMPLICATIONS: Tumor genomics provides novel insight into MOP and POF following treatment for metachronous omCSPC. Patients with TP53 and RB1 mutations have a higher likelihood of progression, and TP53, SPOP, and WNT pathway mutations may have a role in metastatic organotropism. PATIENT SUMMARY: We evaluated cancer progression after a first treatment for metastatic prostate cancer with up to five metastases. We found that mutations in certain genes were associated with the location and extent of further metastasis in these patients.
RESUMEN
Histopathology and clinical staging have historically formed the backbone for allocation of treatment decisions in oncology. Although this has provided an extremely practical and fruitful approach for decades, it has long been evident that these data alone do not adequately capture the heterogeneity and breadth of disease trajectories experienced by patients. As efficient and affordable DNA and RNA sequencing have become available, the ability to provide precision therapy has become within grasp. This has been realized with systemic oncologic therapy, as targeted therapies have demonstrated immense promise for subsets of patients with oncogene-driver mutations. Further, several studies have evaluated predictive biomarkers for response to systemic therapy within a variety of malignancies. Within radiation oncology, the use of genomics/transcriptomics to guide the use, dose, and fractionation of radiation therapy is rapidly evolving but still in its infancy. The genomic adjusted radiation dose/radiation sensitivity index is one such early and exciting effort to provide genomically guided radiation dosing with a pan-cancer approach. In addition to this broad method, a histology specific approach to precision radiation therapy is also underway. Herein we review select literature surrounding the use of histology specific, molecular biomarkers to allow for precision radiotherapy with the greatest emphasis on commercially available and prospectively validated biomarkers.
Asunto(s)
Neoplasias , Oncología por Radiación , Humanos , Oncología por Radiación/métodos , Neoplasias/genética , Neoplasias/radioterapia , Biomarcadores , Oncología Médica/métodos , Tolerancia a Radiación/genética , Biomarcadores de Tumor/genéticaRESUMEN
PURPOSE: WNT signaling is a cellular pathway that has been implicated in the development and progression of prostate cancer. Oligometastatic castration-sensitive prostate cancer (omCSPC) represents a unique state of disease in which metastasis-directed therapy (MDT) has demonstrated improvement in progression-free survival. Herein, we investigate the clinical implications of genomic alterations in the WNT signaling cascade in men with omCSPC. METHODS AND MATERIALS: We performed an international multi-institutional retrospective study of 277 men with metachronous omCSPC who underwent targeted DNA sequencing of their primary/metastatic tumor. Patients were classified by presence or absence of pathogenic WNT pathway mutations (in the genes APC, RNF43, and CTNNB1). Pearson χ2 and Mann-Whitney U tests were used to determine differences in clinical factors between genomic strata. Kaplan-Meier survival curves were generated for radiographic progression-free survival and overall survival, stratified according to WNT pathway mutation status. RESULTS: A pathogenic WNT pathway mutation was detected in 11.2% of patients. Patients with WNT pathway mutations were more likely to have visceral metastases (22.6% vs 2.8%; P < .01) and less likely to have regional lymph node metastases (29.0% vs 50.4%; Pâ¯=â¯.02). At time of oligometastasis, these patients were treated with MDT alone (33.9%), MDTâ¯+â¯limited course of systemic therapy (20.6%), systemic therapy alone (22.4%), or observation (defined as no treatment for ≥6 months after metastatic diagnosis). Multivariable cox regression demonstrated WNT pathway mutations associated with significantly worse overall survival (hazard ratio, 3.87; 95% confidence interval, 1.25-12.00). CONCLUSIONS: Somatic WNT pathway alterations are present in approximately 11% of patients with omCSPC and are associated with an increased likelihood of visceral metastases. Although these patients have a worse natural history, they may benefit from MDT.
Asunto(s)
Neoplasias de la Próstata , Vía de Señalización Wnt , Masculino , Humanos , Vía de Señalización Wnt/genética , Estudios Retrospectivos , Neoplasias de la Próstata/patología , Mutación , CastraciónRESUMEN
In metastatic castration-sensitive prostate cancer (mCSPC), disease volume plays an integral role in guiding treatment recommendations, including selection of docetaxel therapy, metastasis-directed therapy, and radiation to the prostate. Although there are multiple definitions of disease volume, they have commonly been studied in the context of metastases detected via conventional imaging (CIM). One such numeric definition of disease volume, termed oligometastasis, is heavily dependent on the sensitivity of the imaging modality. We performed an international multi-institutional retrospective review of men with metachronous oligometastatic CSPC (omCSPC), detected via either advanced molecular imaging alone (AMIM) or CIM. Patients were compared with respect to clinical and genomic features using the Mann-Whitney U test, Pearson's χ2 test, and Kaplan-Meier overall survival (OS) analyses with a log-rank test. A total of 295 patients were included for analysis. Patients with CIM-omCSPC had significantly higher Gleason grade group (p = 0.032), higher prostate-specific antigen at omCSPC diagnosis (8.0 vs 1.7 ng/ml; p < 0.001), more frequent pathogenic TP53 mutations (28% vs 17%; p = 0.030), and worse 10-yr OS (85% vs 100%; p < 0.001). This is the first report of clinical and biological differences between AMIM-detected and CIM-detected omCSPC. Our findings are particularly important for ongoing and planned clinical trials in omCSPC. PATIENT SUMMARY: Metastatic prostate cancer with just a few metastases only detected via newer scanning methods (called molecular imaging) is associated with fewer high-risk DNA mutations and better survival in comparison to metastatic cancer detected via conventional scan methods.
Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/terapia , Docetaxel/uso terapéutico , Imagen Molecular , Genómica , CastraciónRESUMEN
BACKGROUND: Several definitions have attempted to stratify metastatic castrate-sensitive prostate cancer (mCSPC) into low and high-volume states. However, at this time, comparison of these definitions is limited. Here we aim to compare definitions of metastatic volume in mCSPC with respect to clinical outcomes and mutational profiles. METHODS: We performed a retrospective review of patients with biochemically recurrent or mCSPC whose tumors underwent somatic targeted sequencing. 294 patients were included with median follow-up of 58.3 months. Patients were classified into low and high-volume disease per CHAARTED, STAMPEDE, and two numeric (≤3 and ≤5) definitions. Endpoints including radiographic progression-free survival (rPFS), time to development of castration resistance (tdCRPC), and overall survival (OS) were evaluated with Kaplan-Meier survival curves and log-rank test. The incidence of driver mutations between definitions were compared. RESULTS: Median OS and tdCRPC were shorter for high-volume than low-volume disease for all four definitions. In the majority of patients (84.7%) metastatic volume classification did not change across all four definitions. High volume disease was significantly associated with worse OS for all four definitions (CHAARTED: HR 2.89; p < 0.01, STAMPEDE: HR 3.82; p < 0.01, numeric ≤3: HR 4.67; p < 0.01, numeric ≤5: HR 3.76; p < 0.01) however, were similar for high (p = 0.95) and low volume (p = 0.79) disease across all four definitions. Those with discordant classification tended to have more aggressive clinical behavior and mutational profiles. Patients with low-volume disease and TP53 mutation experienced a more aggressive course with rPFS more closely mirroring high-volume disease. CONCLUSIONS: The spectrum of mCSPC was confirmed across four different metastatic definitions for clinical endpoints and genetics. All definitions were generally similar in classification of patients, outcomes, and genetic makeup. Given these findings, the simplicity of numerical definitions might be preferred, especially when integrating metastasis directed therapy. Incorporation of tumor genetics may allow further refinement of current metastatic definitions.