Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34983873

RESUMEN

Bottom trawling is widespread globally and impacts seabed habitats. However, risks from trawling remain unquantified at large scales in most regions. We address these issues by synthesizing evidence on the impacts of different trawl-gear types, seabed recovery rates, and spatial distributions of trawling intensity in a quantitative indicator of biotic status (relative amount of pretrawling biota) for sedimentary habitats, where most bottom-trawling occurs, in 24 regions worldwide. Regional average status relative to an untrawled state (=1) was high (>0.9) in 15 regions, but <0.7 in three (European) regions and only 0.25 in the Adriatic Sea. Across all regions, 66% of seabed area was not trawled (status = 1), 1.5% was depleted (status = 0), and 93% had status > 0.8. These assessments are first order, based on parameters estimated with uncertainty from meta-analyses; we recommend regional analyses to refine parameters for local specificity. Nevertheless, our results are sufficiently robust to highlight regions needing more effective management to reduce exploitation and improve stock sustainability and seabed environmental status-while also showing seabed status was high (>0.95) in regions where catches of trawled fish stocks meet accepted benchmarks for sustainable exploitation, demonstrating that environmental benefits accrue from effective fisheries management. Furthermore, regional seabed status was related to the proportional area swept by trawling, enabling preliminary predictions of regional status when only the total amount of trawling is known. This research advances seascape-scale understanding of trawl impacts in regions around the world, enables quantitative assessment of sustainability risks, and facilitates implementation of an ecosystem approach to trawl fisheries management globally.


Asunto(s)
Biota , Ecosistema , Explotaciones Pesqueras , Animales , Conservación de los Recursos Naturales , Peces , Geografía , Sedimentos Geológicos , Júpiter , Océanos y Mares , Dinámica Poblacional
2.
Proc Natl Acad Sci U S A ; 115(43): E10275-E10282, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30297399

RESUMEN

Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from <10% of seabed area in Australian and New Zealand waters, the Aleutian Islands, East Bering Sea, South Chile, and Gulf of Alaska to >50% in some European seas. Overall, 14% of the 7.8 million-km2 study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when high-resolution spatial data are unavailable. If SAR was ≤0.1, as in 8 of 24 regions, there was >95% probability that >90% of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≤0.25 in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing.


Asunto(s)
Explotaciones Pesqueras/estadística & datos numéricos , Alaska , Animales , Australia , Biodiversidad , Chile , Ecosistema , Invertebrados/fisiología , Nueva Zelanda , Océanos y Mares , Alimentos Marinos/estadística & datos numéricos
3.
Proc Natl Acad Sci U S A ; 114(31): 8301-8306, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28716926

RESUMEN

Bottom trawling is the most widespread human activity affecting seabed habitats. Here, we collate all available data for experimental and comparative studies of trawling impacts on whole communities of seabed macroinvertebrates on sedimentary habitats and develop widely applicable methods to estimate depletion and recovery rates of biota after trawling. Depletion of biota and trawl penetration into the seabed are highly correlated. Otter trawls caused the least depletion, removing 6% of biota per pass and penetrating the seabed on average down to 2.4 cm, whereas hydraulic dredges caused the most depletion, removing 41% of biota and penetrating the seabed on average 16.1 cm. Median recovery times posttrawling (from 50 to 95% of unimpacted biomass) ranged between 1.9 and 6.4 y. By accounting for the effects of penetration depth, environmental variation, and uncertainty, the models explained much of the variability of depletion and recovery estimates from single studies. Coupled with large-scale, high-resolution maps of trawling frequency and habitat, our estimates of depletion and recovery rates enable the assessment of trawling impacts on unprecedented spatial scales.


Asunto(s)
Organismos Acuáticos/clasificación , Biota/fisiología , Sedimentos Geológicos/análisis , Actividades Humanas , Invertebrados/clasificación , Animales , Biodiversidad , Biomasa , Explotaciones Pesqueras , Peces , Océanos y Mares
4.
Sci Rep ; 11(1): 7195, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785766

RESUMEN

Derelict abandoned, lost and discarded fishing gear have profound adverse effects. We assessed gear-specific relative risks from derelict gear to rank-order fishing methods based on: derelict gear production rates, gear quantity indicators of catch weight and fishing grounds area, and adverse consequences from derelict gear. The latter accounted for ghost fishing, transfer of microplastics and toxins into food webs, spread of invasive alien species and harmful microalgae, habitat degradation, obstruction of navigation and in-use fishing gear, and coastal socioeconomic impacts. Globally, mitigating highest risk derelict gear from gillnet, tuna purse seine with fish aggregating devices, and bottom trawl fisheries achieves maximum conservation gains. Locally, adopting controls following a sequential mitigation hierarchy and implementing effective monitoring, surveillance and enforcement systems are needed to curb derelict gear from these most problematic fisheries. Primary and synthesis research are priorities to improve future risk assessments, produce the first robust estimate of global derelict gear quantity, and assess the performance of initiatives to manage derelict gear. Findings from this first quantitative estimate of gear-specific relative risks from derelict gear guide the allocation of resources to achieve the largest improvements from mitigating adverse effects of derelict gear from the world's 4.6 million fishing vessels.

5.
Mar Pollut Bull ; 129(1): 253-261, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29680545

RESUMEN

Fishing gears are marked to establish and inform origin, ownership and position. More recently, fishing gears are marked to aid in capacity control, reduce marine litter due to abandoned, lost or otherwise discarded fishing gear (ALDFG) and assist in its recovery, and to combat illegal, unreported and unregulated (IUU) fishing. Traditionally, physical marking, inscription, writing, color, shape, and tags have been used for ownership and capacity purposes. Buoys, lights, flags, and radar reflectors are used for marking of position. More recently, electronic devices have been installed on marker buoys to enable easier relocation of the gear by owner vessels. This paper reviews gear marking technologies with focus on coded wire tags, radio frequency identification tags, Automatic Identification Systems, advanced electronic buoys for pelagic longlines and fish aggregating devices, and re-location technology if the gear becomes lost.


Asunto(s)
Organismos Acuáticos/fisiología , Conservación de los Recursos Naturales , Explotaciones Pesqueras , Animales , Conservación de los Recursos Naturales/legislación & jurisprudencia , Diseño de Equipo , Explotaciones Pesqueras/legislación & jurisprudencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA