Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 18(1): 412-417, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29266950

RESUMEN

Quasiparticles with Dirac-type dispersion can be observed in nearly gapless bulk semiconductors alloys in which the bandgap is controlled through the material composition. We demonstrate that the Dirac dispersion can be realized in short-period InAs1-xSbx/InAs1-ySby metamorphic superlattices with the bandgap tuned to zero by adjusting the superlattice period and layer strain. The new material has anisotropic carrier dispersion: the carrier energy associated with the in-plane motion is proportional to the wave vector and characterized by the Fermi velocity vF, and the dispersion corresponding to the motion in the growth direction is quadratic. Experimental estimate of the Fermi velocity gives vF = 6.7 × 105 m/s. Remarkably, the Fermi velocity in this system can be controlled by varying the overlap between electron and hole states in the superlattice. Extreme design flexibility makes the short-period metamorphic InAs1-xSbx/InAs1-ySby superlattice a new prospective platform for studying the effects of charge-carrier chirality and topologically nontrivial states in structures with the inverted bandgaps.

2.
Appl Opt ; 56(3): B58-B63, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-28157865

RESUMEN

The collaborative development of infrared detector materials by the Army Research Laboratory and Stony Brook University has led to new fundamental understandings of materials, as well as new levels of control and flexibility in III-V semiconductor crystal growth by molecular beam epitaxy. Early work on mid-wave strained layer superlattice (SLS) cameras led to a subsequent focus on minority carrier lifetime studies, which resulted in the proposal of the Ga-free SLS on GaSb substrates. The later demonstration of virtual substrate technology allowed the lattice constant to become a design parameter and enabled growth of undistorted bulk InAsSb. When grown in that manner, InAsSb has a bandgap bowing parameter large enough to cover absorption wavelengths across the entire long-wavelength band (8-12 µm). Even longer wavelengths are achieved with a general Ga-free SLS approach, with a virtual substrate having a lattice constant significantly larger than that of GaSb and with InAsSb in both bi-layers in the period. Since these layers can also be made very thin, the general Ga-free SLS does not suffer from the relatively low optical absorption and poor hole transport, which is characteristic of the special Ga-free SLS on GaSb for long-wavelength designs. Finally, the general Ga-free InAsSb SLS provides a method to induce and control sustained atomic ordering, which is yet another new design parameter.

3.
Appl Opt ; 56(3): B64-B69, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-28157866

RESUMEN

GaN1-xSbx with x∼5%-7% is a highly mismatched alloy predicted to have favorable properties for application as an electrode in a photoelectrochemical cell for solar water splitting. In this study, we grew GaN1-xSbx under conditions intended to induce phase segregation. Prior experiments with the similar alloy GaN1-xAsx, the tendency of Sb to surfact, and the low growth temperatures needed to incorporate Sb all suggested that GaN1-xSbx alloys would likely exhibit phase segregation. We found that, except for very high Sb compositions, this was not the case and that instead interdiffusion dominated. Characteristics measured by optical absorption were similar to intentionally grown bulk alloys for the same composition. Furthermore, the alloys produced by this method maintained crystallinity for very high Sb compositions and allowed higher overall Sb compositions. This method may allow higher temperature growth while still achieving needed Sb compositions for solar water splitting applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA