Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Immunol ; 13(6): 543-550, 2012 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-22544393

RESUMEN

Type I interferon is an integral component of the antiviral response, and its production is tightly controlled at the levels of transcription and translation. The eukaryotic translation-initiation factor eIF4E is a rate-limiting factor whose activity is regulated by phosphorylation of Ser209. Here we found that mice and fibroblasts in which eIF4E cannot be phosphorylated were less susceptible to virus infection. More production of type I interferon, resulting from less translation of Nfkbia mRNA (which encodes the inhibitor IκBα), largely explained this phenotype. The lower abundance of IκBα resulted in enhanced activity of the transcription factor NF-κB, which promoted the production of interferon-ß (IFN-ß). Thus, regulated phosphorylation of eIF4E has a key role in antiviral host defense by selectively controlling the translation of an mRNA that encodes a critical suppressor of the innate antiviral response.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Interferón Tipo I/biosíntesis , FN-kappa B/metabolismo , Estomatitis Vesicular/inmunología , Virus de la Estomatitis Vesicular Indiana/fisiología , Animales , Ensayo de Cambio de Movilidad Electroforética , Factor 4E Eucariótico de Iniciación/inmunología , Femenino , Proteínas I-kappa B/biosíntesis , Proteínas I-kappa B/genética , Proteínas I-kappa B/inmunología , Inmunidad Innata/inmunología , Immunoblotting , Interferón Tipo I/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibidor NF-kappaB alfa , FN-kappa B/inmunología , Fosforilación , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Organismos Libres de Patógenos Específicos , Estomatitis Vesicular/genética , Estomatitis Vesicular/metabolismo , Estomatitis Vesicular/virología , Virus de la Estomatitis Vesicular Indiana/inmunología , Replicación Viral
2.
Nucleic Acids Res ; 50(13): 7202-7215, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34933339

RESUMEN

Expression of therapeutically important proteins has benefited dramatically from the advent of chemically modified mRNAs that feature decreased lability and immunogenicity. This had a momentous effect on the rapid development of COVID-19 mRNA vaccines. Incorporation of the naturally occurring pseudouridine (Ψ) or N1-methyl-pseudouridine (N1mΨ) into in vitro transcribed mRNAs prevents the activation of unwanted immune responses by blocking eIF2α phosphorylation, which inhibits translation. Here, we report that Ψs in luciferase (Luc) mRNA exacerbate translation pausing in nuclease-untreated rabbit reticulocyte lysate (uRRL) and promote the formation of high-order-ribosome structures. The major deceleration of elongation occurs at the Ψ-rich nucleotides 1294-1326 of Ψ-Luc mRNA and results in premature termination of translation. The impairment of translation is mainly due to the shortage of membranous components. Supplementing uRRL with canine microsomal membranes (CMMs) relaxes the impediments to ribosome movement, resolves collided ribosomes, and greatly enhances full-size luciferase production. CMMs also strongly stimulated an extremely inefficient translation of N1mΨ-Luc mRNA in uRRL. Evidence is presented that translational pausing can promote membrane recruitment of polysomes with nascent polypeptides that lack a signal sequence. Our results highlight an underappreciated role of membrane binding to polysomes in the prevention of ribosome collision and premature release of nascent polypeptides.


Asunto(s)
COVID-19 , Membranas Intracelulares/metabolismo , Extensión de la Cadena Peptídica de Translación , Seudouridina , ARN Mensajero , Animales , Perros , Técnicas In Vitro , Péptidos/metabolismo , Seudouridina/análogos & derivados , Seudouridina/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Conejos
3.
Mol Cell ; 46(6): 847-58, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22578813

RESUMEN

Translational control of gene expression plays a key role in many biological processes. Consequently, the activity of the translation apparatus is under tight homeostatic control. eIF4E, the mRNA 5' cap-binding protein, facilitates cap-dependent translation and is a major target for translational control. eIF4E activity is controlled by a family of repressor proteins, termed 4E-binding proteins (4E-BPs). Here, we describe the surprising finding that despite the importance of eIF4E for translation, a drastic knockdown of eIF4E caused only minor reduction in translation. This conundrum can be explained by the finding that 4E-BP1 is degraded in eIF4E-knockdown cells. Hypophosphorylated 4E-BP1, which binds to eIF4E, is degraded, whereas hyperphosphorylated 4E-BP1 is refractory to degradation. We identified the KLHL25-CUL3 complex as the E3 ubiquitin ligase, which targets hypophosphorylated 4E-BP1. Thus, the activity of eIF4E is under homeostatic control via the regulation of the levels of its repressor protein 4E-BP1 through ubiquitination.


Asunto(s)
Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Proteínas de Unión a Caperuzas de ARN/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Ciclo Celular , Células HEK293 , Células HeLa , Homeostasis , Humanos , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión a Caperuzas de ARN/metabolismo , Transfección , Ubiquitina/metabolismo
4.
Nucleic Acids Res ; 45(10): 6023-6036, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28334758

RESUMEN

Certain chemical modifications confer increased stability and low immunogenicity to in vitro transcribed mRNAs, thereby facilitating expression of therapeutically important proteins. Here, we demonstrate that N1-methyl-pseudouridine (N1mΨ) outperforms several other nucleoside modifications and their combinations in terms of translation capacity. Through extensive analysis of various modified transcripts in cell-free translation systems, we deconvolute the different components of the effect on protein expression independent of mRNA stability mechanisms. We show that in addition to turning off the immune/eIF2α phosphorylation-dependent inhibition of translation, the incorporated N1mΨ nucleotides dramatically alter the dynamics of the translation process by increasing ribosome pausing and density on the mRNA. Our results indicate that the increased ribosome loading of modified mRNAs renders them more permissive for initiation by favoring either ribosome recycling on the same mRNA or de novo ribosome recruitment.


Asunto(s)
Factor 2 Eucariótico de Iniciación/fisiología , Polirribosomas/metabolismo , Biosíntesis de Proteínas , Seudouridina/análogos & derivados , ARN Mensajero/genética , Animales , Línea Celular , Sistema Libre de Células , Activación Enzimática , Fibroblastos , Células HEK293 , Células HeLa , Humanos , Ratones , Fosforilación , Procesamiento Proteico-Postraduccional , Seudouridina/metabolismo , ARN/metabolismo , Estabilidad del ARN , ARN Mensajero/química , Transfección , eIF-2 Quinasa/metabolismo
5.
Mol Cell ; 35(6): 868-80, 2009 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-19716330

RESUMEN

MicroRNAs (miRNAs) inhibit mRNA expression in general by base pairing to the 3'UTR of target mRNAs and consequently inhibiting translation and/or initiating poly(A) tail deadenylation and mRNA destabilization. Here we examine the mechanism and kinetics of miRNA-mediated deadenylation in mouse Krebs-2 ascites extract. We demonstrate that miRNA-mediated mRNA deadenylation occurs subsequent to initial translational inhibition, indicating a two-step mechanism of miRNA action, which serves to consolidate repression. We show that a let-7 miRNA-loaded RNA-induced silencing complex (miRISC) interacts with the poly(A)-binding protein (PABP) and the CAF1 and CCR4 deadenylases. In addition, we demonstrate that miRNA-mediated deadenylation is dependent upon CAF1 activity and PABP, which serves as a bona fide miRNA coactivator. Importantly, we present evidence that GW182, a core component of the miRISC, directly interacts with PABP via its C-terminal region and that this interaction is required for miRNA-mediated deadenylation.


Asunto(s)
Silenciador del Gen , MicroARNs/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Proteínas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Animales , Proteínas Argonautas , Ascitis/genética , Ascitis/metabolismo , Autoantígenos/metabolismo , Sitios de Unión , Carcinoma Krebs 2/genética , Carcinoma Krebs 2/metabolismo , Sistema Libre de Células , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Exorribonucleasas , Células HeLa , Humanos , Cinética , Ratones , Proteínas de Unión a Poli(A)/genética , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Proteínas/genética , Estabilidad del ARN , Complejo Silenciador Inducido por ARN/genética , Receptores CCR4/metabolismo , Proteínas Represoras , Ribonucleasas , Transfección
6.
Nucleic Acids Res ; 43(7): 3764-75, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25779044

RESUMEN

Initiation is a highly regulated rate-limiting step of mRNA translation. During cap-dependent translation, the cap-binding protein eIF4E recruits the mRNA to the ribosome. Specific elements in the 5'UTR of some mRNAs referred to as Internal Ribosome Entry Sites (IRESes) allow direct association of the mRNA with the ribosome without the requirement for eIF4E. Cap-independent initiation permits translation of a subset of cellular and viral mRNAs under conditions wherein cap-dependent translation is inhibited, such as stress, mitosis and viral infection. DAP5 is an eIF4G homolog that has been proposed to regulate both cap-dependent and cap-independent translation. Herein, we demonstrate that DAP5 associates with eIF2ß and eIF4AI to stimulate IRES-dependent translation of cellular mRNAs. In contrast, DAP5 is dispensable for cap-dependent translation. These findings provide the first mechanistic insights into the function of DAP5 as a selective regulator of cap-independent translation.


Asunto(s)
Factor 2B Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Células HEK293 , Humanos , Caperuzas de ARN
7.
PLoS Biol ; 11(5): e1001564, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23700384

RESUMEN

Translation control often operates via remodeling of messenger ribonucleoprotein particles. The poly(A) binding protein (PABP) simultaneously interacts with the 3' poly(A) tail of the mRNA and the eukaryotic translation initiation factor 4G (eIF4G) to stimulate translation. PABP also promotes miRNA-dependent deadenylation and translational repression of target mRNAs. We demonstrate that isoform 2 of the mouse heterogeneous nuclear protein Q (hnRNP-Q2/SYNCRIP) binds poly(A) by default when PABP binding is inhibited. In addition, hnRNP-Q2 competes with PABP for binding to poly(A) in vitro. Depleting hnRNP-Q2 from translation extracts stimulates cap-dependent and IRES-mediated translation that is dependent on the PABP/poly(A) complex. Adding recombinant hnRNP-Q2 to the extracts inhibited translation in a poly(A) tail-dependent manner. The displacement of PABP from the poly(A) tail by hnRNP-Q2 impaired the association of eIF4E with the 5' m(7)G cap structure of mRNA, resulting in the inhibition of 48S and 80S ribosome initiation complex formation. In mouse fibroblasts, silencing of hnRNP-Q2 stimulated translation. In addition, hnRNP-Q2 impeded let-7a miRNA-mediated deadenylation and repression of target mRNAs, which require PABP. Thus, by competing with PABP, hnRNP-Q2 plays important roles in the regulation of global translation and miRNA-mediated repression of specific mRNAs.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , MicroARNs/metabolismo , Animales , Sitios de Unión , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Fibroblastos/metabolismo , Células HeLa , Humanos , Ratones , MicroARNs/genética
8.
Nature ; 452(7185): 323-8, 2008 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-18272964

RESUMEN

Transcriptional activation of cytokines, such as type-I interferons (interferon (IFN)-alpha and IFN-beta), constitutes the first line of antiviral defence. Here we show that translational control is critical for induction of type-I IFN production. In mouse embryonic fibroblasts lacking the translational repressors 4E-BP1 and 4E-BP2, the threshold for eliciting type-I IFN production is lowered. Consequently, replication of encephalomyocarditis virus, vesicular stomatitis virus, influenza virus and Sindbis virus is markedly suppressed. Furthermore, mice with both 4E- and 4E-BP2 genes (also known as Eif4ebp1 and Eif4ebp2, respectively) knocked out are resistant to vesicular stomatitis virus infection, and this correlates with an enhanced type-I IFN production in plasmacytoid dendritic cells and the expression of IFN-regulated genes in the lungs. The enhanced type-I IFN response in 4E-BP1-/- 4E-BP2-/- double knockout mouse embryonic fibroblasts is caused by upregulation of interferon regulatory factor 7 (Irf7) messenger RNA translation. These findings highlight the role of 4E-BPs as negative regulators of type-I IFN production, via translational repression of Irf7 mRNA.


Asunto(s)
Inmunidad Innata/inmunología , Factor 7 Regulador del Interferón/biosíntesis , Biosíntesis de Proteínas , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Células Dendríticas/inmunología , Embrión de Mamíferos/citología , Factores Eucarióticos de Iniciación/deficiencia , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Fibroblastos/virología , Eliminación de Gen , Inmunidad Innata/genética , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Interferón Tipo I/biosíntesis , Interferón Tipo I/inmunología , Ratones , Ratones Noqueados , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Virus de la Estomatitis Vesicular Indiana/fisiología , Fenómenos Fisiológicos de los Virus , Replicación Viral
9.
EMBO J ; 28(1): 58-68, 2009 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-19078965

RESUMEN

The interaction between the poly(A)-binding protein (PABP) and eukaryotic translational initiation factor 4G (eIF4G), which brings about circularization of the mRNA, stimulates translation. General RNA-binding proteins affect translation, but their role in mRNA circularization has not been studied before. Here, we demonstrate that the major mRNA ribonucleoprotein YB-1 has a pivotal function in the regulation of eIF4F activity by PABP. In cell extracts, the addition of YB-1 exacerbated the inhibition of 80S ribosome initiation complex formation by PABP depletion. Rabbit reticulocyte lysate in which PABP weakly stimulates translation is rendered PABP-dependent after the addition of YB-1. In this system, eIF4E binding to the cap structure is inhibited by YB-1 and stimulated by a nonspecific RNA. Significantly, adding PABP back to the depleted lysate stimulated eIF4E binding to the cap structure more potently if this binding had been downregulated by YB-1. Conversely, adding nonspecific RNA abrogated PABP stimulation of eIF4E binding. These data strongly suggest that competition between YB-1 and eIF4G for mRNA binding is required for efficient stimulation of eIF4F activity by PABP.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Factor 4F Eucariótico de Iniciación/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Biosíntesis de Proteínas , Animales , Extractos Celulares , Línea Celular , Ratones , Modelos Biológicos , Conejos , Proteína 1 de Unión a la Caja Y
10.
Proc Natl Acad Sci U S A ; 106(52): 22217-22, 2009 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-20018725

RESUMEN

Translational control plays an important role in cell growth and tumorigenesis. Cap-dependent translation initiation of mammalian mRNAs with structured 5'UTRs requires the DExH-box protein, DHX29, in vitro. Here we show that DHX29 is important for translation in vivo. Down-regulation of DHX29 leads to impaired translation, resulting in disassembly of polysomes and accumulation of mRNA-free 80S monomers. DHX29 depletion also impedes cancer cell growth in culture and in xenografts. Thus, DHX29 is a bona fide translation initiation factor that potentially can be exploited as a target to inhibit cancer cell growth.


Asunto(s)
Proliferación Celular , Neoplasias/etiología , Iniciación de la Cadena Peptídica Traduccional/fisiología , ARN Helicasas/metabolismo , Regiones no Traducidas 5' , Animales , Regulación hacia Abajo , Células HeLa , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/genética , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Trasplante Heterólogo
11.
RNA ; 13(12): 2330-40, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17942745

RESUMEN

Picornavirus infectivity is dependent on the RNA poly(A) tail, which binds the poly(A) binding protein (PABP). PABP was reported to stimulate viral translation and RNA synthesis. Here, we studied encephalomyocarditis virus (EMCV) and poliovirus (PV) genome expression in Krebs-2 and HeLa cell-free extracts that were drastically depleted of PABP (96%-99%). Although PABP depletion markedly diminished EMCV and PV internal ribosome entry site (IRES)-mediated translation of a polyadenylated luciferase mRNA, it displayed either no (EMCV) or slight (PV) deleterious effect on the translation of the full-length viral RNAs. Moreover, PABP-depleted extracts were fully competent in supporting EMCV and PV RNA replication and virus assembly. In contrast, removing the poly(A) tail from EMCV RNA dramatically reduced RNA synthesis and virus yields in cell-free reactions. The advantage conferred by the poly(A) tail to EMCV synthesis was more pronounced in untreated than in nuclease-treated extract, indicating that endogenous cellular mRNAs compete with the viral RNA for a component(s) of the RNA replication machinery. These results suggest that the poly(A) tail functions in picornavirus replication largely independent of PABP.


Asunto(s)
Virus de la Encefalomiocarditis/genética , Genoma Viral , Picornaviridae/genética , Poliovirus/genética , Proteínas de Unión a Poli(A)/metabolismo , ARN Viral/genética , Proteínas Virales/metabolismo , Línea Celular Tumoral , Virus de la Encefalomiocarditis/aislamiento & purificación , Células HeLa , Humanos , Poliovirus/aislamiento & purificación , Biosíntesis de Proteínas , ARN Viral/metabolismo , Replicación Viral
12.
Mol Cell Biol ; 25(23): 10556-65, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16287867

RESUMEN

Translation of m7G-capped cellular mRNAs is initiated by recruitment of ribosomes to the 5' end of mRNAs via eukaryotic translation initiation factor 4F (eIF4F), a heterotrimeric complex comprised of a cap-binding subunit (eIF4E) and an RNA helicase (eIF4A) bridged by a scaffolding molecule (eIF4G). Internal translation initiation bypasses the requirement for the cap and eIF4E and occurs on viral and cellular mRNAs containing internal ribosomal entry sites (IRESs). Here we demonstrate that eIF4E availability plays a critical role in the switch from cap-dependent to IRES-mediated translation in picornavirus-infected cells. When both capped and IRES-containing mRNAs are present (as in intact cells or in vitro translation extracts), a decrease in the amount of eIF4E associated with the eIF4F complex elicits a striking increase in IRES-mediated viral mRNA translation. This effect is not observed in translation extracts depleted of capped mRNAs, indicating that capped mRNAs compete with IRES-containing mRNAs for translation. These data explain numerous reported observations where viral mRNAs are preferentially translated during infection.


Asunto(s)
Factor 4F Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Caperuzas de ARN/metabolismo , Ribosomas/metabolismo , Animales , Línea Celular , Sistema Libre de Células , Virus de la Encefalomiocarditis/genética , Factor 4F Eucariótico de Iniciación/genética , Regulación de la Expresión Génica , Humanos , Ratones , Unión Proteica , Transporte de Proteínas , Caperuzas de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Ribosomas/genética , Replicación Viral
13.
Methods Enzymol ; 429: 53-82, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17913619

RESUMEN

A Krebs-2 cell-free extract that efficiently translates encephalomyocarditis virus (EMCV) RNA and extensively processes the viral polyprotein is also capable of supporting complete infectious EMCV replication. The system displays high RNA synthesis activity and de novo synthesis of virus up to titers of 2 x 10(7) to 6 x 10(7) plaque-forming units (pfu)/ml. The preparation of Krebs-2 cell extract and methods of analysis of EMCV-specific processes in vitro are described. We also demonstrate that the Krebs-2 cell-free system translates the entire open reading frame of the hepatitis C virus (HCV) RNA and properly processes the viral polyprotein when supplemented with canine microsomal membranes. In addition to processing, other posttranslational modifications of HCV proteins take place in vitro, such as the N-terminal glycosylation of the E1 and the E2 precursor (E2-p7) and phosphorylation of NS5A. The HCV RNA-programmed Krebs-2 cell-free extract should prove very useful as a novel screen for drugs that inhibit NS3-mediated processing. The use of this system should help fill the gap in understanding the regulation of synthesis and maturation of HCV proteins. With further optimization of cell-free conditions, the entire reconstitution of infectious HCV synthesis in vitro might become feasible.


Asunto(s)
Virus de la Encefalomiocarditis/metabolismo , Genoma Viral/fisiología , Hepacivirus/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Viral/fisiología , Replicación Viral/fisiología , Animales , Carcinoma Krebs 2/metabolismo , Sistema Libre de Células , Femenino , Glicosilación , Ratones , Proteínas del Envoltorio Viral/metabolismo
14.
Mol Biol (Mosk) ; 40(4): 684-93, 2006.
Artículo en Ruso | MEDLINE | ID: mdl-16913227

RESUMEN

The eukaryotic mRNA 3' poly(A) tail and the 5' cap cooperate to synergistically enhance translation. This interaction is mediated by a ribonucleoprotein network that contains, at a minimum, the poly(A) binding protein (PABP), the capbinding protein eIF4E and a scaffolding protein, eIF4G. eIF4G, in turn, contains binding sites for eIF4A and eIF3, a 40S ribosome-associated initiation factor. The combined cooperative interactions within this "closed loop" mRNP among other effects enhance the affinity of eIF4E for the 5' cap by lowering its dissociation rate and, ultimately, facilitate the formation of 48S and 80S ribosome initiation complexes. The PABP-poly(A) interaction also stimulates initiation driven by picomavirus' internal ribosomal entry sites (IRESs), a process that requires eIF4G but not eIF4E. PABP, therefore, should be considered a canonical initiation factor, integral to initiation complex formation. Poly(A)-mediated translation is subjected to regulation by the PABP-interacting proteins Paip1 and Paip2. Paip1 acts as a translational enhancer. In contrast, Paip2 strongly inhibits translation by promoting dissociation of PABP from poly(A) and by competing with eIF4G for binding to PABP.


Asunto(s)
Proteínas de Unión a Poli(A)/fisiología , Biosíntesis de Proteínas/fisiología , Caperuzas de ARN/fisiología , Estabilidad del ARN/fisiología , ARN Mensajero/fisiología , Animales , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Poli A/metabolismo , Unión Proteica , Proteínas de Unión al ARN/fisiología
15.
Methods Mol Biol ; 257: 155-70, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14770004

RESUMEN

The 3' poly(A) tail of eukaryotic messenger RNAs (mRNAs) acts synergistically with the 5' cap structure to enhance translation. This phenomenon has been explained by the simultaneous binding of poly(A)-binding protein (PABP) and a cap-binding protein (eIF4E) to eIF4G that results in the circularization of the mRNA (closed-loop model). We developed a robust cell-free protein synthesis system to study poly(A)-dependent translation. In nuclease-treated extracts of Krebs-2 ascites cells, the mRNA poly(A) tail and the cap structure synergistically stimulate translation. We also describe an efficient procedure for depleting PABP from translation extracts. Greater than 98% of PABP can be depleted from extracts by preincubation with either of the PABP-interacting proteins (Paip2 or Paip1) coupled to beads, and these depleted extracts fail to support efficient translation of poly(A)+ mRNAs. Translation activity is restored to depleted extracts by the addition of recombinant PABP.


Asunto(s)
Ascitis/metabolismo , Proteínas Portadoras/genética , Cromatografía de Afinidad/métodos , Factor 4E Eucariótico de Iniciación/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , Animales , Ascitis/genética , Proteínas Portadoras/metabolismo , Sistema Libre de Células , Factor 4E Eucariótico de Iniciación/metabolismo , Femenino , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos BALB C , Iniciación de la Cadena Peptídica Traduccional , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Caperuzas de ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Células Tumorales Cultivadas
16.
Methods Mol Biol ; 725: 207-17, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21528456

RESUMEN

Experiments with cell cultures have been useful in analyzing microRNA action. However, miRNA-mediated effects are often assayed many hours or days after miRNA target recognition. Consequently, this has made it difficult to analyze early events of miRNA-mediated repression. The development of cell-free systems that recapitulate miRNA action in vitro has been instrumental in dissecting the molecular mechanisms of miRNA action. Here we describe such a system, derived from mouse Krebs II ascites carcinoma cells, termed Krebs cell-free system. As an example, the protocol for assaying let-7 and GW182 (TNRC6) protein-mediated deadenylation of mRNA in vitro is described.


Asunto(s)
MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Secuencia de Bases , Sistema Libre de Células , Orden Génico , Marcaje Isotópico , Ratones , Modelos Biológicos , ARN Mensajero/genética , ARN Mensajero/metabolismo
17.
Wiley Interdiscip Rev RNA ; 2(2): 277-98, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21957010

RESUMEN

The 5' mRNA cap structure is essential for efficient gene expression from yeast to human. It plays a critical role in all aspects of the life cycle of an mRNA molecule. Capping occurs co-transcriptionally on the nascent pre-mRNA as it emerges from the RNA exit channel of RNA polymerase II. The cap structure protects mRNAs from degradation by exonucleases and promotes transcription, polyadenylation, splicing, and nuclear export of mRNA and U-rich, capped snRNAs. In addition, the cap structure is required for the optimal translation of the vast majority of cellular mRNAs, and it also plays a prominent role in the expression of eukaryotic, viral, and parasite mRNAs. Cap-binding proteins specifically bind to the cap structure and mediate its functions in the cell. Two major cellular cap-binding proteins have been described to date: eukaryotic translation initiation factor 4E (eIF4E) in the cytoplasm and nuclear cap binding complex (nCBC), a nuclear complex consisting of a cap-binding subunit cap-binding protein 20 (CBP 20) and an auxiliary protein cap-binding protein 80 (CBP 80). nCBC plays an important role in various aspects of nuclear mRNA metabolism such as pre-mRNA splicing and nuclear export, whereas eIF4E acts primarily as a facilitator of mRNA translation. In this review, we highlight recent findings on the role of the cap structure and cap-binding proteins in the regulation of gene expression. We also describe emerging regulatory pathways that control mRNA capping and cap-binding proteins in the cell.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de Unión a Caperuzas de ARN/fisiología , Caperuzas de ARN/fisiología , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/fisiología , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Animales , Núcleo Celular/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Degradación de ARNm Mediada por Codón sin Sentido/genética , Degradación de ARNm Mediada por Codón sin Sentido/fisiología , Proteínas de Unión a Caperuzas de ARN/química , Proteínas de Unión a Caperuzas de ARN/genética , Proteínas de Unión a Caperuzas de ARN/metabolismo , Caperuzas de ARN/química , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Procesamiento Postranscripcional del ARN
18.
J Clin Invest ; 120(9): 3389-400, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20739757

RESUMEN

Translational control plays a key role in late spermiogenesis. A number of mRNAs encoding proteins required for late spermiogenesis are expressed in early spermatids but are stored as translationally inactive messenger ribonucleoprotein particles (mRNPs). The translation of these mRNAs is associated with shortening of their poly(A) tail in late spermiogenesis. Poly(A)-binding protein (Pabp) plays an important role in mRNA stabilization and translation. Three Pabp-interacting proteins, Paip1, Paip2a, and Paip2b, have been described. Paip2a is expressed in late spermatids. To investigate the role of Paip2 in spermiogenesis, we generated mice with knockout of either Paip2a or Paip2b and double-KO (DKO) mice lacking both Paip2a and Paip2b. Paip2a-KO and Paip2a/Paip2b-DKO mice exhibited male infertility. Translation of several mRNAs encoding proteins essential to male germ cell development was inhibited in late spermiogenesis in Paip2a/Paip2b-DKO mice, resulting in defective elongated spermatids. Inhibition of translation in Paip2a/Paip2b-DKO mice was caused by aberrant increased expression of Pabp, which impaired the interaction between eukaryotic initiation factor 4E (eIF4E) and the cap structure at the 5' end of the mRNA. We therefore propose a model whereby efficient mRNA translation in late spermiogenesis occurs at an optimal concentration of Pabp, a condition not fulfilled in Paip2a/Paip2b-DKO mice.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Transactivadores/fisiología , Animales , Cruzamientos Genéticos , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Poli A/genética , Poli A/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Espermátides/metabolismo , Espermatogénesis/genética
19.
PLoS One ; 5(7): e11607, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20657652

RESUMEN

BACKGROUND: DCB-3503, a tylophorine analog, inhibits the growth of PANC-1 (human pancreatic ductal cancer cell line) and HepG2 (human hepatocellular cancer cell line) tumor xenografts in nude mice. The inhibition of growth leads to cancer cell differentiation instead of cell death. However, the mechanisms of action of tylophorine analogs is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we show that DCB-3503 suppresses the expression of pro-oncogenic or pro-survival proteins with short half-lives, including cyclin D1, survivin, beta-catenin, p53, and p21, without decreasing their mRNA levels. Proteasome inhibitor reversed the inhibitory effect of DCB-3503 on expression of these proteins. DCB-3503 inhibited the incorporation of radiolabeled amino acid and thymidine, and to a much lesser degree of uridine, in a panel of cell lines. The mechanism of inhibition of protein synthesis is different from that of cycloheximide (CHX) as assayed in cell culture and HeLa in vitro translation system. Furthermore, in contrast to rapamycin, DCB-3503 does not affect protein synthesis through the mTOR pathway. DCB-3503 treatment shifts the sedimentation profiles of ribosomes and mRNAs towards the polysomal fractions while diminishing monosome abundance, indicative of the inhibition of the elongation step of protein synthesis. Preferential down regulation of several studied proteins under these conditions is likely due to the relative short half-lives of these proteins. CONCLUSION/SIGNIFICANCE: The inhibitory effect of DCB-3503 on translation is apparently distinct from any of the current anticancer compounds targeting protein synthesis. Translation inhibitors with novel mechanism could complement current chemotherapeutic agents for the treatment of human cancers and suppress the occurrence of drug resistance.


Asunto(s)
Alcaloides/química , Indolizinas/química , Indolizinas/farmacología , Fenantrenos/química , Fenantrenos/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Aminoácidos/metabolismo , Northern Blotting , Western Blotting , Línea Celular Tumoral , Humanos , Reacción en Cadena de la Polimerasa , Polirribosomas/efectos de los fármacos , Polirribosomas/metabolismo , Timidina/metabolismo
20.
Mol Cell Biol ; 29(6): 1661-9, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19114555

RESUMEN

Eukaryotic mRNAs possess a 5'-terminal cap structure (cap), m(7)GpppN, which facilitates ribosome binding. The cap is bound by eukaryotic translation initiation factor 4F (eIF4F), which is composed of eIF4E, eIF4G, and eIF4A. eIF4E is the cap-binding subunit, eIF4A is an RNA helicase, and eIF4G is a scaffolding protein that bridges between the mRNA and ribosome. eIF4G contains an RNA-binding domain, which was suggested to stimulate eIF4E interaction with the cap in mammals. In Saccharomyces cerevisiae, however, such an effect was not observed. Here, we used recombinant proteins to reconstitute the cap binding of the mammalian eIF4E-eIF4GI complex to investigate the importance of the RNA-binding region of eIF4GI for cap interaction with eIF4E. We demonstrate that chemical cross-linking of eIF4E to the cap structure is dramatically enhanced by eIF4GI fragments possessing RNA-binding activity. Furthermore, the fusion of RNA recognition motif 1 (RRM1) of the La autoantigen to the N terminus of eIF4GI confers enhanced association between the cap structure and eIF4E. These results demonstrate that eIF4GI serves to anchor eIF4E to the mRNA and enhance its interaction with the cap structure.


Asunto(s)
Factor 4E Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/química , Caperuzas de ARN/química , Animales , Factor 4E Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/genética , Humanos , Ratones , Mutación , Unión Proteica , Caperuzas de ARN/genética , ARN Mensajero/química , Conejos , Proteínas Recombinantes/química , Globinas beta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA