Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 27(3): 03LT01, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26636763

RESUMEN

We introduce an alternative type of probe for scanning tunneling microscopy (STM). Instead of using a needle-like tip made from a piece of metallic wire, a sharp-edged cleaved insulating substrate, which is initially covered by a thin conductive film, is used. The sharp tip is formed at the intersection of the two cleaved sides. Using this approach a variety of materials for STM probes can be used, and functionalization of STM probes is possible. The working principle of different probes made of metallic (Pt, Co, and CoB), indium-tin oxide, as well as Cu/Pt and Co/Pt multilayer films are demonstrated by STM imaging of clean Cu(001) and Cu(111) surfaces as well as the epitaxial Co clusters on Cu(111).

2.
Nat Mater ; 12(4): 299-303, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23377291

RESUMEN

Perpendicularly magnetized materials have attracted significant interest owing to their high anisotropy, which gives rise to extremely narrow, nanosized domain walls. As a result, the recently studied current-induced domain wall motion (CIDWM) in these materials promises to enable a new class of data, memory and logic devices. Here we propose the spin Hall effect as an alternative mechanism for CIDWM. We are able to carefully tune the net spin Hall current in depinning experiments on Pt/Co/Pt nanowires, offering unique control over CIDWM. Furthermore, we determine that the depinning efficiency is intimately related to the internal structure of the domain wall, which we control by the application of small fields along the nanowire. This manifestation of CIDWM offers an attractive degree of freedom for manipulating domain wall motion by charge currents, and sheds light on the existence of contradicting reports on CIDWM in perpendicularly magnetized materials.

3.
Phys Rev Lett ; 108(3): 037205, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22400781

RESUMEN

Despite the relevance of current-induced magnetic domain wall (DW) motion for new spintronics applications, the exact details of the current-domain wall interaction are not yet understood. A property intimately related to this interaction is the intrinsic DW resistivity. Here, we investigate experimentally how the resistivity inside a DW depends on the wall width Δ, which is tuned using focused ion beam irradiation of Pt/Co/Pt strips. We observe the nucleation of individual DWs with Kerr microscopy, and measure resistance changes in real time. A 1/Δ(2) dependence of DW resistivity is found, compatible with Levy-Zhang theory. Also quantitative agreement with theory is found by taking full account of the current flowing through each individual layer inside the multilayer stack.

4.
Phys Rev Lett ; 106(19): 196803, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21668187

RESUMEN

We demonstrate that a part of interface at a subsurface nanocavity in Cu(110) can efficiently induce electron scattering back to the surface even if it is inclined with respect to the surface, if the condition for electron diffraction is fulfilled. This backscattering induces oscillations of electron local density of states at the surface versus electron energy. In agreement with our model calculations, the diffraction is assigned to a specific atomic structure at the interface, and is found to be significantly enhanced by focussing of electron waves for propagation along the [110] direction.

5.
Nanotechnology ; 22(2): 025302, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21135470

RESUMEN

We systematically study the effect of oxygen content on the magneto-transport and microstructure of Fe:O:C nanowires deposited by focused-electron-beam-induced (FEBID) deposition. The Fe/O ratio can be varied with an Fe content varying between ∼ 50 and 80 at.% with overall low C content (≈16 ± 3 at.%) by adding H(2)O during the deposition while keeping the beam parameters constant as measured by energy dispersive x-ray (EDX) spectroscopy. The room-temperature magnetic properties for deposits with an Fe content of 66-71 at.% are investigated using the magneto-optical Kerr effect (MOKE) and electric magneto-transport measurements. The nanostructure of the deposits is investigated through cross-sectional high-resolution transmission electron microscopy (HRTEM) imaging, allowing us to link the observed magneto-resistance and resistivity to the transport mechanism in the deposits. These results demonstrate that functional magnetic nanostructures can be created, paving the way for new magnetic or even spintronics devices.

6.
Phys Rev Lett ; 103(14): 146601, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19905590

RESUMEN

By combining experiments with simple model calculations, we obtain new insight in spin transport through hybrid, CoFeB/Al2O3(1.5 nm)/tris(8-hydroxyquinoline)aluminium (Alq3)/Co spin valves. We have measured the characteristic changes in the I-V behavior as well as the intrinsic loss of magnetoresistance at the onset of multiple-step tunneling. In the regime of multiple-step tunneling, under the condition of low hopping rates, spin precession in the presence of hyperfine coupling is conjectured to be the relevant source of spin relaxation. A quantitative analysis leads to the prediction of a symmetric magnetoresistance around zero magnetic field in addition to the hysteretic magnetoresistance curves, which are indeed observed in our experiments.

7.
Nat Commun ; 7: 10854, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26940861

RESUMEN

As the first magnetic random access memories are finding their way onto the market, an important issue remains to be solved: the current density required to write magnetic bits becomes prohibitively high as bit dimensions are reduced. Recently, spin-orbit torques and the spin-Hall effect in particular have attracted significant interest, as they enable magnetization reversal without high current densities running through the tunnel barrier. For perpendicularly magnetized layers, however, the technological implementation of the spin-Hall effect is hampered by the necessity of an in-plane magnetic field for deterministic switching. Here we interface a thin ferromagnetic layer with an anti-ferromagnetic material. An in-plane exchange bias is created and shown to enable field-free S HE-driven magnetization reversal of a perpendicularly magnetized Pt/Co/IrMn structure. Aside from the potential technological implications, our experiment provides additional insight into the local spin structure at the ferromagnetic/anti-ferromagnetic interface.

8.
Sci Rep ; 4: 5248, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24919162

RESUMEN

Magnetic domain-walls (DWs) with a preferred chirality exhibit very efficient current-driven motion. Since structural inversion asymmetry (SIA) is required for their stability, the observation of chiral domain walls in highly symmetric Pt/Co/Pt is intriguing. Here, we tune the layer asymmetry in this system and observe, by current-assisted DW depinning experiments, a small chiral field which sensitively changes. Moreover, we convincingly link the observed efficiency of DW motion to the DW texture, using DW resistance as a direct probe for the internal orientation of the DW under the influence of in-plane fields. The very delicate effect of capping layer thickness on the chiral field allows for its accurate control, which is important in designing novel materials for optimal spin-orbit-torque-driven DW motion.

9.
Nat Nanotechnol ; 7(8): 499-503, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22796743

RESUMEN

The movement of magnetic domain walls can be used to build a device known as a shift register, which has applications in memory and logic circuits. However, the application of magnetic domain wall shift registers has been hindered by geometrical restrictions, by randomness in domain wall displacement and by the need for high current densities or rotating magnetic fields. Here, we propose a new approach in which the energy landscape experienced by the domain walls is engineered to favour a unidirectional ratchet-like propagation. The domain walls are defined between domains with an out-of-plane (perpendicular) magnetization, which allows us to route domain walls along arbitrary in-plane paths using a time-varying applied magnetic field with fixed orientation. In addition, this ratchet-like motion causes the domain walls to lock to discrete positions along these paths, which is useful for digital devices. As a proof-of-principle experiment we demonstrate the continuous propagation of two domain walls along a closed-loop path in a platinum/cobalt/platinum strip.


Asunto(s)
Cobalto/química , Nanotecnología , Platino (Metal)/química , Anisotropía , Campos Magnéticos , Fenómenos Magnéticos
10.
J Phys Condens Matter ; 24(2): 024216, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22173553

RESUMEN

We theoretically and experimentally analyze the pinning of a magnetic domain wall (DW) at engineered anisotropy variations in Pt/Co/Pt strips with perpendicular magnetic anisotropy. An analytical model is derived showing that a step in the anisotropy acts as an energy barrier for the DW. Quantitative measurements are performed showing that the anisotropy can be controlled by focused ion beam irradiation with Ga ions. This tool is used to experimentally study the field-induced switching of nanostrips which are locally irradiated. The boundary of the irradiated area indeed acts as a pinning barrier for the domain wall and the pinning strength increases with the anisotropy difference. Varying the thickness of the Co layer provides an additional way to tune the anisotropy, and it is shown that a thinner Co layer gives a higher starting anisotropy thereby allowing tunable DW pinning in a wider range of fields. Finally, we demonstrate that not only the anisotropy itself, but also the width of the anisotropy barrier can be tuned on the length scale of the domain wall.

11.
Nat Commun ; 3: 847, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22617287

RESUMEN

Domain wall motion in materials exhibiting perpendicular magnetic anisotropy has been the subject of intensive research because of its large potential for future spintronic devices. Recently, it has been shown that perpendicular anisotropy of thin films can be influenced by electric fields. Voltage-controlled magnetic switching has already been realized, which is envisioned to lead to low-power logic and memory devices. Here we demonstrate a radically new application of this effect, namely control of domain wall motion by electric fields. We show that an applied voltage perpendicular to a Co or CoB wire can significantly increase or decrease domain wall velocities. Velocity modification over an order of magnitude is demonstrated (from 0.4 to 4 µm s(-1)), providing a first step towards electrical control of domain wall devices. This opens up possibilities of real-time and local control of domain wall motion by electric fields at extremely low power cost.

12.
J Phys Condens Matter ; 24(2): 024220, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22172802

RESUMEN

Novel nanofabrication methods and the discovery of an efficient manipulation of local magnetization based on spin polarized currents has generated a tremendous interest in the field of spintronics. The search for materials allowing for fast domain wall dynamics requires fundamental research into the effects involved (Oersted fields, adiabatic and non-adiabatic spin torque, Joule heating) and possibilities for a quantitative comparison. Theoretical descriptions reveal a material and geometry dependence of the non-adiabaticity factor ß, which governs the domain wall velocity. Here, we present two independent approaches for determining ß: (i) measuring the dependence of the dwell times for which a domain wall stays in a metastable pinning state on the injected current and (ii) the current-field equivalence approach. The comparison of the deduced ß values highlights the problems of using one-dimensional models to describe two-dimensional dynamics and allows us to ascertain the reliability, robustness and limits of the approaches used.

13.
Phys Rev Lett ; 102(1): 016602, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19257223

RESUMEN

We report a correlation between the spin polarization of the tunneling electrons and the magnetic moment of amorphous CoFeB alloys. Such a correlation is surprising since the spin polarization of the tunneling electrons involves s-like electrons close to the Fermi level (E_{F}), while the magnetic moment mainly arises due to all the d electrons below E_{F}. We show that probing the s and d bands individually provides clear and crucial evidence for such a correlation to exist through s-d hybridization, and demonstrate the tunability of the electronic and magnetic properties of CoFeB alloys.

14.
Phys Rev Lett ; 102(6): 066101, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19257608

RESUMEN

Apparent c(2x2) superstructures within the narrow beams of an interference pattern spreading in the 100 directions at the surface of Cu(001) are observed by scanning tunneling microscopy. These features are induced by electron scattering from Ar- and Ne-filled subsurface nanocavities. The beams originate from electron anisotropy resulting in focusing of bulk electrons. We developed a model providing a good agreement between simulations and experiments. Particularly, a simple explanation of the angular distribution for the interference pattern and the period in the superstructure is found.

15.
Phys Rev Lett ; 100(12): 127202, 2008 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-18517905

RESUMEN

Boron-doped Si-SiO2-Al structures are fabricated to study extremely large magnetoresistance (MR) effects. Current-voltage characteristics show a nonlinear behavior, dominated by an autocatalytic process of impact ionization. At low temperatures, the magnetic field postpones the onset of impact ionization to higher electric fields. This results in a symmetric positive MR of over 10,000% at 400 kA/m. Applying a magnetic field leads to an increase of the acceptor level compared to the valence band as deduced by admittance spectroscopy. A macroscopic transport model is introduced to describe how the MR is controlled by voltage, electrode spacing, and oxide thickness.

16.
Phys Rev Lett ; 101(21): 216601, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-19113434

RESUMEN

Current induced domain wall (DW) depinning of a narrow DW in out-of-plane magnetized (Pt/Co)_{3}/Pt multilayer elements is studied by magnetotransport. We find that for conventional measurements Joule heating effects conceal the real spin torque efficiency and so we use a measurement scheme at a constant sample temperature to unambiguously extract the spin torque contribution. From the variation of the depinning magnetic field with the current pulse amplitude we directly deduce the large nonadiabaticity factor in this material and we find that its amplitude is consistent with a momentum transfer mechanism.

17.
Phys Rev Lett ; 100(5): 057205, 2008 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-18352421

RESUMEN

We provide compelling evidence to establish that, contrary to one's elementary guess, the tunneling spin polarization (TSP) of amorphous CoFeB is larger than that of fcc CoFeB. First-principles atomic and electronic structure calculations reveal striking agreement between the measured TSP and the predicted s-electron spin polarization. Given the disordered structure of the ternary alloy, not only do these results strongly endorse our communal understanding of tunneling through AlO(x), but they also portray the key concepts that demand primary consideration in such complex systems.

18.
Phys Rev Lett ; 88(10): 107201, 2002 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-11909383

RESUMEN

Utilizing Co/Al(2)O(3)/Co magnetic tunnel junctions with Co electrodes of different crystalline phases, a clear relationship between electrode crystal structure and junction transport properties is presented. For junctions with one fcc(111) textured and one polycrystalline (polyphase and polydirectional) Co electrode, a strong asymmetry is observed in the magnetotransport properties, while when both electrodes are polycrystalline the magnetotransport is essentially symmetric. These observations are successfully explained within a model based on ballistic tunneling between the calculated band structures (density of states) of fcc-Co and hcp-Co.

19.
Phys Rev Lett ; 93(16): 169703; author reply 169704, 2004 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-15525046
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA