Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
J Am Chem Soc ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037580

RESUMEN

We demonstrate that single-atom alloy catalysts can be made by exposing physical mixtures of monometallic supported Cu and Pd catalysts to vinyl acetate (VA) synthesis reaction conditions. This reaction induces the formation of mobile clusters of metal diacetate species that drive extensive metal nanoparticle restructuring, leading to atomic dispersion of the precious metal, smaller nanoparticle sizes than the parent catalysts, and high activity and selectivity for both VA synthesis and ethanol dehydrogenation reactions. This approach is scalable and appears to be generalizable to other alloy catalysts.

2.
J Am Chem Soc ; 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36888984

RESUMEN

Single-atom catalysts have received significant attention for their ability to enable highly selective reactions. However, many reactions require more than one adjacent site to align reactants or break specific bonds. For example, breaking a C-O or O-H bond may be facilitated by a dual site containing an oxophilic element and a carbophilic or "hydrogenphilic" element that binds each molecular fragment. However, design of stable and well-defined dual-atom sites with desirable reactivity is difficult due to the complexity of multicomponent catalytic surfaces. Here, we describe a new type of dual-atom system, trimetallic dual-atom alloys, which were designed via computation of the alloying energetics. Through a broad computational screening we discovered that Pt-Cr dimers embedded in Ag(111) can be formed by virtue of the negative mixing enthalpy of Pt and Cr in Ag and the favorable interaction between Pt and Cr. These dual-atom alloy sites were then realized experimentally through surface science experiments that enabled the active sites to be imaged and their reactivity related to their atomic-scale structure. Specifically, Pt-Cr sites in Ag(111) can convert ethanol, whereas PtAg and CrAg are unreactive toward ethanol. Calculations show that the oxophilic Cr atom and the hydrogenphilic Pt atom act synergistically to break the O-H bond. Furthermore, ensembles with more than one Cr atom, present at higher dopant loadings, produce ethylene. Our calculations have identified many other thermodynamically favorable dual-atom alloy sites, and hence this work highlights a new class of materials that should offer new and useful chemical reactivity beyond the single-atom paradigm.

3.
Proc Natl Acad Sci U S A ; 117(37): 22657-22664, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32879000

RESUMEN

The migration of species across interfaces can crucially affect the performance of heterogeneous catalysts. A key concept in using bimetallic catalysts for hydrogenation is that the active metal supplies hydrogen atoms to the host metal, where selective hydrogenation can then occur. Herein, we demonstrate that, following dihydrogen dissociation on palladium islands, hydrogen atoms migrate from palladium to silver, to which they are generally less strongly bound. This migration is driven by the population of weakly bound states on the palladium at high hydrogen atom coverages which are nearly isoenergetic with binding sites on the silver. The rate of hydrogen atom migration depends on the palladium-silver interface length, with smaller palladium islands more efficiently supplying hydrogen atoms to the silver. This study demonstrates that hydrogen atoms can migrate from a more strongly binding metal to a more weakly binding surface under special conditions, such as high dihydrogen pressure.

4.
J Am Chem Soc ; 144(38): 17387-17398, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36112426

RESUMEN

The relative stability of reactive intermediates and reactants on a surface, which dictates the rate and selectivity of catalytic reactions in both gas and liquid phases, is dependent on numerous factors. One well-established example is secondary interactions, such as van der Waals interactions between the catalyst surface and the pendant group of the intermediate, which can govern reaction selectivity for coupling reactions. Herein, we directly show that interactions between adsorbed reaction intermediates and reactant molecules increase the binding energy and affects the geometrical arrangement of coadsorbed reactant/solvent molecules. Evidence for this effect is demonstrated for the oxidative coupling reaction of methanol on a single crystal gold (Au(110)) surface. The rate-limiting reaction intermediate for methanol self-coupling, methoxy, stabilizes excess adsorbed methanol, which desorbs as a result of beta-hydride decomposition of the adsorbed methoxy. Direct molecular-scale imaging by scanning tunneling microscopy, supplemented by density functional theory, revealed interactive structures formed by methoxy and coadsorbed methanol. Interactions between the methoxy intermediate and coadsorbed methanol stabilizes a hydrogen-bonded network comprising methoxy and methanol by a minimum of 0.13 eV per methanol molecule. Inclusion of such interactions between reaction intermediates and coadsorbed reactants and solvents in kinetic models is important for microkinetic analysis of the rates and selectivities of catalytic reactions in both the gas and liquid phases whenever appreciable coverages of species from the ambient phase exist.


Asunto(s)
Oro , Metanol , Catálisis , Etanol , Oro/química , Hidrógeno , Metanol/química , Solventes/química
5.
Chem Rev ; 120(21): 12044-12088, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-32588624

RESUMEN

Single-atom alloys (SAAs) play an increasingly significant role in the field of single-site catalysis and are typically composed of catalytically active elements atomically dispersed in more inert and catalytically selective host metals. SAAs have been shown to catalyze a range of industrially important reactions in electro-, photo-, and thermal catalysis studies. Due to the unique geometry of SAAs, the location of the transition state and the binding site of reaction intermediates are often decoupled, which can enable both facile dissociation of reactants and weak binding of intermediates, two key factors for efficient and selective catalysis. Often, this results in deviations from transition metal scaling relationships that limit conventional catalysts. SAAs also offer reduced susceptibility to CO poisoning, cost savings from reduced precious metal usage, opportunities for bifunctional mechanisms via spillover, and higher resistance to deactivation by coking that plagues many industrial catalysts. In this review, we begin by introducing SAAs and describe how model systems and nanoparticle catalysts can be prepared and characterized. We then review all available SAA literature on a per reaction basis before concluding with a description of the general properties of this new class of heterogeneous catalysts and presenting opportunities for future research and development.

6.
Chem Rev ; 120(23): 12834-12872, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33006894

RESUMEN

Selective hydrogenation of α,ß-unsaturated aldehydes to unsaturated alcohols is a challenging class of reactions, yielding valuable intermediates for the production of pharmaceuticals, perfumes, and flavorings. On monometallic heterogeneous catalysts, the formation of the unsaturated alcohols is thermodynamically disfavored over the saturated aldehydes. Hence, new catalysts are required to achieve the desired selectivity. Herein, the literature of three major research areas in catalysis is integrated as a step toward establishing the guidelines for enhancing the selectivity: reactor studies of complex catalyst materials at operating temperature and pressure, surface science studies of crystalline surfaces in ultrahigh vacuum, and first-principles modeling using density functional theory calculations. Aggregate analysis shows that bimetallic and dilute alloy catalysts significantly enhance the selectivity to the unsaturated alcohols compared to monometallic catalysts. This comprehensive review focuses primarily on the role of different metal surfaces as well as the factors that promote the adsorption of the unsaturated aldehyde via its C═O bond, most notably by electronic modification of the surface and formation of the electrophilic sites. Furthermore, challenges, gaps, and opportunities are identified to advance the rational design of efficient catalysts for this class of reactions, including the need for systematic studies of catalytic processes, theoretical modeling of complex materials, and model studies under ambient pressure and temperature.

7.
J Am Chem Soc ; 143(51): 21567-21579, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34908398

RESUMEN

Elucidation of reaction mechanisms and the geometric and electronic structure of the active sites themselves is a challenging, yet essential task in the design of new heterogeneous catalysts. Such investigations are best implemented via a multipronged approach that comprises ambient pressure catalysis, surface science, and theory. Herein, we employ this strategy to understand the workings of NiAu single-atom alloy (SAA) catalysts for the selective nonoxidative dehydrogenation of ethanol to acetaldehyde and hydrogen. The atomic dispersion of Ni is paramount for selective ethanol to acetaldehyde conversion, and we show that even the presence of small Ni ensembles in the Au surface results in the formation of undesirable byproducts via C-C scission. Spectroscopic, kinetic, and theoretical investigations of the reaction mechanism reveal that both C-H and O-H bond cleavage steps are kinetically relevant and single Ni atoms are confirmed as the active sites. X-ray absorption spectroscopy studies allow us to follow the charge of the Ni atoms in the Au host before, under, and after a reaction cycle. Specifically, in the pristine state the Ni atoms carry a partial positive charge that increases upon coordination to the electronegative oxygen in ethanol and decreases upon desorption. This type of oxidation state cycling during reaction is similar to the behavior of single-site homogeneous catalysts. Given the unique electronic structure of many single-site catalysts, such a combined approach in which the atomic-scale catalyst structure and charge state of the single atom dopant can be monitored as a function of its reactive environment is a key step toward developing structure-function relationships that inform the design of new catalysts.

8.
J Chem Phys ; 154(20): 204701, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34241183

RESUMEN

Carbon-carbon coupling is an important step in many catalytic reactions, and performing sp3-sp3 carbon-carbon coupling heterogeneously is particularly challenging. It has been reported that PdAu single-atom alloy (SAA) model catalytic surfaces are able to selectively couple methyl groups, producing ethane from methyl iodide. Herein, we extend this study to NiAu SAAs and find that Ni atoms in Au are active for C-I cleavage and selective sp3-sp3 carbon-carbon coupling to produce ethane. Furthermore, we perform ab initio kinetic Monte Carlo simulations that include the effect of the iodine atom, which was previously considered a bystander species. We find that model NiAu surfaces exhibit a similar chemistry to PdAu, but the reason for the similarity is due to the role the iodine atoms play in terms of blocking the Ni atom active sites. Specifically, on NiAu SAAs, the iodine atoms outcompete the methyl groups for occupancy of the Ni sites leaving the Me groups on Au, while on PdAu SAAs, the binding strengths of methyl groups and iodine atoms at the Pd atom active site are more similar. These simulations shed light on the mechanism of this important sp3-sp3 carbon-carbon coupling chemistry on SAAs. Furthermore, we discuss the effect of the iodine atoms on the reaction energetics and make an analogy between the effect of iodine as an active site blocker on this model heterogeneous catalyst and homogeneous catalysts in which ligands must detach in order for the active site to be accessed by the reactants.

9.
Acc Chem Res ; 52(1): 237-247, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30540456

RESUMEN

Heterogeneous catalysts are workhorses in the industrial production of most commodity and specialty chemicals, and have widespread energy and environmental applications, with the annual market value of the catalysts themselves reaching almost $20 billion in 2018. These catalysts are complex, comprising multicomponent materials and multiple structures, making their rational design challenging, if not impossible. Furthermore, typical active metals like Pt, Pd, and Rh are expensive and can be susceptible to poisoning by CO, coking, and they are not always 100% selective. Efforts to use these elements sparingly and improve their selectivity has led to recent identification of single-atom heterogeneous catalysts in which individual transition metal atoms anchored on oxide or carbon-based supports are excellent catalysts for reactions like the CO oxidation, water-gas shift, alcohol dehydrogenation, and steam reforming. In this Account, we describe a new class of single-atom heterogeneous catalysts, namely, Single-Atom Alloys (SAAs) that comprise catalytically active elements like Pt, Pd, and Ni alloyed in more inert host metals at the single-atom limit. These materials evolved by complementary surface science and scanning probe studies using single crystals, and catalytic evaluation of the corresponding alloy nanoparticles with compositions informed by the surface science findings. The well-defined nature of the active sites in SAAs makes accurate modeling with theory relatively easy, enabling the rational design of SAA catalysts via a complementary three-prong approach, encompassing surface science model catalysts, theory, and real catalyst synthesis and testing under industrially relevant conditions. SAAs constitute one of just a few examples of when heterogeneous catalyst design has been guided by an understanding of fundamental surface processes. The Account starts by describing scanning tunneling microscopy studies of highly dilute alloys formed by doping small amounts of a catalytically active element into a more inert host metal. We first discuss hydrogenation reactions in which dissociation of H2 is often rate limiting. Results indicate how the SAA geometry allows the transition state and the binding site of the reaction intermediates to be decoupled, which enables both facile dissociation of reactants and weak binding of intermediates, two key factors for efficient and selective catalysis. These results were exploited to design the first PtCu SAA hydrogenation catalysts which showed high selectivity, stability and resistance to poisoning in industrially relevant hydrogenation reactions, such as the selective conversion of butadiene to butenes. Model studies also revealed spillover of hydrogen atoms from the Pt site where dissociation of H2 occurs to Cu sites where selective hydrogenation is facilitated in a bifunctional manner. We then discuss selective dehydrogenations on SAAs demonstrating that they enable efficient C-H activation, while being resistant to coking that plagues typical Pt catalysts. SAA PtCu nanoparticle catalysts showed excellent stability in butane dehydrogenation for days-on-stream at 400 °C. Another advantage of SAA catalysts is that on many alloy combinations CO, a common catalyst poison, binds more weakly to the alloy than the pure metal. We conclude by discussing recent theory results that predict the energetics of many key reaction steps on a wide range of SAAs and the exciting possibilities this reductionist approach to heterogeneous catalysis offers for the rational design of new catalysts.

10.
J Chem Phys ; 153(24): 244702, 2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33380103

RESUMEN

Metal alloys are ubiquitous in many branches of heterogeneous catalysis, and it is now fairly well established that the local atomic structure of an alloy can have a profound influence on its chemical reactivity. While these effects can be difficult to probe in nanoparticle catalysts, model studies using well defined single crystal surfaces alloyed with dopants enable these structure-function correlations to be drawn. The first step in this approach involves understanding the alloying mechanism and the type of ensembles formed. In this study, we examined the atomic structure of RhCu single-atom alloys formed on Cu(111), Cu(100), and Cu(110) surfaces. Our results show a striking difference between Rh atoms alloying in Cu(111) vs the more open Cu(100) and Cu(110) surface facets. Unlike Cu(111) on which Rh atoms preferentially place-exchange with Cu atoms in the local regions above step edges leaving the majority of the Cu surface free of Rh, highly dispersed, homogeneous alloys are formed on the Cu(100) and (110) surfaces. These dramatically different alloying mechanisms are understood by quantifying the energetic barriers for atomic hopping, exchange, swapping, and vacancy filling events for Rh atoms on different Cu surfaces through theoretical calculations. Density functional theory results indicate that the observed differences in the alloying mechanism can be attributed to a faster hopping rate, relatively high atomic exchange barriers, and stronger binding of Rh atoms in the vicinity of step edges on Cu(111) compared to Cu(110) and Cu(100). These model systems will serve as useful platforms for examining structure sensitive chemistry on single-atom alloys.

11.
J Chem Phys ; 151(16): 164705, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31675860

RESUMEN

Silver-based heterogeneous catalysts, modified with a range of elements, have found industrial application in several reactions in which selectivity is a challenge. Alloying small amounts of Pt into Ag has the potential to greatly enhance the somewhat low reactivity of Ag while maintaining high selectivity and resilience to poisoning. This single-atom alloy approach has had many successes for other alloy combinations but has yet to be investigated for PtAg. Using scanning tunneling microscopy (STM) and STM-based spectroscopy, we characterized the atomic-scale surface structure of a range of submonolayer amounts of Pt deposited on and in Ag(111) as a function of temperature. Near room temperature, intermixing of PtAg results in multiple metastable structures on the surface. Increasing the alloying temperature results in a higher concentration of isolated Pt atoms in the regions near Ag step edges as well as direct exchange of Pt atoms into Ag terraces. Furthermore, STM-based work function measurements allow us to identify Pt rich areas of the samples. We use CO temperature programmed desorption to confirm our STM assignments and quantify CO binding strengths that are compared with theory. Importantly, we find that CO, a common catalyst poison, binds more weakly to Pt atoms in the Ag surface than extended Pt ensembles. Taken together, this atomic-scale characterization of model PtAg surface alloys provides a starting point to investigate how the size and structure of Pt ensembles affect reaction pathways on the alloy and can inform the design of alloy catalysts with improved catalytic properties and resilience to poisoning.

12.
J Chem Phys ; 149(3): 034703, 2018 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-30037261

RESUMEN

The delicate balance between hydrogen bonding and van der Waals interactions determines the stability, structure, and chirality of many molecular and supramolecular aggregates weakly adsorbed on solid surfaces. Yet the inherent complexity of these systems makes their experimental study at the molecular level very challenging. In this quest, small alcohols adsorbed on metal surfaces have become a useful model system to gain fundamental insight into the interplay of such molecule-surface and molecule-molecule interactions. Here, through a combination of scanning tunneling microscopy and density functional theory, we compare and contrast the adsorption and self-assembly of a range of small alcohols from methanol to butanol on Au(111). We find that longer chained alcohols prefer to form zigzag chains held together by extended hydrogen bonded networks between adjacent molecules. When alcohols bind to a metal surface datively via one of the two lone electron pairs of the oxygen atom, they become chiral. Therefore, the chain structures are formed by a hydrogen-bonded network between adjacent molecules with alternating adsorbed chirality. These chain structures accommodate longer alkyl tails through larger unit cells, while the position of the hydroxyl group within the alcohol molecule can produce denser unit cells that maximize intermolecular interactions. Interestingly, when intrinsic chirality is introduced into the molecule as in the case of 2-butanol, the assembly changes completely and square packing structures with chiral pockets are observed. This is rationalized by the fact that the intrinsic chirality of the molecule directs the chirality of the adsorbed hydroxyl group meaning that heterochiral chain structures cannot form. Overall this study provides a general framework for understanding the effect of simple alcohol molecular adstructures on hydrogen bonded aggregates and paves the way for rationalizing 2D chiral supramolecular assembly.

13.
J Am Chem Soc ; 139(18): 6403-6410, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28418246

RESUMEN

Water has an incredible ability to form a rich variety of structures, with 16 bulk ice phases identified, for example, as well as numerous distinct structures for water at interfaces or under confinement. Many of these structures are built from hexagonal motifs of water molecules, and indeed, for water on metal surfaces, individual hexamers of just six water molecules have been observed. Here, we report the results of low-temperature scanning tunneling microscopy experiments and density functional theory calculations which reveal a host of new structures for water-ice nanoclusters when adsorbed on an atomically flat Cu surface. The H-bonding networks within the nanoclusters resemble the resonance structures of polycyclic aromatic hydrocarbons, and water-ice analogues of inene, naphthalene, phenalene, anthracene, phenanthrene, and triphenylene have been observed. The specific structures identified and the H-bonding patterns within them reveal new insight about water on metals that allows us to refine the so-called "2D ice rules", which have so far proved useful in understanding water-ice structures at solid surfaces.

14.
J Chem Phys ; 147(22): 224706, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29246067

RESUMEN

The geometric and electronic structural characterization of thin film metal oxides is of fundamental importance to many fields such as catalysis, photovoltaics, and electrochemistry. Surface defects are also well known to impact a material's performance in any such applications. Here, we focus on the "29" oxide Cu2O/Cu(111) surface and we observe two common structural defects which we characterize using scanning tunneling microscopy/spectroscopy and density functional theory. The defects are proposed to be O vacancies and Cu adatoms, which both show unique topographic and spectroscopic signatures. The spatially resolved electronic and charge state effects of the defects are investigated, and implications for their reactivity are given.

15.
J Am Chem Soc ; 138(20): 6396-9, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27167705

RESUMEN

Platinum catalysts are extensively used in the chemical industry and as electrocatalysts in fuel cells. Pt is notorious for its sensitivity to poisoning by strong CO adsorption. Here we demonstrate that the single-atom alloy (SAA) strategy applied to Pt reduces the binding strength of CO while maintaining catalytic performance. By using surface sensitive studies, we determined the binding strength of CO to different Pt ensembles, and this in turn guided the preparation of PtCu alloy nanoparticles (NPs). The atomic ratio Pt:Cu = 1:125 yielded a SAA which exhibited excellent CO tolerance in H2 activation, the key elementary step for hydrogenation and hydrogen electro-oxidation. As a probe reaction, the selective hydrogenation of acetylene to ethene was performed under flow conditions on the SAA NPs supported on alumina without activity loss in the presence of CO. The ability to maintain reactivity in the presence of CO is vital to other industrial reaction systems, such as hydrocarbon oxidation, electrochemical methanol oxidation, and hydrogen fuel cells.

16.
Nat Mater ; 14(9): 904-7, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26076306

RESUMEN

High-energy radiation has been used for decades; however, the role of low-energy electrons created during irradiation has only recently begun to be appreciated. Low-energy electrons are the most important component of radiation damage in biological environments because they have subcellular ranges, interact destructively with chemical bonds, and are the most abundant product of ionizing particles in tissue. However, methods for generating them locally without external stimulation do not exist. Here, we synthesize one-atom-thick films of the radioactive isotope (125)I on gold that are stable under ambient conditions. Scanning tunnelling microscopy, supported by electronic structure simulations, allows us to directly observe nuclear transmutation of individual (125)I atoms into (125)Te, and explain the surprising stability of the 2D film as it underwent radioactive decay. The metal interface geometry induces a 600% amplification of low-energy electron emission (<10 eV; ref. ) compared with atomic (125)I. This enhancement of biologically active low-energy electrons might offer a new direction for highly targeted nanoparticle therapies.


Asunto(s)
Partículas beta , Electrones , Oro/química , Membranas Artificiales , Isótopos de Yodo/química
17.
J Chem Phys ; 155(21): 210401, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879660
18.
J Chem Phys ; 144(9): 094703, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26957172

RESUMEN

The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule's intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our data reveal that the chirality of a simple alcohol can be transferred to its surface binding geometry, drive the directionality of hydrogen-bonded networks and ultimately extended structure. Furthermore, this study provides the first microscopic insight into the surface properties of this important chiral modifier and provides a well-defined system for studying the network's enantioselective interaction with other molecules.

19.
Nat Mater ; 18(7): 663-664, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31217555
20.
Phys Chem Chem Phys ; 17(47): 31931-7, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26567846

RESUMEN

Surface-bound molecular rotation can occur with the rotational axis either perpendicular (azimuthal) or parallel (altitudinal) to the surface. The majority of molecular rotor studies involve azimuthal rotors, whereas very few altitudinal rotors have been reported. In this work, altitudinal rotors are formed by means of coupling aryl halides through a surface-mediated Ullmann coupling reaction, producing a reaction state-dependent altitudinal molecular rotor/stator. All steps in the reaction on a Cu(111) surface are visualized by low-temperature scanning tunneling microscopy. The intermediate stage of the coupling reaction is a metal-organic complex consisting of two aryl groups attached to a single copper atom with the aryl rings angled away from the surface. This conformation leads to nearly unhindered rotational motion of ethyl groups at the para positions of the aryl rings. Rotational events of the ethyl group are both induced and quantified by electron tunneling current versus time measurements and are only observed for the intermediate structure of the Ullmann coupling reaction, not the starting material or finished product in which the ethyl groups are static. We perform an extensive set of inelastic electron tunneling driven rotation experiments that reveal that torsional motion around the ethyl group is stimulated by tunneling electrons in a one-electron process with an excitation energy threshold of 45 meV. This chemically tunable system offers an ideal platform for examining many fundamental aspects of the dynamics of chemically tunable molecular rotor and motors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA