RESUMEN
Essentials New VWF activity assays are increasingly used but information on their comparability is limited. This is an ISTH SSC-organized study (expert labs, 5 countries) to compare all available assays. VWF activity by six assays correlated well with each other. The new assays show improved characteristics - minor differences are noted. SUMMARY: Background Several new assays have become available to measure von Willebrand factor (VWF) activity. The new assays appear to have improved performance characteristics compared with the old reference standard, ristocetin cofactor activity (VWF:RCo), but information is limited about how they compare with VWF:RCo and each other. Methods The von Willebrand factor Subcommittee of the International Society for Thrombosis and Haemostasis (ISTH) Scientific and Standardization Committee (SSC) designed a collaborative study involving expert laboratories from several countries to compare available tests with each other and with VWF:RCo. Eight laboratories from five countries were provided with blinded samples from normal healthy individuals and well-characterized clinical cases. Laboratories measured VWF activity using all tests available to them; data from six laboratories, not affected by thawing during transportation, are included in this study. Results All tests correlated well with VWF:RCo activity (r-values ranged from 0.963 to 0.989). Slightly steeper regression lines for VWF:Ab and VWF:GPIbM were clinically insignificant. The new assays showed improved performance characteristics. Of the commercially available assays, the VWF:GPIbR using the AcuStar system was the most sensitive and could reliably detect VWF activity below 1 IU dL-1 . The lower limit of the measuring interval for the VWF:GPIbM and the VWF:GPIbR assays was in the 3-4 and 3-6 IU dL-1 range, respectively. Inter-laboratory variation was also improved for most new assays. Conclusion All VWF activity assays correlated well with each other and the VWF:RCo assay. The slight differences in characteristics found in the COMPASS-VWF study will assist the VWF community in interpreting and comparing activity results.
RESUMEN
Essentials Two candidate International Standards for thromboplastin (coded RBT/16 and rTF/16) are proposed. International Sensitivity Index (ISI) of proposed standards was assessed in a 20-centre study. The mean ISI for RBT/16 was 1.21 with a between-centre coefficient of variation of 4.6%. The mean ISI for rTF/16 was 1.11 with a between-centre coefficient of variation of 5.7%. SUMMARY: Background The availability of International Standards for thromboplastin is essential for the calibration of routine reagents and hence the calculation of the International Normalized Ratio (INR). Stocks of the current Fourth International Standards are running low. Candidate replacement materials have been prepared. This article describes the calibration of the proposed Fifth International Standards for thromboplastin, rabbit, plain (coded RBT/16) and for thromboplastin, recombinant, human, plain (coded rTF/16). Methods An international collaborative study was carried out for the assignment of International Sensitivity Indexes (ISIs) to the candidate materials, according to the World Health Organization (WHO) guidelines for thromboplastins and plasma used to control oral anticoagulant therapy with vitamin K antagonists. Results Results were obtained from 20 laboratories. In several cases, deviations from the ISI calibration model were observed, but the average INR deviation attributabled to the model was not greater than 10%. Only valid ISI assessments were used to calculate the mean ISI for each candidate. The mean ISI for RBT/16 was 1.21 (between-laboratory coefficient of variation [CV]: 4.6%), and the mean ISI for rTF/16 was 1.11 (between-laboratory CV: 5.7%). Conclusions The between-laboratory variation of the ISI for candidate material RBT/16 was similar to that of the Fourth International Standard (RBT/05), and the between-laboratory variation of the ISI for candidate material rTF/16 was slightly higher than that of the Fourth International Standard (rTF/09). The candidate materials have been accepted by WHO as the Fifth International Standards for thromboplastin, rabbit plain, and thromboplastin, recombinant, human, plain.