Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Comput Biol ; 14(3): e1005995, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29518076

RESUMEN

Passive acoustic sensing has emerged as a powerful tool for quantifying anthropogenic impacts on biodiversity, especially for echolocating bat species. To better assess bat population trends there is a critical need for accurate, reliable, and open source tools that allow the detection and classification of bat calls in large collections of audio recordings. The majority of existing tools are commercial or have focused on the species classification task, neglecting the important problem of first localizing echolocation calls in audio which is particularly problematic in noisy recordings. We developed a convolutional neural network based open-source pipeline for detecting ultrasonic, full-spectrum, search-phase calls produced by echolocating bats. Our deep learning algorithms were trained on full-spectrum ultrasonic audio collected along road-transects across Europe and labelled by citizen scientists from www.batdetective.org. When compared to other existing algorithms and commercial systems, we show significantly higher detection performance of search-phase echolocation calls with our test sets. As an example application, we ran our detection pipeline on bat monitoring data collected over five years from Jersey (UK), and compared results to a widely-used commercial system. Our detection pipeline can be used for the automatic detection and monitoring of bat populations, and further facilitates their use as indicator species on a large scale. Our proposed pipeline makes only a small number of bat specific design decisions, and with appropriate training data it could be applied to detecting other species in audio. A crucial novelty of our work is showing that with careful, non-trivial, design and implementation considerations, state-of-the-art deep learning methods can be used for accurate and efficient monitoring in audio.


Asunto(s)
Quirópteros/fisiología , Ecolocación/fisiología , Monitoreo del Ambiente/métodos , Aprendizaje Automático , Procesamiento de Señales Asistido por Computador , Algoritmos , Animales , Quirópteros/clasificación , Biología Computacional , Ecolocación/clasificación , Especies en Peligro de Extinción , Redes Neurales de la Computación , Zoología
2.
Mol Ecol ; 27(3): 815-825, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29290102

RESUMEN

The interaction between agricultural production and wildlife can shape, and even condition, the functioning of both systems. In this study, we i) explored the degree to which a widespread European bat, namely the common bent-wing bat Miniopterus schreibersii, consumes crop-damaging insects at a continental scale, and ii) tested whether its dietary niche is shaped by the extension and type of agricultural fields. We employed a dual-primer DNA metabarcoding approach to characterize arthropod 16S and COI DNA sequences within bat faecal pellets collected across 16 Southern European localities, to first characterize the bat species' dietary niche, second measure the incidence of agricultural pests across their ranges and third assess whether geographical dietary variation responds to climatic, landscape diversity, agriculture type and vegetation productivity factors. We detected 12 arthropod orders, among which lepidopterans were predominant. We identified >200 species, 44 of which are known to cause agricultural damage. Pest species were detected at all but one sampling site and in 94% of the analysed samples. Furthermore, the dietary diversity of M. schreibersii exhibited a negative linear relation with the area of intensive agricultural fields, thus suggesting crops restrict the dietary niche of bats to prey taxa associated with agricultural production within their foraging range. Overall, our results imply that M. schreibersii might be a valuable asset for biological pest suppression in a variety of agricultural productions and highlight the dynamic interplay between wildlife and agricultural systems.


Asunto(s)
Agricultura , Artrópodos/fisiología , Quirópteros/fisiología , Código de Barras del ADN Taxonómico , Ecosistema , Metagenómica , Conducta Predatoria/fisiología , Animales , Dieta , Europa (Continente) , Geografía , Especificidad de la Especie
3.
Arch Virol ; 163(3): 671-678, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29247338

RESUMEN

Circular replication-associated protein encoding single-stranded DNA (CRESS DNA) viruses are increasingly recognized worldwide in a variety of samples. Representative members include well-described veterinary pathogens with worldwide distribution, such as porcine circoviruses or beak and feather disease virus. In addition, numerous novel viruses belonging to the family Circoviridae with unverified pathogenic roles have been discovered in different human samples. Viruses of the family Genomoviridae have also been described as being highly abundant in different faecal and environmental samples, with case reports showing them to be suspected pathogens in human infections. In order to investigate the genetic diversity of these viruses in European bat populations, we tested guano samples from Georgia, Hungary, Romania, Serbia and Ukraine. This resulted in the detection of six novel members of the family Circoviridae and two novel members of the family Genomoviridae. Interestingly, a gemini-like virus, namely niminivirus, which was originally found in raw sewage samples in Nigeria, was also detected in our samples. We analyzed the nucleotide composition of members of the family Circoviridae to determine the possible host origins of these viruses. This study provides the first dataset on CRESS DNA viruses of European bats, and members of several novel viral species were discovered.


Asunto(s)
Quirópteros/virología , Circoviridae/genética , Infecciones por Virus ADN/epidemiología , Virus ADN/genética , ADN de Cadena Simple/genética , ADN Viral/genética , Genoma Viral , Secuencia de Aminoácidos , Animales , Circoviridae/clasificación , Circoviridae/aislamiento & purificación , Infecciones por Virus ADN/transmisión , Infecciones por Virus ADN/virología , Virus ADN/clasificación , Virus ADN/aislamiento & purificación , Europa Oriental/epidemiología , Heces/virología , Georgia (República)/epidemiología , Humanos , Filogenia , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA