Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(8): e18302, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38652115

RESUMEN

The evolving landscape of personalized medicine necessitates a shift from traditional therapeutic interventions towards precision-driven approaches. Embracing this paradigm, our research probes the therapeutic efficacy of the aqueous crude extract (ACE) of Calocybe indica in cervical cancer treatment, merging botanical insights with advanced molecular research. We observed that ACE exerts significant influences on nuclear morphology and cell cycle modulation, further inducing early apoptosis and showcasing prebiotic attributes. Characterization of ACE have identified several phytochemicals including significant presence of octadeconoic acid. Simultaneously, utilizing advanced Molecular Dynamics (MD) simulations, we deciphered the intricate molecular interactions between Vascular Endothelial Growth Factor (VEGF) and Octadecanoic acid to establish C.indica's role as an anticancer agent. Our study delineates Octadecanoic acid's potential as a robust binding partner for VEGF, with comprehensive analyses from RMSD and RMSF profiles highlighting the stability and adaptability of the protein-ligand interactions. Further in-depth thermodynamic explorations via MM-GBSA calculations reveal the binding landscape of the VEGF-Octadecanoic acid complex. Emerging therapeutic innovations, encompassing proteolysis-targeting chimeras (PROTACs) and avant-garde nanocarriers, are discussed in the context of their synergy with compounds like Calocybe indica P&C. This convergence underscores the profound therapeutic potential awaiting clinical exploration. This study offers a holistic perspective on the promising therapeutic avenues facilitated by C. indica against cervical cancer, intricately woven with advanced molecular interactions and the prospective integration of precision therapeutics in modern oncology.


Asunto(s)
Simulación de Dinámica Molecular , Extractos Vegetales , Neoplasias del Cuello Uterino , Factor A de Crecimiento Endotelial Vascular , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Femenino , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Medicina de Precisión/métodos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Unión Proteica , Simulación del Acoplamiento Molecular
2.
J Cell Mol Med ; 28(9): e18263, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685671

RESUMEN

In the quest for effective lung cancer treatments, the potential of 3,6-diaminoacridine-9-carbonitrile (DAC) has emerged as a game changer. While DAC's efficacy against glioblastoma is well documented, its role in combating lung cancer has remained largely untapped. This study focuses on CTX-1, exploring its interaction with the pivotal EGFR-TKD protein, a crucial target in lung cancer therapeutics. A meticulous molecular docking analysis revealed that CTX-1 exhibits a noteworthy binding affinity of -7.9 kcal/mol, challenging Erlotinib, a conventional lung cancer medication, which displayed a binding affinity of -7.3 kcal/mol. For a deeper understanding of CTX-1's molecular mechanics, this study employed rigorous 100-ns molecular dynamics simulations, demonstrating CTX-1's remarkable stability in comparison with erlotinib. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) method further corroborated these results, with CTX-1 showing a free binding energy of -105.976 ± 1.916 kJ/mol. The true prowess of CTX-1 was tested against diverse lung cancer cell lines, including A549, Hop-62 and H-1299. CTX-1 not only significantly outperformed erlotinib in anticancer activity but also exhibited a spectrum of therapeutic effects. It effectively diminished cancer cell viability, induced DNA damage, halted cell cycle progression, generated reactive oxygen species (ROS), impaired mitochondrial transmembrane potential, instigated apoptosis and successfully inhibited EGFR-TKD. This study not only underscores the potential of CTX-1 a formidable contender in lung cancer treatment but also marks a paradigm shift in oncological therapeutics, offering new horizons in the fight against this formidable disease.


Asunto(s)
Receptores ErbB , Neoplasias Pulmonares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Unión Proteica , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos
3.
IUBMB Life ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600696

RESUMEN

Superoxide dismutase (SOD) is a crucial enzyme responsible for the redox homeostasis inside the cell. As a part of the antioxidant defense system, it plays a pivotal role in the dismutation of the superoxide radicals ( O 2 - $$ {{\mathrm{O}}_2}^{-} $$ ) generated mainly by the oxidative phosphorylation, which would otherwise bring out the redox dysregulation, leading to higher reactive oxygen species (ROS) generation and, ultimately, cell transformation, and malignancy. Several studies have shown the involvement of ROS in a wide range of human cancers. As SOD is the key enzyme in regulating ROS, any change, such as a transcriptional change, epigenetic remodeling, functional alteration, and so forth, either activates the proto-oncogenes or aberrant signaling cascades, which results in cancer. Interestingly, in some cases, SODs act as tumor promoters instead of suppressors. Furthermore, SODs have also been known to switch their role during tumor progression. In this review, we have tried to give a comprehensive account of SODs multifactorial role in various human cancers so that SODs-based therapeutic strategies could be made to thwart cancers.

4.
Cell Biochem Funct ; 42(1): e3911, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269517

RESUMEN

Curcumin is a natural compound derived from turmeric and can target malignant tumor molecules involved in cancer propagation. It has potent antioxidant activity, but its effectiveness is limited due to poor absorption and rapid elimination from the body. Various curcumin derivatives have also shown anticancer potential in in-vitro and in-vivo models. Curcumin can target multiple signaling pathways involved in cancer development/progression or induce cancer cell death through apoptosis. In addition, curcumin and its derivatives could also enhance the effectiveness of conventional chemotherapy, radiation therapy and reduce their associated side effects. Lately, nanoparticle-based delivery systems are being developed/explored to overcome the challenges associated with curcumin's delivery, increasing its overall efficacy. The use of an imaging system to track these formulations could also give beneficial information about the bioavailability and distribution of the nano-curcumin complex. In conclusion, curcumin holds significant promise in the fight against cancer, especially in its nanoform, and could provide precise delivery to cancer cells without affecting normal healthy cells.


Asunto(s)
Curcumina , Nanopartículas , Neoplasias , Curcumina/farmacología , Apoptosis , Muerte Celular , Curcuma , Neoplasias/tratamiento farmacológico
5.
Anim Biotechnol ; 35(1): 2290520, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38100547

RESUMEN

NK-lysins from chicken, bovine and human are used as antiviral and antibacterial agents. Gram-negative and gram-positive microorganisms, including Streptococcus pyogenes, Streptococcus mutans, Escherichia coli, Pseudomonas aeruginosa, Klebsiella oxytoca, Shigella sonnei, Klebsiella pneumoniae and Salmonella typhimurium, are susceptible to NK-lysin treatment. The presence of dominant TEM-1 gene was noted in all untreated and treated bacteria, while TOHO-1 gene was absent in all bacteria. Importantly, ß-lactamase genes CTX-M-1, CTX-M-8, and CTX-M-9 genes were detected in untreated bacterial strains; however, none of these were found in any bacterial strains following treatment with NK-lysin peptides. NK-lysin peptides are also used to test for inhibition of infectivity, which ranged from 50 to 90% depending on NK-lysin species. Chicken, bo vine and human NK-lysin peptides are demonstrated herein to have antibacterial activity and antiviral activity against Rotavirus (strain SA-11). On the basis of the comparison between these peptides, potent antiviral activity of bovine NK-lysin against Rotavirus (strain SA-11) is particularly evident, inhibiting infection by up to 90%. However, growth was also significantly inhibited by chicken and human NK-lysin peptides, restricted by 80 and 50%, respectively. This study provided a novel treatment using NK-lysin peptides to inhibit expression of ß-lactamase genes in ß-lactam antibiotic-resistant bacterial infections.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Proteolípidos , Animales , Bovinos , Humanos , Antibacterianos/farmacología , Péptidos/farmacología , Péptidos/química , beta-Lactamasas/farmacología , Escherichia coli , Antivirales
6.
Semin Cancer Biol ; 86(Pt 2): 624-644, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35378274

RESUMEN

Cancer has complex pathophysiology and is one of the primary causes of death and morbidity across the world. Chemotherapy, targeted therapy, radiation therapy, and immunotherapy are examples of traditional cancer treatments. However, these conventional treatment regimens have many drawbacks, such as lack of selectivity, non-targeted cytotoxicity, insufficient drug delivery at tumor sites, and multi-drug resistance, leading to less potent/ineffective cancer treatment. Due to its immanent biophysical property and ability to change in numerous ways, nano-technology has completely transformed how cancer is identified and treated in recent years. Furthermore, nanotechnology providing solutions to these restrictions and boosting cancer therapy. Nanoparticles are widely used nanomedicine platform in cancer immunotherapy due to their excellent physicochemical properties that include size, shape, and surface features, resulting into desirable biological interactions and have been categorized into several types. Nanoparticles can also be potentially be up taken by antigen-presenting cells that promote the cytosolic delivery of encapsulated antigens and adjuvants. Furthermore, nanoparticles can be fine-tuned and functionalized with specific moieties to promote their efficacy in targeting and delivering cargo materials to specific locations. In this review, we summarized and discussed nanoparticles and potential features to be used as carriers in cancer immunotherapy, the current status of different types of nanoparticles, and the importance of their functionalization. Furthermore, we have also discussed nanoparticles-based nanomedicine in targeted delivery of encapsulated cancer immunotherapeutic and their involvement in the modulation of the tumor microenvironment, promoting cancer immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Nanomedicina/métodos , Inmunoterapia/métodos , Nanopartículas/química , Microambiente Tumoral , Neoplasias/tratamiento farmacológico
7.
Cell Biochem Funct ; 41(5): 506-516, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37199325

RESUMEN

Cancer and diabetes mellitus (DM) are among the leading causes of mortality and morbidity in the global arena. Lately, several studies demonstrated that DM could promote cancer. However, the exact mechanism(s) highlighting this association are largely untouched and require comprehensive detailing. In the present review, we aimed to explore and decipher the possible mechanism of DM an cancer association. Hyperglycemia could be a subordinate plausible explanation of carcinogenesis in the diabatic patient. It is well known that high glucose levels may help in cancer proliferation. In addition, chronic inflammation, the other well-known factor of diabetes, could also play a role in carcinogenesis. Moreover, the numerous medicines to treat diabetes either increase or reduce cancer risk. Insulin is one of the potent growth factors that promotes cell propagation and induces cancer directly or via insulin like growth factor-1. On the other hand, hyperinsulinemia leads to an increased activity of growth factor-1 by inhibiting growth factor binding protein-1. To improve cancer prognosis, individuals with diabetes should be screened to discover cancer at an early stage and treated appropriately.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Hiperinsulinismo , Neoplasias , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Neoplasias/tratamiento farmacológico , Insulina/metabolismo , Carcinogénesis , Diabetes Mellitus/tratamiento farmacológico
8.
Cell Biochem Funct ; 41(8): 1174-1187, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37691077

RESUMEN

Cu4 O3 is the least explored copper oxide, and its nanoformulation is anticipated to have important therapeutic potential especially against cancer. The current study aimed to biosynthesize Cu4 O3 nanoparticles (NPs) using an aqueous extract of pumpkin seeds and evaluate its antiproliferative efficacy against cervical cells after screening on different cancer cell lines. The obtained NPs were characterized by different spectroscopic analyses, such as UV-vis, thermogravimetric, energy dispersive X-ray, and Fourier-transform infrared spectroscopy (FTIR). In addition, high-resolution transmission electron microscopes (HR-TEM) were used to observe the morphology of the biosynthesized NPs. The UV-vis spectra showed a peak at around 332 nm, confirming the formation of Cu4 O3 NPs. Moreover, FTIR and TAG analyses identified the presence of various bioactive phytoconstituents that might have worked as capping and stabilization agents and comparative stable NPs at very high temperatures, respectively. The HR-TEM data showed the spherical shape of Cu4 O3 NPs in the range of 100 nm. The Cu4 O3 NPs was screened on three different cancer cell lines viz., Hela, MDA-MB-231, and HCT-116 using cytotoxicity (MTT) reduction assay. In addition, Vero was taken as a normal epithelial (control) cell. The high responsive cell line in terms of least IC50 was further assessed for its anticancer potential using a battery of biological tests, including morphological alterations, induction of apoptosis/ROS generation, regulation of mitochondrial membrane potential (MMP), and suppression of cell adhesion/migration. Vero cells (control) showed a slight decline in % cell viability even at the highest tested Cu4 O3 NPs concentration. However, all the studied cancer cells viz., MDA-MB-231, HCT 116, and HeLa cells showed a dose-dependent decline in cell viability after the treatment with Cu4 O3 NPs with a calculated IC50 value of 10, 11, and 7.2 µg/mL, respectively. Based on the above data, Hela cells were chosen for further studies, that showed induction of apoptosis from 3.5 to 9-folds by three different staining techniques acridine orange/ethidium bromide (AO/EB), 4',6-diamidino-2-phenylindole (DAPI), and propidium iodide (PI). The enhanced production of reactive oxygen species (>3.5-fold), modulation in MMP, and suppression of cell adhesion/migration were observed in the cells treated with Cu4 O3 NPs. The current study obtained the significant antiproliferative potential of Cu4 O3 NPs against the cervical cancer cell line, which needs to be confirmed further in a suitable in vivo model. Based on our results, we also recommend the green-based, eco-friendly, and cost-effective alternative method for synthesizing novel nanoformulation.


Asunto(s)
Nanopartículas del Metal , Neoplasias del Cuello Uterino , Animales , Femenino , Chlorocebus aethiops , Humanos , Células HeLa , Neoplasias del Cuello Uterino/tratamiento farmacológico , Células Vero , Cobre/farmacología , Nanopartículas del Metal/química , Detección Precoz del Cáncer , Extractos Vegetales/química
9.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37047624

RESUMEN

Cancer development is associated with the deregulation of various cell signaling pathways brought on by certain genetic and epigenetic alterations. Therefore, novel therapeutic strategies have been developed to target those pathways. The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) (PI3K/Akt/mTOR) pathway is one major deregulated pathway in various types of cancer. Several anticancer drug candidates are currently being investigated in preclinical and/or clinical studies to target this pathway. Natural bioactive compounds provide an excellent source for anticancer drug development. Curcumin and plumbagin are two potential anticancer compounds that have been shown to target the PI3K/Akt/mTOR pathway individually. However, their combinatorial effect on cancer cells is still unknown. This study aims to investigate the synergistic effect of these two compounds on the PI3K/Akt/mTOR pathway by employing a sequential molecular docking and molecular dynamics (MD) analysis. An increase in binding affinity and a decrease in inhibition constant have been observed when curcumin and plumbagin were subjected to sequential docking against the key proteins PI3K, Akt, and mTOR. The MD simulations and molecular mechanics combined with generalized Born surface area (MM-GBSA) analyses validated the target proteins' more stable conformation when interacting with the curcumin and plumbagin combination. This indicates the synergistic role of curcumin and plumbagin against cancer cells and the possible dose advantage when used in combination. The findings of this study pave the way for further investigation of their combinatorial effect on cancer cells in vitro and in vivo models.


Asunto(s)
Curcumina , Neoplasias , Humanos , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Curcumina/farmacología , Simulación del Acoplamiento Molecular , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias/tratamiento farmacológico
10.
Toxicol Mech Methods ; 33(8): 675-687, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37403423

RESUMEN

Cadmium (Cd) is one of the most hazardous metals to the environment and human health. Neurotoxicity is of the most serious hazards caused by Cd. Mirtazapine (MZP) is a central presynaptic α2 receptor antagonist used effectively in treating several neurological disorders. This study investigated the anti-inflammatory and antioxidant activity of MZP against Cd-induced neurotoxicity. In this study, rats were randomly divided into five groups: control, MZP (30 mg/kg), Cd (6.5 mg/kg/day; i.p), Cd + MZP (15 mg/kg), and Cd + MZP (30 mg/kg). Histopathological examination, oxidative stress biomarkers, inflammatory cytokines, and the impact of Nrf2 and NF-κB/TLR4 signals were assessed in our study. Compared to Cd control rats, MZP attenuated histological abrasions in the cerebral cortex and CA1 and CA3 regions of the hippocampus as well as the dentate gyrus. MZP attenuated oxidative injury by upregulating Nrf2. In addition, MZP suppressed the inflammatory response by decreasing TNF-α, IL-1ß, and IL-6 mediated by downregulating TLR4 and NF-κB. It is noteworthy that MZP's neuroprotective actions were dose-dependent. Collectively, MZP is a promising therapeutic strategy for attenuating Cd-induced neurotoxicity by regulating Nrf2, and NF-κB/TLR4 signals, pending further study in clinical settings.


Asunto(s)
Cadmio , FN-kappa B , Humanos , Ratas , Animales , FN-kappa B/metabolismo , Cadmio/toxicidad , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Receptor Toll-Like 4/metabolismo , Mirtazapina/uso terapéutico , Mirtazapina/farmacología , Estrés Oxidativo
11.
Semin Cancer Biol ; 69: 129-139, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-31866477

RESUMEN

Nano metal organic frameworks (NMOFs) belong to the group of nanoporous materials. Over the decades, the conducted researches explored the area for the potential applications of NMOFs in areas like biomedical, chemical engineering and materials science. Recently, NMOFs have been explored for their potential use in cancer diagnosis and therapeutics. The excellent physico-chemical features of NMOFs also make them a potential candiadate to facilitate drug design, delivery and storage against cancer cells. In this review, we have explored the characterstic features, synthesis methods, NMOFs based drug delivery, diagnosis and imaging in various cancer types. In addition to this, we have also pondered on the stability and toxicological concerns of NMOFs. Despite, a significant research has been done for the potential use of NMOFs in cancer diagonostic and therapeutics, more information regarding the stability, in-vivo clearance, toxicology, and pharmacokinetics is still needed to ehnace the use of NMOFs in cancer diagonostic and therapeutics.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos , Estructuras Metalorgánicas/administración & dosificación , Nanomedicina , Nanopartículas/administración & dosificación , Neoplasias/tratamiento farmacológico , Animales , Humanos , Estructuras Metalorgánicas/química , Nanopartículas/química , Neoplasias/patología
12.
Mol Biol Rep ; 49(3): 2265-2272, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35023009

RESUMEN

BACKGROUND: Cardiovascular disease (CVD) is the leading cause of death globally, despite the recent advancements in clinical research. Early diagnosis of CVD and prevention of future complications are important for the management of CVD. In the present study, we determined the genotypic linkage of interleukin-6 (IL-6) promoters with the clinical, biochemical, and inflammatory markers of CVD in the Saudi population. MATERIALS AND METHODS: The study consisted of 89 patients (male and female) with CVD who were admitted at the King Abdulaziz university hospital, Jeddah, Saudi Arabia. The biochemical parameters were evaluated using an automated chemistry analyzer, and inflammatory markers were measured using specific enzyme-linked immunosorbent assay (ELISA) kits. For genotypic analysis, Sanger sequencing was performed. We observed a statistically significant association (p < 0.05) between GG (66.29%), GC (30.34%), and CC (3.37%) genotypes at the - 174G/C (rs1800795) hotspot and neopterin levels. However, the genotypes at the - 572G/C (rs1800796) hotspot did not show any association with age, gender, obesity, diabetes, hypertension, dyslipidemia, smoking, and coronary artery status. In addition, no significant association was observed with biochemical and inflammatory markers, namely fasting blood sugar, glycated hemoglobin A1c, creatinine, total cholesterol, triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, IL-6, and C-reactive protein. The comparison between different possible genotypic groups and CVD risk factors showed a statistically significant (p < 0.05) association between the male gender and HDL with GG, rs1800795 group vs. GC, rs1800796 group. Similarly, neopterin level was also found to be significantly (p < 0.05) associated with the genotypes GC, rs1800795, and GG, rs1800796. Additionally, the male gender (p < 0.01), age (p < 0.05), serum creatinine (p < 0.001), and neopterin (p < 0.05) were found to be significantly associated with GG, rs1800795 + GG, rs1800796, GC, rs1800795 + GC, and rs1800796 GC. CONCLUSION: The direct association of neopterin level with IL-6 promoter polymorphism at - 174G/C (rs1800795) hotspot indicated the role of inflammation in CVD pathogenesis in the Saudi population.


Asunto(s)
Enfermedades Cardiovasculares , Interleucina-6/genética , Enfermedades Cardiovasculares/genética , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas , Factores de Riesgo
13.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36232989

RESUMEN

Brain metastasis is one of the major reasons of death in breast cancer (BC) patients, significantly affecting the quality of life, physical activity, and interdependence on several individuals. There is no clear evidence in scientific literature that depicts an exact mechanism relating to brain metastasis in BC patients. The tendency to develop breast cancer brain metastases (BCBMs) differs by the BC subtype, varying from almost half with triple-negative breast cancer (TNBC) (HER2- ER- PR-), one-third with HER2+ (human epidermal growth factor receptor 2-positive, and around one-tenth with luminal subclass (ER+ (estrogen positive) or PR+ (progesterone positive)) breast cancer. This review focuses on the molecular pathways as possible therapeutic targets of BCBMs and their potent drugs under different stages of clinical trial. In view of increased numbers of clinical trials and systemic studies, the scientific community is hopeful of unraveling the underlying mechanisms of BCBMs that will help in designing an effective treatment regimen with multiple molecular targets.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias de la Mama/metabolismo , Estrógenos , Femenino , Humanos , Progesterona , Calidad de Vida , Receptor ErbB-2/metabolismo , Receptores de Progesterona/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
14.
Molecules ; 27(15)2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35956989

RESUMEN

Cancer cells change their glucose and glutamine (GLU) metabolism to obtain the energy required to continue growing. Glutaminase (GLS) plays a crucial role in promoting cell metabolism for cancer cell growth; targeting GLU metabolism by inhibiting GLS has attracted interest as a potential cancer management strategy. Herein, we employed a sequential screening of traditional Chinese medicine (TCM) database followed by drug-likeness and molecular dynamics simulations against the active site of GLS. We report 12 potent compounds after screening the TCM database against GLS, followed by a drug-likeness filter with Lipinski and Veber rule criteria. Among them, ZINC03978829 and ZINC32296657 were found to have higher binding energy (BE) values than the control compound 6-Diazo-5-Oxo-L-Norleucine, with BEs of -9.3 and -9.7 kcal/mol, respectively, compared to the BE of 6-Diazo-5-Oxo-L-Norleucine (-4.7 kcal/mol) with GLS. Molecular dynamics simulations were used to evaluate the results further, and a 100 ns MD simulation revealed that the hits form stable complexes with GLS and formed 2-5 hydrogen bond interactions. This study indicates that these hits might be employed as GLS inhibitors in the battle against cancer. However, more laboratory tests are a prerequisite to optimize them as GLS inhibitors.


Asunto(s)
Glutaminasa , Neoplasias , Diazooxonorleucina , Detección Precoz del Cáncer , Glutaminasa/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Neoplasias/tratamiento farmacológico , Procesos Neoplásicos
15.
Molecules ; 28(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36615658

RESUMEN

Due to miscommunication, in the original publication there is a discrepancy in the project number and funding institution, located in Funding Information and Acknowledgement [...].

16.
Semin Cancer Biol ; 64: 19-28, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31100322

RESUMEN

Cancer and autoimmune diseases are the two devastating conditions that together constitute a leading health problem worldwide. The rising burden of these disorders in the developing world demands a multifaceted approach to address the challenges it poses. Understanding the root causes and specific molecular mechanisms by which the progression of the diseases takes place is need of the hour. A strong inflammatory background and common developmental pathways, such as activation of immune cells, proliferation, increased cell survival and migration which are controlled by growth factors and inflammatory cytokines have been considered as the critical culprits in the progression and complications of these disorders. Enzymes are the potential immune modulators which regulate various inflammatory events and can break the circulating immune complexes via macrophages production. In the current manuscript, we have uncovered the possible role of proteolytic enzymes in the pathogenesis and progression of cancer and autoimmune diseases. In the light of the available scientific literature, we advocate in-depth comprehensive studies which will shed light towards the role of proteolytic enzymes in the modulation of inflammatory responses in cancer and autoimmune diseases together.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Autoinmunidad/inmunología , Neoplasias/inmunología , Péptido Hidrolasas/metabolismo , Animales , Enfermedades Autoinmunes/complicaciones , Enfermedades Autoinmunes/enzimología , Enfermedades Autoinmunes/patología , Citocinas/metabolismo , Humanos , Neoplasias/complicaciones , Neoplasias/enzimología , Neoplasias/patología , Péptido Hidrolasas/inmunología
17.
J Cell Biochem ; 2021 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-33817826

RESUMEN

Leishmaniasis is a neglected tropical disease caused by the protozoan parasite Leishmania. It is endemic in more than 89 different countries worldwide. Sterol alpha-14 demethylase (LdSDM), a sterol biosynthetic pathway enzyme in Leishmania donovani, plays an essential role in parasite survival and proliferation. Here, we used a drug repurposing approach to virtually screen the library of the Food and Drug Administration (FDA)-approved drugs against LdSDM to identify the potential lead-drug against leishmaniasis. Zafirlukast and avodart showed the best binding with LdSDM. Zafirlukast was tested for in vitro antileishmanial assay, but no significant effect on L. donovani promastigotes was observed even at higher concentrations. On the other hand, avodart profoundly inhibited parasite growth at relatively lower concentrations. Further, avodart showed a significant decrease in the number of intra-macrophagic amastigotes. Avodart-induced reactive oxygen species (ROS) in the parasites in a dose-dependent manner. ROS induced by avodart led to the induction of apoptosis-like cell death in the parasites as observed through annexin V/PI staining. Here, for the first time, we reported the antileishmanial activity and its possible mechanism of action of FDA-approved drug, avodart, establishing a nice example of the drug-repurposing approach. Our study suggested the possible use of avodart as an effective antileishmanial agent after further detailed validations.

18.
J Cell Biochem ; 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33955051

RESUMEN

Leishmaniasis is a neglected tropical disease caused by trypanosomatid parasite belonging to the genera Leishmania. Leishmaniasis is transmitted from one human to other through the bite of sandflies. It is endemic in around 98 countries including tropical and subtropical regions of Asia, Africa, Southern America, and the Mediterranean region. Sterol C-24 methyltransferase (LdSMT) of Leishmania donovani (L. donovani) mediates the transfer of CH3-group from S-adenosyl methionine to C-24 position of sterol side chain which makes the ergosterol different from cholesterol. Absence of ortholog in human made it potential druggable target. Here, we performed virtual screening of library of natural compounds against LdSMT to identify the potential inhibitor for it and to fight leishmaniasis. Gigantol, flavan-3-ol, and parthenolide showed the best binding affinity towards LdSMT. Further, based on absorption, distribution, metabolism, and excretion properties and biological activity prediction, gigantol showed the best lead-likeness and drug-likeness properties. Therefore, we further elucidated its antileishmanial properties. We found that gigantol inhibited the growth and proliferation of promastigotes as well as intra-macrophagic amastigotes. Gigantol exerted its antileishmanial action through the induction of reactive oxygen species in dose-dependent manner. Our study, suggested the possible use of gigantol as antileishmanial drug after further validations to overcome leishmaniasis.

19.
Biol Chem ; 402(6): 749-757, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33951765

RESUMEN

Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality around the world. Early diagnosis of CVD could provide the opportunity for sensible management and better clinical outcome along with the prevention of further progression of the disease. In the current study, we used an untargeted metabolomic approach to identify possible metabolite(s) that associate well with the CVD and could serve either as therapeutic target or disease-associated metabolite. We identified 26 rationally adjusted unique metabolites that were differentially present in the serum of CVD patients compared with healthy individuals, among them 15 were found to be statistically significant. Out of these metabolites, we identified some novel metabolites like UDP-l-rhamnose and N1-acetylspermidine that have not been reported to be linked with CVD directly. Further, we also found that some metabolites like ethanolamide, solanidine, dimethylarginine, N-acetyl-l-tyrosine, can act as a discriminator of CVD. Metabolites integrating pathway enrichment analysis showed enrichment of various important metabolic pathways like histidine metabolism, methyl histidine metabolism, carnitine synthesis, along with arginine and proline metabolism in CVD patients. Our study provides a great opportunity to understand the pathophysiological role and impact of the identified unique metabolites and can be extrapolated as specific CVD specific metabolites.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Metabolómica , Adulto , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad
20.
Mol Biol Rep ; 48(10): 6695-6702, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34431037

RESUMEN

BACKGROUND: Complex coronary atherosclerotic lesions often lead to coronary occlusion, clinically represented as a single-vessel disease (SVD) and multivessel disease (MVD). These occlusions could hinder the blood flow in coronary arteries that affects appropriate management of the CVD. The current study intended to genotype interleukin (IL)-18 promoter's hotspots (rs187238, rs1946518, and rs1946519) and their possible association with coronary artery stenosis. MATERIAL AND METHODS: The IL-18 promoter genotyping was performed by the Sanger method along with the examination of biochemical parameters in 125 study subjects categorized into three groups, viz. controls, SVD and MVD. RESULTS: The current study observed a significant association of diabetes, hypertension, and dyslipidemia between the studied group's viz. healthy controls, SVD, and MVD. Fasting blood sugar and glycosylated hemoglobin (HBA1C) were also significantly enhanced from 4.82 vs. 8.01 and 4.33 vs. 8.27, in SVD, and MVD respectively. Despite the visible differences in the pattern of genotypic and allelic expressions, the current study did not show any statistically significant correlation with IL-18 promoter polymorphism at its hotspots with controls, SVD, and MVD subjects. The only exception of the above results was the distribution of allelic frequency at the rs1946519 hotspot, where a significant change (P < 0.05) was observed. CONCLUSION: This study is of additional value to our previous reports, revealing the pattern of genotypes and allelic frequency of IL-18 promoters in a small cohort of Saudi ethnicity. Further investigations on larger sample size are recommended to envisage the presence of functional mutations in the IL-18 gene that could establish or rule out the possible association of IL-18 polymorphism with SVD and MVD.


Asunto(s)
Estenosis Coronaria/genética , Predisposición Genética a la Enfermedad , Técnicas de Genotipaje , Interleucina-18/genética , Regiones Promotoras Genéticas/genética , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes/genética , Estudios de Asociación Genética , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Arabia Saudita
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA