Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biochem Biophys Res Commun ; 636(Pt 1): 178-183, 2022 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-36334442

RESUMEN

Inhibition of osteoclast differentiation is a promising approach for the treatment of osteoporosis and rheumatoid arthritis. Receptor activator of nuclear factor kappa B (NF-κB) (RANK), which is an essential molecule for osteoclast differentiation, interacts with tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) to transduce downstream signals. Both RANK and TRAF6 have homo-trimeric structures, forming a multivalent interaction between the Pro-X-Glu-X-X-(aromatic/acidic) motif of RANK and the C-terminal domain of TRAF6 (TRAF-C), that markedly increases the binding affinity. Here, we designed a tetravalent peptide, RANK-tet, containing the TRAF-C-binding motif of RANK and found that RANK-tet binds to TRAF-C with high affinity. In contrast, a monomeric form of RANK-tet (RANK-mono) with the same TRAF-C-binding motif did not bind to TRAF-C, clearly indicating the multivalent interaction is strictly required for the high-affinity binding to TRAF-C. RANK-tet did not bind to a series of TRAF-C-mutants with an amino acid substitution in the RANK-binding region, indicating that RANK-tet specifically targets the RANK-binding region of TRAF-C. A cell-permeable form of RANK-tet that has poly-Arg residues at each C-terminal of the TRAF-C-binding motif efficiently inhibited the RANK ligand (RANKL)-induced differentiation of bone marrow cells to osteoclasts. Thus, this compound can be an effective anti-osteoclastogenic agent.


Asunto(s)
Ligando RANK , Factor 6 Asociado a Receptor de TNF , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Ligando RANK/metabolismo , Osteoclastos/metabolismo , FN-kappa B/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Diferenciación Celular/fisiología
2.
Biochem Biophys Res Commun ; 498(4): 967-974, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29548825

RESUMEN

Bone mass is determined by coordinated acts of osteoblasts and osteoclasts, which control bone formation and resorption, respectively. Osteoclasts are multinucleated, macrophage/monocyte lineage cells from bone marrow. The Dok-family adaptors Dok-1, Dok-2 and Dok-3 are expressed in the macrophage/monocyte lineage and negatively regulate many signaling pathways, implying roles in osteoclastogenesis. Indeed, mice lacking Dok-1 and Dok-2, the closest homologues with redundant functions, develop osteopenia with increased osteoclast counts compared to the wild-type controls. Here, we demonstrate that Dok-3 knockout (KO) mice also develop osteopenia. However, Dok-3 KO, but not Dok-1/-2 double-KO (DKO), mice develop larger osteoclasts within the normal cell-count range, suggesting a distinctive role for Dok-3. Indeed, Dok-3 KO, but not Dok-1/-2 DKO, bone marrow-derived cells (BMDCs) generated larger osteoclasts with more nuclei due to augmented cell-to-cell fusion in vitro. In addition, while Dok-1/-2 DKO BMDCs generated more osteoclasts, Dok-1/-2/-3 triple-KO (TKO) BMDCs generated osteoclasts increased in both number and size. Furthermore, Dok-1/-2/-3 TKO mice showed the combined effects of Dok-3 and Dok-1/-2 deficiency: severe osteopenia with more and larger osteoclasts. Together, our findings demonstrate that Dok-3 and Dok-1/-2 play distinctive but cooperative roles in osteoclastogenesis and protect mice from osteopenia, providing physiological and pathophysiological insight into bone homeostasis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Enfermedades Óseas Metabólicas/prevención & control , Proteínas de Unión al ADN/fisiología , Osteoclastos/citología , Osteogénesis , Fosfoproteínas/fisiología , Proteínas de Unión al ARN/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células de la Médula Ósea/citología , Recuento de Células , Técnicas de Cultivo de Célula , Fusión Celular , Proliferación Celular , Tamaño de la Célula , Proteínas de Unión al ADN/genética , Ratones , Ratones Noqueados , Fosfoproteínas/genética , Proteínas de Unión al ARN/genética
3.
Genes Cells ; 17(12): 971-81, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23126497

RESUMEN

Receptor activator of nuclear factor κB (RANK) is a member of the tumor necrosis factor receptor superfamily (TNFRSF) and triggers osteoclastogenesis by inducing the expression of NFATc1 through the activation of the NF-κB and MAPK pathways. Cellular inhibitors of apoptosis proteins 1 and 2 (cIAP1/2), which are ubiquitin E3 ligases, are involved in the activation of the NF-κB and MAPK pathways by various members of the TNFRSF. However, the involvement of cIAP1/2 in RANK signaling has remained largely unknown. In this study, we reveal the involvement of cIAP1/2 in RANK ligand (RANKL)-induced osteoclastogenesis. The over-expression of cIAP1 or cIAP2 in the mouse monocytic cell line Raw264.7 resulted in the significant suppression of RANKL-induced NFATc1 mRNA expression and osteoclastogenesis, whereas the activation of the NF-κB and MAPK pathways was barely changed by these over-expressions. The depletion of endogenous cIAP1/2 by their specific inhibitor MV1 or their siRNA-mediated knockdown resulted in enhanced RANKL-induced NFATc1 expression and osteoclastogenesis without affecting the activation of the NF-κB and MAPK pathways. In combination, these results indicate that cIAP1/2 negatively regulate osteoclastogenesis by inhibiting NFATc1 mRNA expression in a manner that is distinct from the previously identified functions of cIAP1/2.


Asunto(s)
Diferenciación Celular , Proteínas Inhibidoras de la Apoptosis/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Monocitos/metabolismo , FN-kappa B/metabolismo , Factores de Transcripción NFATC/genética , Osteoclastos/citología , ARN Mensajero/biosíntesis , ARN Interferente Pequeño
4.
J Bone Miner Metab ; 30(5): 543-53, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22543819

RESUMEN

Pathological bone resorption by osteoclasts is primarily treated with bisphosphonates. Because the administration of bisphosphonates is associated with a risk for multiple adverse symptoms, a precise understanding of the mechanisms underlying osteoclastogenesis is required to develop drugs with minimal side-effects. Osteoclastogenesis depends on receptor activator of nuclear factor kappa B (RANK) signaling mediated by TRAF6. We previously identified a highly conserved domain in the cytoplasmic tail of RANK (HCR), which did not share any significant homology with other proteins and was essential for osteoclastogenesis. HCR acts as a platform for the formation of Gab2- and Vav3-containing signal complexes, and ectopic expression of the HCR peptide inhibits osteoclastogenesis. Here, we uncover the mechanisms of HCR peptide-mediated inhibition of osteoclastogenesis. Expression of either the amino- or carboxyl-terminal half of the HCR peptide (N- or C-peptide) independently inhibited RANK signaling prior to cell-cell fusion. In contrast, expression of the GY-peptide, which is a part of the C-peptide, did not significantly affect prefusion RANK signaling, but did inhibit cell-cell fusion to prevent formation of multinucleated mature osteoclasts. Moreover, Gab2, which is involved in RANK signaling by binding TRAF6, bound the C-peptide but not the N-peptide, suggesting that the C- and the N-peptides sequester TRAF6 in a Gab2-dependent and Gab2-independent manner, respectively. In contrast, the GY-peptide did not bind Gab2 but could bind Vav3, which mediates signaling for cell-cell fusion. Collectively, we propose that the HCR peptide inhibits osteoclastogenesis through two modes of action-inhibition of (1) prefusion RANK signaling and (2) cell-cell fusion by blocking TRAF6- and Vav3-mediated signaling, respectively.


Asunto(s)
Citoplasma/metabolismo , Osteoclastos/metabolismo , Péptidos/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Células de la Médula Ósea/metabolismo , Péptido C/genética , Péptido C/metabolismo , Fusión Celular , Citoplasma/genética , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Péptidos/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Proteínas Proto-Oncogénicas c-vav/genética , Proteínas Proto-Oncogénicas c-vav/metabolismo , Receptor Activador del Factor Nuclear kappa-B/genética , Transducción de Señal/genética , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo
5.
Genes Cells ; 14(11): 1331-45, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19845770

RESUMEN

TRAF6 is essential for osteoclastogenesis and for both RANK- and CD40-mediated activation of IKK and MAPKs. RANK, but not CD40, can promote osteoclastogenesis because only RANK induces NFATc1 activation through PLCgamma2-induced Ca(2+) oscillations together with the co-stimulatory signals emanating from immune receptors linked to ITAM-containing adaptors. These previous data suggest that RANK harbors a unique domain that functions in concert with the TRAF6-binding site in osteoclastogenesis. Here we identify such a domain, highly conserved domain in RANK (HCR), which is dispensable for the early phase of RANK and ITAM signaling but is essential for their late-phase signaling, including sustained activation of NF-kappaB and PLCgamma2 leading to NFATc1 activation. HCR recruits an adaptor protein, Gab2, which further associates with PLCgamma2 in the late phase. Formation of the HCR-mediated signaling complex could account for the sustained activation of NF-kappaB and PLCgamma2. The present study identifies HCR as a unique domain that plays a critical role in the long-term linkage between RANK and ITAM signals, providing a molecular basis for therapeutic strategies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diferenciación Celular , Osteoclastos/citología , Fosfolipasa C gamma/metabolismo , Receptor Activador del Factor Nuclear kappa-B/genética , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Antígenos CD40/metabolismo , Secuencia Conservada , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Datos de Secuencia Molecular , Factores de Transcripción NFATC/metabolismo , Estructura Terciaria de Proteína , Alineación de Secuencia , Activación Transcripcional
6.
Commun Biol ; 2: 292, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396572

RESUMEN

Receptor activator of nuclear factor (NF)-κB (RANK) signaling promotes pregnancy-dependent epithelial cell differentiation and expansion for mammary gland development, which requires NF-κB pathway-dependent Cyclin D1 induction and inhibitor of DNA binding 2 (Id2) pathway-dependent anti-apoptotic gene induction. However, the roles of tumor necrosis factor receptor-associated factor 6 (TRAF6) remain unclear despite its requirement in RANK signaling. Here we show that TRAF6 is crucial for both mammary stem cell maintenance and pregnancy-induced epithelial cell expansion. TRAF6 deficiency impairs phosphoinositide 3-kinase (PI3K)/AKT and canonical NF-κB pathways, whereas noncanonical NF-κB signaling remains functional. Therefore, we propose that TRAF6 promotes cell proliferation by activating PI3K/AKT signaling to induce retinoblastoma phosphorylation in concert with noncanonical NF-κB pathway-dependent Cyclin D1 induction. Furthermore, TRAF6 inhibits apoptosis by activating canonical NF-κB signaling to induce anti-apoptotic genes with the Id2 pathway. Therefore, proper orchestration of TRAF6-dependent and -independent RANK signals likely establishes mammary gland formation.


Asunto(s)
Proliferación Celular , Células Epiteliales/metabolismo , Glándulas Mamarias Animales/metabolismo , Células Madre/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/trasplante , Animales , Apoptosis , Línea Celular , Ciclina D1/metabolismo , Femenino , Glándulas Mamarias Animales/crecimiento & desarrollo , Ratones Endogámicos BALB C , Ratones Noqueados , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Embarazo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/deficiencia , Factor 6 Asociado a Receptor de TNF/genética
7.
ChemMedChem ; 12(23): 1935-1941, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-28884970

RESUMEN

Despite various inhibitors targeting the zinc center(s) of enzymes, drugs that target zinc fingers have not been examined in detail. We previously developed a dithiol compound named SN-1 that has an inhibitory effect on the function of zinc finger transcription factors, but its mechanism of action has not yet been elucidated. To establish a general principle for new drugs, the details of the action of SN-1 against a zinc finger protein were examined. As a zinc-finger-containing protein, we focused on TRAF6, which is related to cancer and inflammation. Binding of SN-1 to TRAF6 and its effect on TRAF6 ubiquitination were examined in vitro, and the binding mode was calculated by computational methodology. Furthermore, ubiquitination of TRAF6 and downstream signaling was examined by cell-based experiments. The results show that SN-1 binds to TRAF6, inhibiting its auto-ubiquitination and downstream NF-κB signaling. Docking studies indicate that SN-1 binds directly to the first zinc finger of TRAF6. This binding disrupts the neighboring structure, that is, the RING finger domain, to suppress the ubiquitin ligase activity of TRAF6. Taken together, this study provides a platform for developing new small molecules that target zinc finger proteins.


Asunto(s)
Factor 6 Asociado a Receptor de TNF/antagonistas & inhibidores , Tolueno/análogos & derivados , Sitios de Unión/efectos de los fármacos , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Simulación del Acoplamiento Molecular , Estructura Molecular , Factor 6 Asociado a Receptor de TNF/química , Factor 6 Asociado a Receptor de TNF/metabolismo , Tolueno/química , Tolueno/farmacología , Ubiquitinación/efectos de los fármacos
8.
J Biochem ; 158(6): 485-95, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26115685

RESUMEN

RelB is activated by the non-canonical NF-κB pathway, which is crucial for immunity by establishing lymphoid organogenesis and B-cell and dendritic cell (DC) maturation. To elucidate the mechanism of the RelB-mediated immune cell maturation, a precise understanding of the relationship between cell maturation and RelB expression and activation at the single-cell level is required. Therefore, we generated knock-in mice expressing a fusion protein between RelB and fluorescent protein (RelB-Venus) from the Relb locus. The Relb(Venus/Venus) mice developed without any abnormalities observed in the Relb(-/-) mice, allowing us to monitor RelB-Venus expression and nuclear localization as RelB expression and activation. Relb(Venus/Venus) DC analyses revealed that DCs consist of RelB(-), RelB(low) and RelB(high) populations. The RelB(high) population, which included mature DCs with projections, displayed RelB nuclear localization, whereas RelB in the RelB(low) population was in the cytoplasm. Although both the RelB(low) and RelB(-) populations barely showed projections, MHC II and co-stimulatory molecule expression were higher in the RelB(low) than in the RelB(-) splenic conventional DCs. Taken together, our results identify the RelB(low) population as a possible novel intermediate maturation stage of cDCs and the Relb(Venus/Venus) mice as a useful tool to analyse the dynamic regulation of the non-canonical NF-κB pathway.


Asunto(s)
Células Dendríticas/inmunología , Análisis de la Célula Individual , Factor de Transcripción ReIB/metabolismo , Animales , Linfocitos B/metabolismo , Antígeno B7-2/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Células Dendríticas/citología , Femenino , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Genes MHC Clase II , Genes Reporteros , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Bazo/citología , Timo/citología , Factor de Transcripción ReIB/genética
9.
Nat Commun ; 4: 2299, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23934482

RESUMEN

Patients with triple-negative breast cancer display the highest rates of early relapse of all patients with breast cancer. The basal-like subtype, a subgroup of triple-negative breast cancer, exhibits high levels of constitutively active NF-κB signalling. Here we show that NF-κB activation, induced by inflammatory cytokines or by epigenetically dysregulated NIK expression, cell-autonomously upregulates JAG1 expression in non-cancer stem cells. This upregulation stimulates NOTCH signalling in cancer stem cells in trans, leading to an expansion of cancer stem cell populations. Among breast cancers, the NF-κB-dependent induction of JAG1 and the NOTCH-dependent expansion of the cancer stem cell population occur only in the basal-like subtype. Collectively, our results indicate that NF-κB has a non-cell-autonomous role in regulating cancer stem cell populations by forming intratumoural microenvironments composed of JAG1-expressing non-cancer stem cells with a basal-like subtype.


Asunto(s)
Proteínas de Unión al Calcio/biosíntesis , Carcinoma Basocelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Proteínas de la Membrana/biosíntesis , FN-kappa B/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1 , Proteínas de la Membrana/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Receptores Notch/metabolismo , Proteínas Serrate-Jagged , Transducción de Señal , Quinasa de Factor Nuclear kappa B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA