Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 150(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36458527

RESUMEN

Ramified, polarized protoplasmic astrocytes interact with synapses via perisynaptic astrocyte processes (PAPs) to form tripartite synapses. These astrocyte-synapse interactions mutually regulate their structures and functions. However, molecular mechanisms for tripartite synapse formation remain elusive. We developed an in vitro co-culture system for mouse astrocytes and neurons that induced astrocyte ramifications and PAP formation. Co-cultured neurons were required for astrocyte ramifications in a neuronal activity-dependent manner, and synaptically-released glutamate and activation of astrocytic mGluR5 metabotropic glutamate receptor were likely involved in astrocyte ramifications. Astrocytic Necl2 trans-interacted with axonal Necl3, inducing astrocyte-synapse interactions and astrocyte functional polarization by recruiting EAAT1/2 glutamate transporters and Kir4.1 K+ channel to the PAPs, without affecting astrocyte ramifications. This Necl2/3 trans-interaction increased functional synapse number. Thus, astrocytic Necl2, synaptically-released glutamate and axonal Necl3 cooperatively formed tripartite glutamatergic synapses in vitro. Studies on hippocampal mossy fiber synapses in Necl3 knockout and Necl2/3 double knockout mice confirmed these previously unreported mechanisms for astrocyte-synapse interactions and astrocyte functional polarization in vivo.


Asunto(s)
Ácido Glutámico , Sinapsis , Ratones , Animales , Sinapsis/fisiología , Ratones Noqueados , Ácido Glutámico/farmacología , Astrocitos/fisiología , Fibras Musgosas del Hipocampo
2.
J Biol Chem ; 299(4): 103040, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36803960

RESUMEN

A hippocampal mossy fiber synapse implicated in learning and memory is a complex structure in which a presynaptic bouton attaches to the dendritic trunk by puncta adherentia junctions (PAJs) and wraps multiply branched spines. The postsynaptic densities (PSDs) are localized at the heads of each of these spines and faces to the presynaptic active zones. We previously showed that the scaffolding protein afadin regulates the formation of the PAJs, PSDs, and active zones in the mossy fiber synapse. Afadin has two splice variants: l-afadin and s-afadin. l-Afadin, but not s-afadin, regulates the formation of the PAJs but the roles of s-afadin in synaptogenesis remain unknown. We found here that s-afadin more preferentially bound to MAGUIN (a product of the Cnksr2 gene) than l-afadin in vivo and in vitro. MAGUIN/CNKSR2 is one of the causative genes for nonsyndromic X-linked intellectual disability accompanied by epilepsy and aphasia. Genetic ablation of MAGUIN impaired PSD-95 localization and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor surface accumulation in cultured hippocampal neurons. Our electrophysiological analysis revealed that the postsynaptic response to glutamate, but not its release from the presynapse, was impaired in the MAGUIN-deficient cultured hippocampal neurons. Furthermore, disruption of MAGUIN did not increase the seizure susceptibility to flurothyl, a GABAA receptor antagonist. These results indicate that s-afadin binds to MAGUIN and regulates the PSD-95-dependent cell surface localization of the AMPA receptor and glutamatergic synaptic responses in the hippocampal neurons and that MAGUIN is not involved in the induction of epileptic seizure by flurothyl in our mouse model.


Asunto(s)
Proteínas de Microfilamentos , Receptores AMPA , Sinapsis , Animales , Ratones , Homólogo 4 de la Proteína Discs Large/metabolismo , Flurotilo , Hipocampo/metabolismo , Proteínas de Microfilamentos/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Factores de Transcripción/metabolismo
3.
J Cell Sci ; 135(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34931244

RESUMEN

Maintaining proper epithelial cell density is essential for the survival of multicellular organisms. Although regulation of cell density through apoptosis is well known, its mechanistic details remain elusive. Here, we report the involvement of membrane-anchored phosphatase of regenerating liver (PRL), originally known for its role in cancer malignancy, in this process. In epithelial Madin-Darby canine kidney cells, upon confluence, doxycycline-induced expression of PRL upregulated apoptosis, reducing cell density. This could be circumvented by artificially reducing cell density via stretching the cell-seeded silicon chamber. Moreover, small interfering RNA-mediated knockdown of endogenous PRL blocked apoptosis, leading to greater cell density. Mechanistically, PRL promoted apoptosis by upregulating the translation of E-cadherin and activating the TGF-ß pathway. Morpholino-mediated inhibition of PRL expression in zebrafish embryos caused developmental defects, with reduced apoptosis and increased epithelial cell density during convergent extension. Overall, this study revealed a novel role for PRL in regulating density-dependent apoptosis in vertebrate epithelia. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas Tirosina Fosfatasas , Pez Cebra , Animales , Apoptosis/genética , Recuento de Células , Perros , Humanos , Hígado , Células de Riñón Canino Madin Darby , Proteínas de Neoplasias , Proteínas Tirosina Fosfatasas/genética , Pez Cebra/genética
4.
J Biol Chem ; 298(10): 102426, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030821

RESUMEN

The apical junctional complex (AJC) consists of adherens junctions (AJs) and tight junctions and regulates epithelial integrity and remodeling. However, it is unclear how AJC organization is regulated based on environmental cues. We found here using cultured EpH4 mouse mammary epithelial cells that fetal bovine serum (FBS) in a culture medium showed an activity to promote AJC organization and that FBS showed an activity to promote tight junction formation even in the absence of AJ proteins, such as E-cadherin, αE-catenin, and afadin. Furthermore, we purified the individual factor responsible for these functions from FBS and identified this molecule as lysophosphatidic acid (LPA). In validation experiments, purified LPA elicited the same activity as FBS. In addition, we found that the AJC organization-promoting activity of LPA was mediated through the LPA receptor 1/5 via diacylglycerol-novel PKC and Rho-ROCK pathway activation in a mutually independent, but complementary, manner. We demonstrated that the Rho-ROCK pathway activation-mediated AJC organization was independent of myosin II-induced actomyosin contraction, although this signaling pathway was previously shown to induce myosin II activation. These findings are in contrast to the literature, as previous results suggested an AJC organization-disrupting activity of LPA. The present results indicate that LPA in serum has an AJC organization-promoting activity in a manner dependent on or independent of AJ proteins.


Asunto(s)
Uniones Adherentes , Células Epiteliales , Lisofosfolípidos , Animales , Ratones , Uniones Adherentes/metabolismo , Células Epiteliales/metabolismo , Miosina Tipo II/metabolismo , Uniones Estrechas/metabolismo , Lisofosfolípidos/sangre
5.
Genes Cells ; 27(6): 451-464, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35430770

RESUMEN

Multilayered proliferation in an adherent culture as well as proliferation in a suspension culture is a characteristic feature of cancer cells. We previously showed using T47D human mammary cancer cells that nectin-4, upregulated in many cancer cells, cis-interacts with ErbB2 and its trastuzumab-resistant splice variants, p95-ErbB2 and ErbB2ΔEx16, and enhances DNA synthesis mainly through the PI3K-AKT pathway in an adherent culture. We showed here that only the combination of nectin-4 and p95-ErbB2, but not that of nectin-4 and ErbB2 or that of nectin-4 and ErbB2ΔEx16, cooperatively enhanced multilayered T47D cell proliferation through the Hippo pathway-mediated SOX2 gene expression in an adherent culture. T47D cells expressed the components of the apical junctional complex (AJC) consisting of adherens junctions (AJs) and tight junctions and cell polarity molecules, but not the AJ component afadin. The AJC and apicobasal polarity were disorganized in T47D cells in a monolayer and T47D cells stably expressing both nectin-4 and p95-ErbB2 in multilayers. These results indicate that nectin-4 and p95-ErbB2 play a stimulatory role in multilayered proliferation in an adherent culture.


Asunto(s)
Neoplasias de la Mama , Cadherinas , Moléculas de Adhesión Celular , Fosfatidilinositol 3-Quinasas , Receptor ErbB-2 , Uniones Adherentes/efectos de los fármacos , Neoplasias de la Mama/patología , Cadherinas/metabolismo , Adhesión Celular/efectos de los fármacos , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/farmacología , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Nectinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor ErbB-2/metabolismo , Células Tumorales Cultivadas
6.
Mol Cell Biochem ; 477(1): 167-180, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34633611

RESUMEN

Nectins are immunoglobulin-like cell adhesion molecules constituting a family with four members, nectin-1, nectin-2, nectin-3, and nectin-4. In the brain, nectin-2 as well as nectin-1 and nectin-3 are expressed whereas nectin-4 is hardly expressed. In the nervous system, physiological functions of nectin-1 and nectin-3, such as synapse formation, mossy fiber trajectory regulation, interneurite affinity, contextual fear memory formation, and stress-related mental disorders, have been revealed. Nectin-2 is ubiquitously expressed in non-neuronal tissues and various nectin-2 functions in non-nervous systems have been extensively investigated, but nectin-2 functions in the brain have not been revealed until recently. Recent findings have revealed that nectin-2 is expressed in the specific areas of the brain and plays important roles, such as homeostasis of astrocytes and neurons and the formation of synapses. Moreover, a single nucleotide polymorphism in the human NECTIN2 gene is associated with Alzheimer's disease. We here summarize recent progress in our understanding of nectin-2 functions in the brain.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Nectinas/metabolismo , Neuronas/metabolismo , Polimorfismo de Nucleótido Simple , Enfermedad de Alzheimer/genética , Animales , Humanos , Nectinas/genética
7.
Mol Cell Neurosci ; 115: 103653, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34242750

RESUMEN

Synapses are interneuronal junctions which form neuronal networks and play roles in a variety of functions, including learning and memory. Two types of junctions, synaptic junctions (SJs) and puncta adherentia junctions (PAJs), have been identified. SJs are found at all excitatory and inhibitory synapses whereas PAJs are found at excitatory synapses, but not inhibitory synapses, and particularly well developed at hippocampal mossy fiber giant excitatory synapses. Both SJs and PAJs are mediated by cell adhesion molecules (CAMs). Major CAMs at SJs are neuroligins-neurexins and Nectin-like molecules (Necls)/CADMs/SynCAMs whereas those at PAJs are nectins and cadherins. In addition to synaptic PAJs, extrasynaptic PAJs have been identified at contact sites between neighboring dendrites near synapses and regulate synapse formation. In addition to SJs and PAJs, a new type of cell adhesion apparatus different from these junctional apparatuses has been identified and named nectin/Necl spots. One nectin spot at contact sites between neighboring dendrites at extrasynaptic regions near synapses regulates synapse formation. Several members of nectins and Necls had been identified as viral receptors before finding their physiological functions as CAMs and evidence is accumulating that many nectins and Necls are related to onset and progression of neurological diseases. We review here nectin and Necls in synapse formation and involvement in neurological diseases.


Asunto(s)
Fibras Musgosas del Hipocampo , Sinapsis , Cadherinas/metabolismo , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Nectinas , Sinapsis/metabolismo
8.
Nat Rev Mol Cell Biol ; 9(8): 603-15, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18648374

RESUMEN

Nectins and nectin-like molecules (Necls) are immunoglobulin-like transmembrane cell adhesion molecules that are expressed in various cell types. Homophilic and heterophilic engagements between family members provide cells with molecular tools for intercellular communications. Nectins primarily regulate cell-cell adhesions, whereas Necls are involved in a greater variety of cellular functions. Recent studies have revealed that nectins and NECL-5, in cooperation with integrin alphavbeta3 and platelet-derived growth factor receptor, are crucial for the mechanisms that underlie contact inhibition of cell movement and proliferation; this has important implications for the development and tissue regeneration of multicellular organisms and the phenotypes of cancer cells.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Movimiento Celular/fisiología , Proliferación Celular , Inhibición de Contacto/fisiología , Animales , Adhesión Celular , Humanos , Modelos Biológicos , Nectinas , Receptores Virales/fisiología
9.
Mol Cell Neurosci ; 94: 32-40, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30408526

RESUMEN

The medial habenula (MHb) receives septal inputs and sends efferents to the interpeduncular nucleus and is implicated in stress, depression, memory, and nicotine withdrawal syndrome. We previously showed by immunofluorescence microscopy that the cell adhesion molecule nectin-2α is expressed in the cholinergic neurons in the developing and adult mouse MHbs and localized at the boundary between the adjacent somata of clustered cholinergic neurons where the voltage-gated A-type K+ channel Kv4.2 is localized. We further showed by immunoelectron microscopy that Kv4.2 is localized at the membrane specializations (MSs) whereas nectin-2α is localized mostly outside of these MSs. In addition, we showed that genetic ablation of nectin-2 delays the localization of Kv4.2 at the MSs in the developing MHb. We investigated here how nectin-2α regulates this localization of Kv4.2 at the MSs. In vitro biochemical analysis revealed that nectin-2α interacted with the auxiliary protein of Kv4.2 dipeptidyl aminopeptidase-like protein 6 (DPP6), but not with Kv4.2 or another auxiliary protein Kv channel-interacting protein 1 (KChIP1). Immunofluorescence microscopy analysis showed that DPP6 was colocalized with nectin-2α at the boundary between the adjacent somata of the clustered cholinergic neurons in the developing and adult MHbs. Immunoelectron microscopy analysis on this boundary revealed that DPP6 was localized both at the inside and the outside of the MSs. Genetic ablation of nectin-2 did not affect the localization of DPP6 at the boundary between the adjacent somata of the clustered cholinergic neurons in the developing and adult MHbs. These results indicate that nectin-2α interacts with DPP6 but regulates the localization of Kv4.2 at the MSs in a DPP6-independent manner.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Habénula/metabolismo , Nectinas/metabolismo , Canales de Potasio Shal/metabolismo , Aminopeptidasas/metabolismo , Animales , Membrana Celular/fisiología , Proteínas de Interacción con los Canales Kv/metabolismo , Potenciales de la Membrana/fisiología , Ratones Endogámicos C57BL
10.
Genes Cells ; 23(3): 185-199, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29431241

RESUMEN

The apical junctional complex consists of adherens junctions (AJs) and tight junctions (TJs) in polarized epithelial cells, which are attached to each other to form a sheet. Actin filaments (F-actin) are associated with AJs and TJs and required for the formation and maintenance of this complex. l-Afadin is an F-actin-binding protein, which is localized at AJs through binding to the cell adhesion molecule nectin, and regulates the formation of AJs and TJs. However, the role of the F-actin-binding activity of l-afadin for the formation of the apical junctional complex remains unknown. We generated here the cultured EpH4 mouse mammary epithelial cells in which afadin was genetically ablated. In the Ca2+ switch assay, the formation of both AJs and TJs was markedly impaired in the afadin-deficient cells. Re-expression of l-afadin in the afadin-deficient cells fully restored the formation of both AJs and TJs, but the re-expression of the l-afadin mutant lacking the FAB domain did not completely restore the formation of AJs or TJs. These results indicate that the F-actin-binding activity of l-afadin is required for enhancing the formation of both AJs and TJs.


Asunto(s)
Uniones Adherentes/fisiología , Adhesión Celular , Glándulas Mamarias Animales/metabolismo , Proteínas de Microfilamentos/metabolismo , Uniones Estrechas/fisiología , Actinas/genética , Actinas/metabolismo , Animales , Sistemas CRISPR-Cas , Calcio/metabolismo , Células Cultivadas , Femenino , Glándulas Mamarias Animales/citología , Ratones , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas de Microfilamentos/genética
11.
Genes Cells ; 23(3): 214-224, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29431243

RESUMEN

The immunoglobulin (Ig)-like cell adhesion molecule nectin-like molecule (Necl)-5/poliovirus receptor is up-regulated in many types of cancer cells and implicated in their abnormally enhanced cell proliferation and movement. We previously showed that Necl-5 cis-interacts with the platelet-derived growth factor (PDGF) receptor ß through the extracellular region and enhances its signaling. Although this cis-interaction does not affect the PDGF-induced tyrosine phosphorylation of the receptor, the interaction of the cytoplasmic region of Necl-5 with sprouty2 and the regulation of its activity are required for the enhancement of the PDGF receptor ß signaling by Necl-5. We investigated here the more detailed mechanism for this cis-interaction of Necl-5 with the PDGF receptor ß. Necl-5 contains three Ig-like domains and the PDGF receptor ß contains five Ig-like domains at their extracellular regions. We showed here that the third Ig-like domain of Necl-5 cis-interacted with the fifth Ig-like domain of the PDGF receptor ß. The recombinant protein of the third Ig-like domain of Necl-5 inhibited the cis-interaction of full-length Necl-5 with the PDGF receptor ß and the PDGF-induced activation of the ERK signaling pathway that was enhanced by Necl-5. These results revealed the novel roles of the third Ig-like domain of Necl-5 and the fifth Ig-like domain of the PDGF receptor ß in its signaling.


Asunto(s)
Dominios de Inmunoglobulinas , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores Virales/metabolismo , Animales , Unión Competitiva , Células HEK293 , Humanos , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Células 3T3 NIH , Fosforilación , Unión Proteica , Receptores Virales/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal
12.
Arterioscler Thromb Vasc Biol ; 38(5): 1159-1169, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29599137

RESUMEN

OBJECTIVE: We previously reported that afadin, an actin filament-binding protein, regulated vascular endothelial growth factor-induced angiogenesis. However, the underlying molecular mechanisms are poorly understood. Here, we investigated the mechanisms of how Rho-associated kinase is activated in afadin-knockdown human umbilical vein endothelial cells (HUVECs) and how its activation is involved in defects of vascular endothelial growth factor-induced network formation and migration of the cells. APPROACH AND RESULTS: Knockdown of afadin or ArhGAP29, a GTPase-activating protein for RhoA, increased Rho-associated kinase activity and reduced the vascular endothelial growth factor-induced network formation and migration of cultured HUVECs, accompanied by the defective formation of membrane protrusions, such as lamellipodia and peripheral ruffles. Treatment of the afadin- or ArhGAP29-knockdown HUVECs with Rho-associated kinase inhibitors, Y-27632 or fasudil, partially restored the reduced network formation and migration as well as the defective formation of membrane protrusions. ArhGAP29 bound to afadin and was colocalized with afadin at the leading edge of migrating HUVECs. The defective formation of membrane protrusions in ArhGAP29-knockdown HUVECs was restored by expression of mutant ArhGAP29 that bound to afadin and contained a RhoGAP domain but not mutant ArhGAP29 that could bind to afadin and lacked the RhoGAP domain or mutant ArhGAP29 that could not bind to afadin and contained the RhoGAP domain. This suggested the requirement of both the interaction of afadin with ArhGAP29 and RhoGAP activity of ArhGAP29 for migration of HUVECs. CONCLUSIONS: Our results highlight a critical role of the afadin-ArhGAP29 axis for the regulation of Rho-associated kinase activity during vascular endothelial growth factor-induced network formation and migration of HUVECs.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proteínas Activadoras de GTPasa/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Proteínas de Microfilamentos/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Seudópodos/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/farmacología , Quinasas Asociadas a rho/metabolismo , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Benzopiranos/farmacología , Células Cultivadas , Proteínas Activadoras de GTPasa/genética , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Proteínas de Microfilamentos/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Seudópodos/enzimología , Complejo Shelterina , Transducción de Señal/efectos de los fármacos , Proteínas de Unión a Telómeros/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores
13.
Mol Cell Neurosci ; 92: 40-49, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29969655

RESUMEN

A hippocampal mossy fiber synapse has a complex structure in which presynaptic boutons attach to the dendritic trunk by puncta adherentia junctions (PAJs) and wrap multiply-branched spines, forming synaptic junctions. It was previously shown that afadin regulates the formation of the PAJs cooperatively with nectin-1, nectin-3, and N-cadherin. Afadin is a nectin-binding protein with two splice variants, l-afadin and s-afadin: l-afadin has an actin filament-binding domain, whereas s-afadin lacks it. It remains unknown which variant is involved in the formation of the PAJs or how afadin regulates it. We showed here that re-expression of l-afadin, but not s-afadin, in the afadin-deficient cultured hippocampal neurons in which the PAJ-like structure was disrupted, restored this structure as estimated by the accumulation of N-cadherin and αΝ-catenin. The l-afadin mutant, in which the actin filament-binding domain was deleted, or the l-afadin mutant, in which the αΝ-catenin-binding domain was deleted, did not restore the PAJ-like structure. These results indicate that l-afadin, but not s-afadin, regulates the formation of the hippocampal synapse PAJ-like structure through the binding to actin filaments and αN-catenin. We further found here that l-afadin bound αN-catenin, but not γ-catenin, whereas s-afadin bound γ-catenin, but hardly αN-catenin. These results suggest that the inability of s-afadin to form the hippocampal synapse PAJ-like structure is due to its inability to efficiently bind αN-catenin.


Asunto(s)
Uniones Adherentes/metabolismo , Proteínas de Microfilamentos/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Sinapsis/metabolismo , Actinas/metabolismo , Animales , Sitios de Unión , Cateninas/metabolismo , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
14.
J Biol Chem ; 292(17): 6895-6909, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28258213

RESUMEN

Cell-surface cytokine receptors are regulated by their cis-interacting stimulatory and inhibitory co-receptors. We previously showed that the Ig-like cell-adhesion molecule nectin-4 cis-interacts with the prolactin receptor through the extracellular region and stimulates prolactin-induced prolactin receptor activation and signaling, resulting in alveolar development in the mouse mammary gland. However, it remains unknown how this interaction stimulates these effects. We show here that the cis-interaction of the extracellular region of nectin-4 with the prolactin receptor was not sufficient for eliciting these effects and that the cytoplasmic region of nectin-4 was also required for this interaction. The cytoplasmic region of nectin-4 directly interacted with suppressor of cytokine signaling 1 (SOCS1), but not SOCS3, JAK2, or STAT5a, and inhibited the interaction of SOCS1 with JAK2, eventually resulting in the increased phosphorylation of STAT5a. The juxtamembrane region of nectin-4 interacted with the Src homology 2 domain of SOCS1. Both the interaction of nectin-4 with the extracellular region of the prolactin receptor and the interaction of SOCS1 with the cytoplasmic region of nectin-4 were required for the stimulatory effect of nectin-4 on the prolactin-induced prolactin receptor activation. The third Ig-like domain of nectin-4 and the second fibronectin type III domain of the prolactin receptor were involved in this cis-interaction, and both the extracellular and transmembrane regions of nectin-4 and the prolactin receptor were required for this direct interaction. These results indicate that nectin-4 serves as a stimulatory co-receptor for the prolactin receptor by regulating the feedback inhibition of SOCS1 in the JAK2-STAT5a signaling pathway.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Janus Quinasa 2/metabolismo , Receptores de Prolactina/metabolismo , Factor de Transcripción STAT5/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Animales , Citoplasma/metabolismo , Femenino , Fibronectinas/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Glándulas Mamarias Animales/metabolismo , Ratones , Mutación , Fosforilación , Prolactina/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo
15.
Genes Cells ; 22(5): 472-484, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28397972

RESUMEN

A synapse is a cell adhesion structure that permits a neuron to pass a chemical or electrical signal to another neuron. They connect neurons and form neural networks that are essential for brain functions, such as learning and memory. At a chemical synapse, the presynapse and the postsynapse are connected by cell adhesion molecules. The presynapse contains synaptic vesicles and their release machinery, whereas the postsynapse contains postsynaptic densities and receptors for the neurotransmitters. Many proteins constituting a synapse have been identified, but their life-span expression profiles remain elusive. Here, we investigated the expression levels of representative synapse-related proteins by Western blot using the extranuclear supernatant fraction of the brains of mice at various ages. These proteins were classified into seven groups depending on their expression profiles during the embryonic stage, those from postnatal day 6 (P6) to P30, and those after P90. The expression levels of the majority of the proteins were gradually increased from the embryonic stage and then decreased at P14 or P30. After P90, the expression levels were not markedly changed or, in some proteins, increased. These results indicate that the expression levels of the synapse-related proteins are regulated orderly in an aging-dependent manner.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sinapsis/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Cadherinas/genética , Cadherinas/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Homólogo 4 de la Proteína Discs Large , Guanilato-Quinasas/genética , Guanilato-Quinasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Nectinas
16.
Genes Cells ; 22(8): 715-722, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28631873

RESUMEN

A hippocampal mossy fiber synapse has a complex structure and is implicated in learning and memory. In this synapse, the mossy fiber boutons attach to the dendritic shaft by puncta adherentia junctions and wrap around a multiply-branched spine, forming synaptic junctions. We have recently shown using transmission electron microscopy, immunoelectron microscopy and serial block face-scanning electron microscopy that atypical puncta adherentia junctions are formed in the afadin-deficient mossy fiber synapse and that the complexity of postsynaptic spines and mossy fiber boutons, the number of spine heads, the area of postsynaptic densities and the density of synaptic vesicles docked to active zones are decreased in the afadin-deficient synapse. We investigated here the roles of afadin in the functional differentiations of the mossy fiber synapse using the afadin-deficient mice. The electrophysiological studies showed that both the release probability of glutamate and the postsynaptic responsiveness to glutamate were markedly reduced, but not completely lost, in the afadin-deficient mossy fiber synapse, whereas neither long-term potentiation nor long-term depression was affected. These results indicate that afadin plays roles in the functional differentiations of the presynapse and the postsynapse of the hippocampal mossy fiber synapse.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Animales , Células Cultivadas , Ácido Glutámico/metabolismo , Potenciación a Largo Plazo , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Fibras Musgosas del Hipocampo/fisiología , Fibras Musgosas del Hipocampo/ultraestructura , Densidad Postsináptica/metabolismo , Densidad Postsináptica/fisiología , Densidad Postsináptica/ultraestructura
17.
Genes Cells ; 22(8): 742-755, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28695613

RESUMEN

A hippocampal mossy fiber synapse, which is implicated in learning and memory, has a complex structure. We have previously shown using afadin-deficient mice that afadin plays multiple roles in the structural and functional differentiations of this synapse. We investigated here using a co-culture system with cultured hippocampal neurons and non-neuronal COS-7 cells expressing synaptogenic cell adhesion molecules (CAMs) whether afadin is involved in the presynaptic differentiation of hippocampal synapses. Postsynaptic CAMs NGL-3 (alias, a Lrrc4b gene product) and neuroligin induced presynaptic differentiation by trans-interacting with their respective presynaptic binding CAMs LAR (alias, a Ptprf gene product) and neurexin. This activity of NGL-3, but not neuroligin, was dependent on afadin, but not the afadin-binding presynaptic CAM nectin-1. The afadin-binding postsynaptic CAM nectin-3 did not induce presynaptic differentiation. Immunofluorescence and immunoelectron microscopy analyses showed that afadin was localized mainly at puncta adherentia junctions, but partly at synaptic junctions, of the mossy fiber synapse. ß-Catenin and γ-catenin known to bind to LAR were co-immunoprecipitated with afadin from the lysate of mouse brain. These results suggest that afadin is involved in the NGL-3-LAR system-induced presynaptic differentiation of hippocampal neurons cooperatively with ß-catenin and γ-catenin in a nectin-1-independent manner.


Asunto(s)
Proteínas Ligadas a GPI/metabolismo , Hipocampo/metabolismo , Proteínas de Microfilamentos/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Neuronas/metabolismo , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas Ligadas a GPI/genética , Hipocampo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Proteínas de Microfilamentos/genética , Fibras Musgosas del Hipocampo/ultraestructura , Nectinas/genética , Nectinas/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Unión Proteica , beta Catenina/metabolismo , gamma Catenina/metabolismo
18.
Mol Cell Neurosci ; 79: 34-44, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28041940

RESUMEN

The hippocampal formation with tightly packed neurons, mainly at the dentate gyrus, CA3, CA2, and CA1 regions, constitutes a one-way neural circuit, which is associated with learning and memory. We previously showed that the cell adhesion molecules nectins and its binding protein afadin play roles in the formation of the mossy fiber synapses which are formed between the mossy fibers of the dentate gyrus granule cells and the dendrites of the CA3 pyramidal cells. We showed here that in the afadin-deficient hippocampal formation, the dentate gyrus granules cells and the CA3, CA2, and CA1 pyramidal cells were abnormally located; the mossy fiber trajectory was abnormally elongated; the CA3 pyramidal cells were abnormally differentiated; and the densities of the presynaptic boutons on the mossy fibers and the apical dendrites of the CA3 pyramidal cells were decreased. These results indicate that afadin plays roles not only in the formation of the mossy fiber synapses but also in the formation of the cellular architecture of the hippocampus and the dentate gyrus.


Asunto(s)
Región CA3 Hipocampal/citología , Giro Dentado/citología , Proteínas de Microfilamentos/metabolismo , Células Piramidales/citología , Animales , Región CA3 Hipocampal/crecimiento & desarrollo , Región CA3 Hipocampal/metabolismo , Células Cultivadas , Giro Dentado/crecimiento & desarrollo , Giro Dentado/metabolismo , Ratones , Proteínas de Microfilamentos/genética , Fibras Musgosas del Hipocampo/metabolismo , Neurogénesis , Células Piramidales/metabolismo , Sinapsis/metabolismo
19.
J Biol Chem ; 291(11): 5817-5831, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26757815

RESUMEN

Mammary gland development is induced by the actions of various hormones to form a structure consisting of collecting ducts and milk-secreting alveoli, which comprise two types of epithelial cells known as luminal and basal cells. These cells adhere to each other by cell adhesion apparatuses whose roles in hormone-dependent mammary gland development remain largely unknown. Here we identified a novel cell adhesion apparatus at the boundary between the luminal and basal cells in addition to desmosomes. This apparatus was formed by the trans-interaction between the cell adhesion molecules nectin-4 and nectin-1, which were expressed in the luminal and basal cells, respectively. Nectin-4 of this apparatus further cis-interacted with the prolactin receptor in the luminal cells to enhance the prolactin-induced prolactin receptor signaling for alveolar development with lactogenic differentiation. Thus, a novel nectin-mediated cell adhesion apparatus regulates the prolactin receptor signaling for mammary gland development.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Glándulas Mamarias Animales/crecimiento & desarrollo , Receptores de Prolactina/metabolismo , Transducción de Señal , Animales , Adhesión Celular , Moléculas de Adhesión Celular/análisis , Comunicación Celular , Femenino , Células HEK293 , Humanos , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/ultraestructura , Ratones Endogámicos C57BL , Nectinas , Prolactina/metabolismo
20.
Development ; 141(2): 399-409, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24381198

RESUMEN

The organ of Corti consists of sensory hair cells (HCs) interdigitated with nonsensory supporting cells (SCs) to form a checkerboard-like cellular pattern. HCs are equipped with hair bundles on their apical surfaces. We previously reported that cell-adhesive nectins regulate the checkerboard-like cellular patterning of HCs and SCs in the mouse auditory epithelium. Nectin-1 and -3 are differentially expressed in normal HCs and SCs, respectively, and in Nectin-3-deficient mice a number of HCs are aberrantly attached to each other. We show here that these aberrantly attached HCs in Nectin-3-deficient mice, but not unattached ones, show disturbances of the orientation and morphology of the hair bundles and the positioning of the kinocilium, with additional abnormal localisation of cadherin-catenin complexes and the apical-basal polarity proteins Pals1 and Par-3. These results indicate that, owing to the loss of Nectin-3, hair cells contact each other inappropriately and form abnormal junctions, ultimately resulting in abnormal hair bundle orientation and morphology.


Asunto(s)
Moléculas de Adhesión Celular/deficiencia , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Órgano Espiral/anomalías , Órgano Espiral/metabolismo , Animales , Proteínas Portadoras/metabolismo , Adhesión Celular , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Polaridad Celular , Femenino , Receptores Frizzled/metabolismo , Regulación del Desarrollo de la Expresión Génica , Uniones Intercelulares/metabolismo , Uniones Intercelulares/patología , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/patología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Nectinas , Órgano Espiral/embriología , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA