Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Planta ; 252(6): 103, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33185761

RESUMEN

MAIN CONCLUSION: Nicotiana tabacum overexpressing CrSAMT from Citrus reticulata increased production of MeSA, which works as an airborne signal in neighboring wild-type plants, inducing PR1 and increasing resistance to the pathogen Xylella fastidiosa. Xylella fastidiosa is one of the major threats to plant health worldwide, affecting yield in many crops. Despite many efforts, the development of highly productive resistant varieties has been challenging. In studying host plant resistance, the S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase gene (SAMT) from Citrus reticulata, a X. fastidiosa resistant species, was upregulated in response to pathogen infection. SAMT is involved with the catalysis and production of methyl salicylate (MeSA), an airborne signal responsible for triggering systemic acquired resistance. Here we used tobacco as a model system and generated transgenic plants overexpressing C. reticulata SAMT (CrSAMT). We performed an in silico structural characterization of CrSAMT and investigated its biotechnological potential in modulating the immune system in transgenic plants. The increase of MeSA production in transgenic lines was confirmed by gas chromatography (GC-MS). The transgenic lines showed upregulation of PR1, and their incubation with neighboring wild-type plants activated PR1 expression, indicating that MeSA worked as an airborne signal. In addition, transgenic plants showed significantly fewer symptoms when challenged with X. fastidiosa. Altogether, these data suggest that CrSAMT plays a role in host defense response and can be used in biotechnology approaches to confer resistance against X. fastidiosa.


Asunto(s)
Citrus , Expresión Génica , Metiltransferasas , Salicilatos , Xylella , Citrus/genética , Citrus/microbiología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Enfermedades de las Plantas , Proteínas Recombinantes/genética , Salicilatos/química , Nicotiana/genética , Volatilización , Xylella/fisiología
2.
BMC Genomics ; 17(1): 623, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27515968

RESUMEN

BACKGROUND: Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent the largest subfamily of plant RLKs. The functions of most LRR-RLKs have remained undiscovered, and a few that have been experimentally characterized have been shown to have important roles in growth and development as well as in defense responses. Although RLK subfamilies have been previously studied in many plants, no comprehensive study has been performed on this gene family in Citrus species, which have high economic importance and are frequent targets for emerging pathogens. In this study, we performed in silico analysis to identify and classify LRR-RLK homologues in the predicted proteomes of Citrus clementina (clementine) and Citrus sinensis (sweet orange). In addition, we used large-scale phylogenetic approaches to elucidate the evolutionary relationships of the LRR-RLKs and further narrowed the analysis to the LRR-XII group, which contains several previously described cell surface immune receptors. RESULTS: We built integrative protein signature databases for Citrus clementina and Citrus sinensis using all predicted protein sequences obtained from whole genomes. A total of 300 and 297 proteins were identified as LRR-RLKs in C. clementina and C. sinensis, respectively. Maximum-likelihood phylogenetic trees were estimated using Arabidopsis LRR-RLK as a template and they allowed us to classify Citrus LRR-RLKs into 16 groups. The LRR-XII group showed a remarkable expansion, containing approximately 150 paralogs encoded in each Citrus genome. Phylogenetic analysis also demonstrated the existence of two distinct LRR-XII clades, each one constituted mainly by RD and non-RD kinases. We identified 68 orthologous pairs from the C. clementina and C. sinensis LRR-XII genes. In addition, among the paralogs, we identified a subset of 78 and 62 clustered genes probably derived from tandem duplication events in the genomes of C. clementina and C. sinensis, respectively. CONCLUSIONS: This work provided the first comprehensive evolutionary analysis of the LRR-RLKs in Citrus. A large expansion of LRR-XII in Citrus genomes suggests that it might play a key role in adaptive responses in host-pathogen co-evolution, related to the perennial life cycle and domestication of the citrus crop species.


Asunto(s)
Citrus/genética , Evolución Molecular , Genoma de Planta , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Citrus/metabolismo , Familia de Multigenes , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/clasificación , Proteínas Serina-Treonina Quinasas/metabolismo
3.
Pest Manag Sci ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647195

RESUMEN

BACKGROUND: Xylella fastidiosa is a multi-host bacterium that can be detected in hundreds of plant species including several crops. Diseases caused by X. fastidiosa are considered a threat to global food production. The primary method for managing diseases caused by X. fastidiosa involves using insecticides to control the vector. Hence, it is necessary to adopt new and sustainable disease management technologies to control not only the insect but also the bacteria and plant health. We demonstrated that N-acetylcysteine (NAC), a low-cost cysteine analogue, is a sustainable molecule that can be used in agriculture to decrease the damage caused by X. fastidiosa and improve plant health. RESULTS: Using 15N-NAC we proved that this analogue was absorbed by the roots and transported to different parts of the plant. Inside the plant, NAC reduced the bacterial population by 60-fold and the number of xylem vessels blocked by bacterial biofilms. This reflected in a recovery of 0.28-fold of the daily sap flow compared to health plants. In addition, NAC-treated citrus variegated chlorosis (CVC) plants decreased the oxidative stress by improving the activity of detoxifying enzymes. Moreover, the use of NAC in field conditions positively contributed to the increase in fruit yield of CVC-diseased plants. CONCLUSION: Our research not only advances the understanding of NAC absorption in plants, but also indicates its dual effect as an antimicrobial and antioxidant molecule. This, in turn, negatively affects bacterial survival while improving plant health by decreasing oxidative stress. Overall, the positive field-based evidence supports the viability of NAC as a sustainable agricultural application. © 2024 Society of Chemical Industry.

4.
BMC Genomics ; 14: 676, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24090429

RESUMEN

BACKGROUND: Citrus variegated chlorosis (CVC), caused by Xylella fastidiosa, is one the most important citrus diseases, and affects all varieties of sweet orange (Citrus sinensis L. Osb). On the other hand, among the Citrus genus there are different sources of resistance against X. fastidiosa. For these species identifying these defense genes could be an important step towards obtaining sweet orange resistant varieties through breeding or genetic engineering. To assess these genes we made use of mandarin (C. reticulata Blanco) that is known to be resistant to CVC and shares agronomical characteristics with sweet orange. Thus, we investigated the gene expression in Ponkan mandarin at one day after infection with X. fastidiosa, using RNA-seq. A set of genes considered key elements in the resistance was used to confirm its regulation in mandarin compared with the susceptible sweet orange. RESULTS: Gene expression analysis of mock inoculated and infected tissues of Ponkan mandarin identified 667 transcripts repressed and 724 significantly induced in the later. Among the induced transcripts, we identified genes encoding proteins similar to Pattern Recognition Receptors. Furthermore, many genes involved in secondary metabolism, biosynthesis and cell wall modification were upregulated as well as in synthesis of abscisic acid, jasmonic acid and auxin. CONCLUSIONS: This work demonstrated that the defense response to the perception of bacteria involves cell wall modification and activation of hormone pathways, which probably lead to the induction of other defense-related genes. We also hypothesized the induction of auxin-related genes indicates that resistant plants initially recognize X. fastidiosa as a necrotrophic pathogen.


Asunto(s)
Citrus/genética , Citrus/microbiología , Ácidos Indolacéticos/farmacología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ARN/métodos , Xylella/fisiología , Pared Celular/efectos de los fármacos , Pared Celular/genética , Citrus/efectos de los fármacos , Citrus/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Inmunidad de la Planta/efectos de los fármacos , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteolisis/efectos de los fármacos , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Metabolismo Secundario/efectos de los fármacos , Metabolismo Secundario/genética , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Ubiquitina/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
5.
J Bacteriol ; 194(17): 4561-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22730126

RESUMEN

Investigations of biofilm resistance response rarely focus on plant-pathogenic bacteria. Since Xylella fastidiosa is a multihost plant-pathogenic bacterium that forms biofilm in the xylem, the behavior of its biofilm in response to antimicrobial compounds needs to be better investigated. We analyzed here the transcriptional profile of X. fastidiosa subsp. pauca in response to inhibitory and subinhibitory concentrations of copper and tetracycline. Copper-based products are routinely used to control citrus diseases in the field, while antibiotics are more widely used for bacterial control in mammals. The use of antimicrobial compounds triggers specific responses to each compound, such as biofilm formation and phage activity for copper. Common changes in expression responses comprise the repression of genes associated with metabolic functions and movement and the induction of toxin-antitoxin systems, which have been associated with the formation of persister cells. Our results also show that these cells were found in the population at a ca. 0.05% density under inhibitory conditions for both antimicrobial compounds and that pretreatment with subinhibitory concentration of copper increases this number. No previous report has detected the presence of these cells in X. fastidiosa population, suggesting that this could lead to a multidrug tolerance response in the biofilm under a stressed environment. This is a mechanism that has recently become the focus of studies on resistance of human-pathogenic bacteria to antibiotics and, based on our data, it seems to be more broadly applicable.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Cobre/farmacología , Tetraciclina/farmacología , Xylella/efectos de los fármacos , Xylella/genética , Antibacterianos/metabolismo , Biopelículas/crecimiento & desarrollo , Cobre/metabolismo , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Tetraciclina/metabolismo , Xylella/crecimiento & desarrollo , Xylella/metabolismo
6.
BMC Genomics ; 12: 39, 2011 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-21241495

RESUMEN

BACKGROUND: Gummosis and root rot caused by Phytophthora are among the most economically important diseases in citrus. Four F1 resistant hybrids (Pool R), and four F1 susceptible hybrids (Pool S) to P. parasitica, were selected from a cross between susceptible Citrus sunki and resistant Poncirus trifoliata cv. Rubidoux. We investigated gene expression in pools of four resistant and four susceptible hybrids in comparison with their parents 48 hours after P. parasitica inoculation. We proposed that genes differentially expressed between resistant and susceptible parents and between their resistant and susceptible hybrids provide promising candidates for identifying transcripts involved in disease resistance. A microarray containing 62,876 UniGene transcripts selected from the CitEST database and prepared by NimbleGen Systems was used for analyzing global gene expression 48 hours after infection with P. parasitica. RESULTS: Three pairs of data comparisons (P. trifoliata/C. sunki, Pool R/C. sunki and Pool R/Pool S) were performed. With a filter of false-discovery rate less than 0.05 and fold change greater than 3.0, 21 UniGene transcripts common to the three pairwise comparative were found to be up-regulated, and 3 UniGene transcripts were down-regulated. Among them, our results indicated that the selected transcripts were probably involved in the whole process of plant defense responses to pathogen attack, including transcriptional regulation, signaling, activation of defense genes participating in HR, single dominant genes (R gene) such as TIR-NBS-LRR and RPS4 and switch of defense-related metabolism pathway. Differentially expressed genes were validated by RT-qPCR in susceptible and resistant plants and between inoculated and uninoculated control plants CONCLUSIONS: Twenty four UniGene transcripts were identified as candidate genes for Citrus response to P. parasitica. UniGene transcripts were likely to be involved in disease resistance, such as genes potentially involved in secondary metabolite synthesis, intracellular osmotic adjustment, signal transduction pathways of cell death, oxidative burst and defense gene expression. Furthermore, our microarray data suggest another type of resistance in Citrus-Phytophthora interaction conferred by single dominant genes (R gene) since we encountered two previously reported R genes (TIR-NBS-LRR and RPS4) upregulated in the resistant genotypes relative to susceptible. We identified 7 transcripts with homology in other plants but yet unclear functional characterization which are an interesting pool for further analyses and 3 transcripts where no significant similarity was found. This is the first microarray study addressing an evaluation of transcriptional changes in response to P. parasitica in Citrus.


Asunto(s)
Citrus/genética , Citrus/parasitología , Regulación de la Expresión Génica de las Plantas , Phytophthora/patogenicidad , Poncirus/genética , Poncirus/parasitología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Inmunidad Innata/genética , Inmunidad Innata/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Phytophthora/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Proteome Sci ; 9: 58, 2011 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-21939513

RESUMEN

BACKGROUND: Xylella fastidiosa is limited to the xylem of the plant host and the foregut of insect vectors (sharpshooters). The mechanism of pathogenicity of this bacterium differs from other plant pathogens, since it does not present typical genes that confer specific interactions between plant and pathogens (avr and/or hrp). The bacterium is injected directly into the xylem vessels where it adheres and colonizes. The whole process leads to the formation of biofilms, which are considered the main mechanism of pathogenicity. Cells in biofilms are metabolically and phenotypically different from their planktonic condition. The mature biofilm stage (phase of higher cell density) presents high virulence and resistance to toxic substances such as antibiotics and detergents. Here we performed proteomic analysis of proteins expressed exclusively in the mature biofilm of X. fastidiosa strain 9a5c, in comparison to planktonic growth condition. RESULTS: We found a total of 456 proteins expressed in the biofilm condition, which correspond to approximately 10% of total protein in the genome. The biofilm showed 37% (or 144 proteins) different protein than we found in the planktonic growth condition. The large difference in protein pattern in the biofilm condition may be responsible for the physiological changes of the cells in the biofilm of X. fastidiosa. Mass spectrometry was used to identify these proteins, while real-time quantitative polymerase chain reaction monitored expression of genes encoding them. Most of proteins expressed in the mature biofilm growth were associated with metabolism, adhesion, pathogenicity and stress conditions. Even though the biofilm cells in this work were not submitted to any stress condition, some stress related proteins were expressed only in the biofilm condition, suggesting that the biofilm cells would constitutively express proteins in different adverse environments. CONCLUSIONS: We observed overexpression of proteins related to quorum sensing, proving the existence of communication between cells, and thus the development of structuring the biofilm (mature biofilm) leading to obstruction of vessels and development of disease. This paper reports a first proteomic analysis of mature biofilm of X. fastidiosa, opening new perspectives for understanding the biochemistry of mature biofilm growth in a plant pathogen.

8.
Front Microbiol ; 9: 1099, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29887856

RESUMEN

Phytopathogenic bacteria affect a wide range of crops worldwide and have a negative impact in agriculture due to their associated economic losses and environmental impacts. Together with other biotic and abiotic stress factors, they pose a threat to global food production. Therefore, understanding bacterial survival strategies is an essential step toward the development of new strategies to control plant diseases. One mechanism used by bacteria to survive under stress conditions is the formation of persister cells. Persisters are a small fraction of phenotypic variants within an isogenic population that exhibits multidrug tolerance without undergoing genetic changes. They are dormant cells that survive treatment with antimicrobials by inactivating the metabolic functions that are disrupted by these compounds. They are thus responsible for the recalcitrance of many human diseases, and in the same way, they are thought to contribute to the survival of bacterial phytopathogens under a range of stresses they face in the environment. It is believed that persister cells of bacterial phytopathogens may lead to the reoccurrence of disease by recovering growth and recolonizing the host plant after the end of stress. However, compared to human pathogens, little is known about persister cells in phytopathogens, especially about their genetic regulation. In this review, we describe the overall knowledge on persister cells and their regulation in bacterial phytopathogens, focusing on their ability to survive stress conditions, to recover from dormancy and to maintain virulence.

9.
Front Microbiol ; 7: 904, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27375608

RESUMEN

Through the formation of persister cells, bacteria exhibit tolerance to multidrug and other environmental stresses without undergoing genetic changes. The toxin-antitoxin (TA) systems are involved in the formation of persister cells because they are able to induce cell dormancy. Among the TA systems, the MqsRA system has been observed to be highly induced in persister cells of Xylella fastidiosa (causal agent of citrus variegated chlorosis-CVC) activated by copper stress, and has been described in Escherichia coli as related to the formation of persister cells and biofilms. Thus, we evaluated the role of this TA system in X. fastidiosa by overexpressing the MqsR toxin, and verified that the toxin positively regulated biofilm formation and negatively cell movement, resulting in reduced pathogenicity in citrus plants. The overexpression of MqsR also increased the formation of persister cells under copper stress. Analysis of the gene and protein expression showed that this system likely has an autoregulation mechanism to express the toxin and antitoxin in the most beneficial ratio for the cell to oppose stress. Our results suggest that this TA system plays a key role in the adaptation and survival of X. fastidiosa and reveal new insights into the physiology of phytopathogen-host interactions.

10.
Front Microbiol ; 7: 652, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242687

RESUMEN

Prokaryotic toxin-antitoxin (TA) systems were first described as being designed to prevent plasmid loss in bacteria. However, with the increase in prokaryotic genome sequencing, recently many TAs have been found in bacterial chromosomes, having other biological functions, such as environmental stress response. To date, only few studies have focused on TA systems in phytopathogens, and their possible impact on the bacterial fitness. This may be especially important for pathogens like Xanthomonas spp., which live epiphytically before entering the host. In this study, we looked for TA systems in the genomes of 10 Xanthomonas strains. We verified that citrus-infecting pathovars have, on average, 50% more TAs than other Xanthomonas spp. and no genome harbors classical toxins such as MqsR, RelB, and HicA. Only one TA system (PIN_VapC-FitB-like/SpoVT_AbrB) was conserved among the Xanthomonas genomes, suggesting adaptive aspects concerning its broad occurrence. We also detected a trend of toxin gene loss in this genus, while the antitoxin gene was preferably maintained. This study discovers the quantitative and qualitative differences among the type II TA systems present in Xanthomonas spp., especially concerning the citrus-infecting strains. In addition, the antitoxin retention in the genomes is possibly related with the resistance mechanism of further TA infections as an anti-addiction system or might also be involved in regulation of certain specific genes.

11.
Genome Announc ; 4(5)2016 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27738038

RESUMEN

The draft genome of Xylella fastidiosa subsp. pauca strain 11399, a transformable citrus-pathogenic strain, is reported here. The 11399 genome size is 2,690,704 bp and has a G+C content of 52.7%. The draft genome of 11399 reveals the absence of four type I restriction-modification system genes.

12.
Mol Plant Microbe Interact ; 16(10): 867-75, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14558688

RESUMEN

Xylella fastidiosa is a plant pathogen responsible for diseases of economically important crops. Although there is considerable disagreement about its mechanism of pathogenicity, blockage of the vessels is one of the most accepted hypotheses. Loss of virulence by this bacterium was observed after serial passages in axenic culture. To confirm the loss of pathogenicity of X. fastidiosa, the causing agent of citrus variegated chlorosis (CVC), freshly-isolated bacteria (first passage [FP] condition) as well as bacteria obtained after 46 passages in axenic culture (several passage [SP] condition) were inoculated into sweet orange and periwinkle plants. Using real time quantitative polymerase chain reaction, we verified that the colonization of FP cells was more efficient for both hosts. The sequence of the complete X. fastidiosa genome allowed the construction of a DNA microarray that was used to investigate the total changes in gene expression associated with the FP condition. Most genes found to be induced in the FP condition were associated with adhesion and probably with adaptation to the host environment. This report represents the first study of the transcriptome of this pathogen, which has recently gained more importance, since the genome of several strains has been either partially or entirely sequenced.


Asunto(s)
Enfermedades de las Plantas/microbiología , Xylella/genética , Xylella/patogenicidad , Secuencia de Bases , Citrus sinensis/microbiología , Cartilla de ADN/genética , ADN Bacteriano/genética , Perfilación de la Expresión Génica , Genes Bacterianos , Análisis de Secuencia por Matrices de Oligonucleótidos , Plantas Comestibles/microbiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Vinca/microbiología , Virulencia/genética , Xylella/crecimiento & desarrollo
13.
Mol Plant Microbe Interact ; 17(8): 827-36, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15305603

RESUMEN

The genome sequence of Leifsonia xyli subsp. xyli, which causes ratoon stunting disease and affects sugarcane worldwide, was determined. The single circular chromosome of Leifsonia xyli subsp. xyli CTCB07 was 2.6 Mb in length with a GC content of 68% and 2,044 predicted open reading frames. The analysis also revealed 307 predicted pseudogenes, which is more than any bacterial plant pathogen sequenced to date. Many of these pseudogenes, if functional, would likely be involved in the degradation of plant heteropolysaccharides, uptake of free sugars, and synthesis of amino acids. Although L. xyli subsp. xyli has only been identified colonizing the xylem vessels of sugarcane, the numbers of predicted regulatory genes and sugar transporters are similar to those in free-living organisms. Some of the predicted pathogenicity genes appear to have been acquired by lateral transfer and include genes for cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase. The presence of the latter may contribute to stunting, since it is likely involved in the synthesis of abscisic acid, a hormone that arrests growth. Our findings are consistent with the nutritionally fastidious behavior exhibited by L. xyli subsp. xyli and suggest an ongoing adaptation to the restricted ecological niche it inhabits.


Asunto(s)
Actinomycetales/genética , Genoma Bacteriano , Actinomycetales/clasificación , Composición de Base , Genes Bacterianos , Datos de Secuencia Molecular , Seudogenes , Saccharum/microbiología
14.
FEMS Microbiol Lett ; 237(2): 341-53, 2004 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15321682

RESUMEN

A biofilm is a community of microorganisms attached to a solid surface. Cells within biofilms differ from planktonic cells, showing higher resistance to biocides, detergent, antibiotic treatments and host defense responses. Even though there are a number of gene expression studies in bacterial biofilm formation, limited information is available concerning plant pathogen. It was previously demonstrated that the plant pathogen Xylella fastidiosa could grow as a biofilm, a possibly important factor for its pathogenicity. In this study we utilized analysis of microarrays to specifically identify genes expressed in X. fastidiosa cells growing in a biofilm, when compared to planktonic cells. About half of the differentially expressed genes encode hypothetical proteins, reflecting the large number of ORFs with unknown functions in bacterial genomes. However, under the biofilm condition we observed an increase in the expression of some housekeeping genes responsible for metabolic functions. We also found a large number of genes from the pXF51 plasmid being differentially expressed. Some of the overexpressed genes in the biofilm condition encode proteins involved in attachment to surfaces. Other genes possibly confer advantages to the bacterium in the environment that it colonizes. This study demonstrates that the gene expression in the biofilm growth condition of the plant pathogen X. fastidiosa is quite similar to other characterized systems.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Citrus sinensis/microbiología , Genes Bacterianos , Xylella/genética , Xylella/patogenicidad , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Xylella/metabolismo , Xylella/fisiología
15.
PLoS One ; 8(8): e72937, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24009716

RESUMEN

Xylella fastidiosa is a plant pathogen bacterium that causes diseases in many different crops. In citrus, it causes Citrus Variegated Chlorosis (CVC). The mechanism of pathogenicity of this bacterium is associated with its capacity to colonize and form a biofilm in the xylem vessels of host plants, and there is not yet any method to directly reduce populations of this pathogen in the field. In this study, we investigated the inhibitory effect of N-Acetylcysteine (NAC), a cysteine analogue used mainly to treat human diseases, on X. fastidiosa in different experimental conditions. Concentrations of NAC over 1 mg/mL reduced bacterial adhesion to glass surfaces, biofilm formation and the amount of exopolysaccharides (EPS). The minimal inhibitory concentration of NAC was 6 mg/mL. NAC was supplied to X. fastidiosa-infected plants in hydroponics, fertigation, and adsorbed to organic fertilizer (NAC-Fertilizer). HPLC analysis indicated that plants absorbed NAC at concentrations of 0.48 and 2.4 mg/mL but not at 6 mg/mL. Sweet orange plants with CVC symptoms treated with NAC (0.48 and 2.4 mg/mL) in hydroponics showed clear symptom remission and reduction in bacterial population, as analyzed by quantitative PCR and bacterial isolation. Experiments using fertigation and NAC-Fertilizer were done to simulate a condition closer to that normally is used in the field. For both, significant symptom remission and a reduced bacterial growth rate were observed. Using NAC-Fertilizer the lag for resurgence of symptoms on leaves after interruption of the treatment increased to around eight months. This is the first report of the anti-bacterial effect of NAC against a phytopathogenic bacterium. The results obtained in this work together with the characteristics of this molecule indicate that the use of NAC in agriculture might be a new and sustainable strategy for controlling plant pathogenic bacteria.


Asunto(s)
Acetilcisteína/farmacología , Agricultura , Antibacterianos/farmacología , Enfermedades de las Plantas/microbiología , Xylella/efectos de los fármacos , Acetilcisteína/química , Antibacterianos/química , Biopelículas , Hidroponía/métodos , Fenotipo , Hojas de la Planta/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/microbiología , Plantas/efectos de los fármacos , Plantas/microbiología , Polisacáridos Bacterianos/metabolismo , Xylella/fisiología
16.
Appl Microbiol Biotechnol ; 77(5): 1145-57, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17992525

RESUMEN

Xylella fastidiosa is a phytopathogen that causes diseases in different plant species. The development of disease symptoms is associated to the blockage of the xylem vessels caused by biofilm formation. In this study, we evaluated the sensitivity of biofilm and planktonic cells to copper, one of the most important antimicrobial agents used in agriculture. We measured the exopolysaccharides (EPS) content in biofilm and planktonic cells and used real-time reverse transcription polymerase chain reaction to evaluate the expression of the genes encoding proteins involved in cation/multidrug extrusion (acrA/B, mexE/czcA, and metI) and others associated with different copper resistance mechanisms (copB, cutA1, cutA2, and cutC) in the X. fastidiosa biofilm formed in two different media. We confirmed that biofilms are less susceptible to copper than planktonic cells. The amount of EPS seems to be directly related to the resistance and it varies according to the media where the cells are grown. The same was observed for gene expression. Nevertheless, some genes seem to have a greater importance in biofilm cells resistance to copper. Our results suggest a synergistic effect between diffusion barriers and other mechanisms associated with bacterial resistance in this phytopathogen. These mechanisms are important for a bacterium that is constantly under stress conditions in the host.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Cobre/farmacología , Farmacorresistencia Bacteriana , Xylella/efectos de los fármacos , Proteínas Portadoras/biosíntesis , Perfilación de la Expresión Génica , Viabilidad Microbiana , Polisacáridos Bacterianos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Xylella/fisiología
17.
Curr Microbiol ; 50(4): 223-8, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15902471

RESUMEN

Xylella fastidiosa is responsible for several economically important plant diseases. It is currently assumed that the symptoms are caused by vascular occlusion due to biofilm formation. Microarray technology was previously used to examine the global gene expression profile of X. fastidiosa freshly isolated from symptomatic plants or after several passages by axenic culture medium, and different pathogenicity profiles have been obtained. In the present study the expression of some pathogenicity-related genes was evaluated in vitro and in planta by RT-PCR. The results suggest that adhesion is important at the beginning of biofilm formation, while the genes related to adaptation are essential for the organism's maintenance in planta. Similar results were observed in vitro mainly for the adhesion genes. The pattern of expression observed suggests that adhesion modulates biofilm formation whereas the expression of some adaptation genes may be related to the environment in which the organism is living.


Asunto(s)
Enfermedades de las Plantas/microbiología , Virulencia/genética , Xylella/genética , Xylella/patogenicidad , Citrus sinensis/microbiología , Expresión Génica , Genes Bacterianos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Xylella/crecimiento & desarrollo
18.
Genet. mol. biol ; 30(3,suppl): 1024-1029, 2007. ilus, tab
Artículo en Inglés | LILACS | ID: lil-467281

RESUMEN

In this work we describe all the computational environments, pipelines, and web services developed for the CitEST transcriptome project, on which all the annotation researchers relied. We also present a complete list of CitEST libraries and, for each of them, the general features after the in silico processing, showing some quantitative information.

19.
Genet. mol. biol ; 30(3,suppl): 841-847, 2007. ilus, tab, graf
Artículo en Inglés | LILACS | ID: lil-467262

RESUMEN

Terpenoids constitute the largest and most diverse class of natural products. They are important factors for aroma and flavor, and their synthesis is basically done from two compounds: isopentenyl diphosphate and dimethylallyl diphosphate. Isopentenyl diphosphate is synthesized through two different pathways, one that occurs in the cytoplasm and one in the plastid. With the sequencing of ESTs from citrus, we were able to perform in silico analyses on the pathways that lead to the synthesis of terpenes as well as on the terpene synthases present in sweet orange. Moreover, expression analysis using real-time qPCR was performed to verify the expression pattern of a terpene synthase in plants. The results show that all the pathways for isopentenyl diphosphate are present in citrus and a high expression of terpene synthases seems to have an important role in the constitution of the essential oils of citrus.

20.
Genet. mol. biol ; 30(3,suppl): 906-916, 2007. graf, tab
Artículo en Inglés | LILACS | ID: lil-467269

RESUMEN

CitEST project resulted in the construction of cDNA libraries from different Citrus sp. tissues under various physiological conditions. Among them, plantlets of Rangpur lime were exposed to hydroponic conditions with and without water stress using PEG6000. RNA from roots was obtained and generated a total of 4,130 valid cDNA reads, with 2,020 from the non-stressed condition and 2,110 from the stressed set. Bioinformatic analyses measured the frequency of each read in the libraries and yielded an in silico transcriptional profile for each condition. A total of 40 contigs were differentially expressed and allowed to detect up-regulated homologue sequences to well known genes involved in stress response, such as aquaporins, dehydrin, sucrose synthase, and proline-related synthase. Some sequences could not be classified by using FunCat and remained with an unknown function. A large number of sequences presented high similarities to annotated genes involved with cell energy, protein synthesis and cellular transport, suggesting that Rangpur lime may sustain active cell growth under stressed condition. The presence of membrane transporters and cell signaling components could be an indication of a coordinated morphological adaptation and biochemical response during drought, helping to explain the higher tolerance of this rootstock to water stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA