Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Haematol ; 203(3): 416-425, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37580908

RESUMEN

Here we evaluated the epigenomic and transcriptomic profile of XPO1 mutant chronic lymphocytic leukaemia (CLL) and their clinical phenotype. By ATAC-seq, chromatin regions that were more accessible in XPO1 mutated CLL were enriched of binding sites for transcription factors regulated by pathways emanating from the B-cell receptor (BCR), including NF-κB signalling, p38-JNK and RAS-RAF-MEK-ERK. XPO1 mutant CLL, consistent with the chromatin accessibility changes, were enriched with transcriptomic features associated with BCR and cytokine signalling. By combining epigenomic and transcriptomic data, MIR155HG, the host gene of miR-155, and MYB, the transcription factor that positively regulates MIR155HG, were upregulated by RNA-seq and their promoters were more accessible by ATAC-seq. To evaluate the clinical impact of XPO1 mutations, we investigated a total of 957 early-stage CLL subdivided into 3 independent cohorts (N = 276, N = 286 and N = 395). Next-generation sequencing analysis identified XPO1 mutations as a novel predictor of shorter time to first treatment (TTFT) in all cohorts. Notably, XPO1 mutations maintained their prognostic value independent of the immunoglobulin heavy chain variable status and early-stage prognostic models. These data suggest that XPO1 mutations, conceivably through increased miR-155 levels, may enhance BCR signalling leading to higher proliferation and shorter TTFT in early-stage CLL.

2.
Br J Haematol ; 198(6): 1016-1022, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35829664

RESUMEN

Richter syndrome (RS) is mostly due to the direct transformation of the chronic lymphocytic leukaemia (CLL) clone, as documented by the same immunoglobulin heavy-chain variable region (IGHV) rearrangement in both CLL and RS cells. In rare cases characterized by a better outcome, the RS clone harbours a different IGHV rearrangement compared to the CLL phase. We investigated the CLL phase of clonally unrelated RS to test whether the RS clone was already identifiable prior to clinicopathologic transformation, albeit undetectable by conventional approaches. CLL cells of eight patients with unrelated RS were subjected to an ultra-deep next-generation sequencing (NGS) approach with a sensitivity of 10-6 . In 7/8 cases, the RS rearrangement was not identified in the CLL phase. In one case, the RS clone was identified at a very low frequency in the CLL phase, conceivably due to the concomitance of CLL sampling and RS diagnosis. Targeted resequencing revealed that clonally unrelated RS carries genetic lesions primarily affecting the TP53, MYC, ATM and NOTCH1 genes. Conversely, mutations frequently involved in de novo diffuse large B-cell lymphoma (DLBCL) without a history of CLL were absent. These results suggest that clonally unrelated RS is a truly de novo lymphoma with a mutational profile reminiscent, at least in part, of clonally related RS.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Aberraciones Cromosómicas , Humanos , Región Variable de Inmunoglobulina/genética , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Mutación
3.
Br J Haematol ; 195(1): 108-112, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34291829

RESUMEN

We aimed at molecularly dissecting the anatomical heterogeneity of small lymphocytic lymphoma (SLL), by analysing a cohort of 12 patients for whom paired DNA from a lymph node biopsy and circulating cells, as well as plasma-circulating tumour DNA (ctDNA) was available. Notably, the analyses of the lymph node biopsy and of circulating cells complement each other since a fraction of mutations (20·4% and 36·4%, respectively) are unique to each compartment. Plasma ctDNA identified two additional unique mutations. Consistently, the different synchronous sources of tumour DNA complement each other in informing on driver gene mutations in SLL harbouring potential prognostic and/or predictive value.


Asunto(s)
Aberraciones Cromosómicas , ADN de Neoplasias/sangre , Leucemia Linfocítica Crónica de Células B/patología , Ganglios Linfáticos/patología , Adenina/análogos & derivados , Adenina/uso terapéutico , Anciano , Biopsia , Deleción Cromosómica , Cromosomas Humanos Par 12 , Cromosomas Humanos Par 13/ultraestructura , Cromosomas Humanos Par 17/ultraestructura , Variaciones en el Número de Copia de ADN , ADN de Neoplasias/análisis , Femenino , Genes de Inmunoglobulinas , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Inmunoterapia , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/genética , Ganglios Linfáticos/química , Masculino , Persona de Mediana Edad , Mutación , Piperidinas/uso terapéutico
5.
Front Oncol ; 13: 1164517, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152045

RESUMEN

The assessment of the cancer mutational profile is crucial for patient management, stratification, and therapeutic decisions. At present, in hematological malignancies with a solid mass, such as lymphomas, tumor genomic profiling is generally performed on the tissue biopsy, but the tumor may harbor genetic lesions that are unique to other anatomical compartments. The analysis of circulating tumor DNA (ctDNA) on the liquid biopsy is an emerging approach that allows genotyping and monitoring of the disease during therapy and follow-up. This review presents the different methods for ctDNA analysis and describes the application of liquid biopsy in different hematological malignancies. In diffuse large B-cell lymphoma (DLBCL) and Hodgkin lymphoma (HL), ctDNA analysis on the liquid biopsy recapitulates the mutational profile of the tissue biopsy and can identify mutations otherwise absent on the tissue biopsy. In addition, changes in the ctDNA amount after one or two courses of chemotherapy significantly predict patient outcomes. ctDNA analysis has also been tested in myeloid neoplasms with promising results. In addition to mutational analysis, liquid biopsy also carries potential future applications of ctDNA, including the analysis of ctDNA fragmentation and epigenetic patterns. On these grounds, several clinical trials aiming at incorporating ctDNA analysis for treatment tailoring are currently ongoing in hematological malignancies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA