Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 127(21): 213001, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34860090

RESUMEN

We report a measurement of the radiative lifetime of the ^{2}F_{7/2} level of ^{171}Yb^{+} that is coupled to the ^{2}S_{1/2} ground state via an electric octupole transition. The radiative lifetime is determined to be 4.98(25)×10^{7} s, corresponding to 1.58(8) yr. The result reduces the relative uncertainty in this exceptionally long excited state lifetime by 1 order of magnitude with respect to previous experimental estimates. Our method is based on the coherent excitation of the corresponding transition and avoids limitations through competing decay processes. The explicit dependence on the laser intensity is eliminated by simultaneously measuring the resonant Rabi frequency and the induced quadratic Stark shift. Combining the result with information on the dynamic differential polarizability permits a calculation of the transition matrix element to infer the radiative lifetime.

2.
Phys Rev Lett ; 126(1): 011102, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33480794

RESUMEN

We compare two optical clocks based on the ^{2}S_{1/2}(F=0)→^{2}D_{3/2}(F=2) electric quadrupole (E2) and the ^{2}S_{1/2}(F=0)→^{2}F_{7/2}(F=3) electric octupole (E3) transition of ^{171}Yb^{+} and measure the frequency ratio ν_{E3}/ν_{E2}=0.932829404530965376(32), improving upon previous measurements by an order of magnitude. Using two caesium fountain clocks, we find ν_{E3}=642121496772645.10(8) Hz, the most accurate determination of an optical transition frequency to date. Repeated measurements of both quantities over several years are analyzed for potential violations of local position invariance. We improve by factors of about 20 and 2 the limits for fractional temporal variations of the fine structure constant α to 1.0(1.1)×10^{-18}/yr and of the proton-to-electron mass ratio µ to -8(36)×10^{-18}/yr. Using the annual variation of the Sun's gravitational potential at Earth Φ, we improve limits for a potential coupling of both constants to gravity, (c^{2}/α)(dα/dΦ)=14(11)×10^{-9} and (c^{2}/µ)(dµ/dΦ)=7(45)×10^{-8}.

3.
Phys Rev Lett ; 125(14): 143201, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33064511

RESUMEN

We introduce a scheme to coherently suppress second-rank tensor frequency shifts in atomic clocks, relying on the continuous rotation of an external magnetic field during the free atomic state evolution in a Ramsey sequence. The method retrieves the unperturbed frequency within a single interrogation cycle and is readily applicable to various atomic clock systems. For the frequency shift due to the electric quadrupole interaction, we experimentally demonstrate suppression by more than two orders of magnitude for the ^{2}S_{1/2}→^{2}D_{3/2} transition of a single trapped ^{171}Yb^{+} ion. The scheme provides particular advantages in the case of the ^{171}Yb^{+} ^{2}S_{1/2}→^{2}F_{7/2} electric octupole (E3) transition. For an improved estimate of the residual quadrupole shift for this transition, we measure the excited state electric quadrupole moments Θ(^{2}D_{3/2})=1.95(1)ea_{0}^{2} and Θ(^{2}F_{7/2})=-0.0297(5)ea_{0}^{2} with e the elementary charge and a_{0} the Bohr radius, improving the measurement uncertainties by one order of magnitude.

4.
Phys Rev Lett ; 116(6): 063001, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26918984

RESUMEN

We experimentally investigate an optical frequency standard based on the (2)S1/2(F=0)→(2)F7/2(F=3) electric octupole (E3) transition of a single trapped (171)Yb+ ion. For the spectroscopy of this strongly forbidden transition, we utilize a Ramsey-type excitation scheme that provides immunity to probe-induced frequency shifts. The cancellation of these shifts is controlled by interleaved single-pulse Rabi spectroscopy, which reduces the related relative frequency uncertainty to 1.1×10(-18). To determine the frequency shift due to thermal radiation emitted by the ion's environment, we measure the static scalar differential polarizability of the E3 transition as 0.888(16)×10(-40) J m(2)/V(2) and a dynamic correction η(300 K)=-0.0015(7). This reduces the uncertainty due to thermal radiation to 1.8×10(-18). The residual motion of the ion yields the largest contribution (2.1×10(-18)) to the total systematic relative uncertainty of the clock of 3.2×10(-18).

5.
Phys Rev Lett ; 113(21): 210802, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25479483

RESUMEN

Accurate measurements of different transition frequencies between atomic levels of the electronic and hyperfine structure over time are used to investigate temporal variations of the fine structure constant α and the proton-to-electron mass ratio µ. We measure the frequency of the (2)S1/2→(2)F7/2 electric octupole (E3) transition in (171)Yb(+) against two caesium fountain clocks as f(E3)=642,121,496,772,645.36 Hz with an improved fractional uncertainty of 3.9×10(-16). This transition frequency shows a strong sensitivity to changes of α. Together with a number of previous and recent measurements of the (2)S1/2→(2)D3/2 electric quadrupole transition in (171)Yb(+) and with data from other elements, a least-squares analysis yields (1/α)(dα/dt)=-0.20(20)×10(-16)/yr and (1/µ)(dµ/dt)=-0.5(1.6)×10(-16)/yr, confirming a previous limit on dα/dt and providing the most stringent limit on dµ/dt from laboratory experiments.

6.
Phys Rev Lett ; 109(21): 213002, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23215592

RESUMEN

We experimentally investigate a recently proposed optical excitation scheme V. I. Yudin et al. [Phys. Rev. A 82, 011804(R) (2010)] that is a generalization of Ramsey's method of separated oscillatory fields and consists of a sequence of three excitation pulses. The pulse sequence is tailored to produce a resonance signal that is immune to the light shift and other shifts of the transition frequency that are correlated with the interaction with the probe field. We investigate the scheme using a single trapped ^{171}Yb^{+} ion and excite the highly forbidden (2)S(1/2) - (2)F(7/2) electric-octupole transition under conditions where the light shift is much larger than the excitation linewidth, which is in the hertz range. The experiments demonstrate a suppression of the light shift by four orders of magnitude and an immunity against its fluctuations.

7.
Phys Rev Lett ; 108(9): 090801, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22463621

RESUMEN

We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition (2)S(1/2)(F=0)→(2)F(7/2)(F=3) in a single trapped (171)Yb(+) ion. The extraordinary features of this transition result from the long natural lifetime and from the 4f(13)6s(2) configuration of the upper state. The electric-quadrupole moment of the (2)F(7/2) state is measured as -0.041(5)ea(0)(2), where e is the elementary charge and a(0) the Bohr radius. We also obtain information on the differential scalar and tensorial components of the static polarizability and of the probe-light-induced ac Stark shift of the octupole transition. With a real-time extrapolation scheme that eliminates this shift, the unperturbed transition frequency is realized with a fractional uncertainty of 7.1×10(-17). The frequency is measured as 642 121 496 772 645.15(52) Hz.

8.
Phys Rev Lett ; 107(3): 030801, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21838344

RESUMEN

We develop a concept of atomic clocks where the blackbody radiation shift and its fluctuations can be suppressed by 1-3 orders of magnitude independent of the environmental temperature. The suppression is based on the fact that in a system with two accessible clock transitions (with frequencies ν1 and ν2) which are exposed to the same thermal environment, there exists a "synthetic" frequency ν(syn) ∝ (ν1 - ε12ν2) largely immune to the blackbody radiation shift. For example, in the case of 171Yb+ it is possible to create a synthetic-frequency-based clock in which the fractional blackbody radiation shift can be suppressed to the level of 10(-18) in a broad interval near room temperature (300±15 K). We also propose a realization of our method with the use of an optical frequency comb generator stabilized to both frequencies ν1 and ν2, where the frequency ν(syn) is generated as one of the components of the comb spectrum.

9.
Phys Rev Lett ; 105(18): 182501, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-21231100

RESUMEN

We consider the excitation of the nuclear transition 229gTh-229mTh near 7.6 eV in singly ionized thorium via an electronic bridge process. The process relies on the excitation of the electron shell by two laser photons whose sum frequency is equal to the nuclear transition frequency. This scheme allows us to determine the nuclear transition frequency with high accuracy. Based on calculations of the electronic level structure of Th+ which combine the configuration-interaction method and many-body perturbation theory, we estimate that a nuclear excitation rate in the range of 10 s⁻¹ can be obtained using conventional laser sources.

10.
Phys Rev Lett ; 94(23): 230801, 2005 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-16090454

RESUMEN

We compare the frequencies of the 6s2S(1/2)(F = 0)-->5d2D(3/2)(F = 2) reference transition in 171Yb+ for two single ions stored in independent traps. The quadrupole moment of the 5d2D(3/2) state is measured to be 9.32(48) x 10(-40) C m2 and from the quadratic Stark shift the relevant scalar and tensor polarizabilities are determined to be alphaS(S(1/2)) - alphaS(D(3/2)) = -6.9(1.4) x 10(-40) J m2/V2 and alphaT(D(3/2)) = -13.6(2.2) x 10(-40) J m2/V2, respectively. In the absence of external perturbations we find a mean frequency difference between the two trapped ions of 0.26(42) Hz, corresponding to a relative difference of 3.8(6.1) x 10(-16). This is comparable to the agreement found in the most accurate comparisons between cesium fountain clocks.

11.
Phys Rev Lett ; 93(17): 170801, 2004 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-15525061

RESUMEN

The comparison of different atomic transition frequencies over time can be used to determine the present value of the temporal derivative of the fine structure constant alpha in a model-independent way without assumptions on constancy or variability of other parameters, allowing tests of the consequences of unification theories. We have measured an optical transition frequency at 688 THz in 171Yb+ with a cesium atomic clock at 2 times separated by 2.8 yr and find a value for the fractional variation of the frequency ratio f(Yb)/f(Cs) of (-1.2+/-4.4)x10(-15) yr(-1), consistent with zero. Combined with recently published values for the constancy of other transition frequencies this measurement sets an upper limit on the present variability of alpha at the level of 2.0x10(-15) yr(-1) (1sigma), corresponding so far to the most stringent limit from laboratory experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA