Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954406

RESUMEN

Recently, nanotechnology has shown great potential in the field of cancer therapy due to its ability to improve the stability and solubility and reduce side effects of drugs. The biomimetic mineralization strategy based on natural proteins and metal ions provides an innovative approach for the synthesis of nanoparticles. This strategy utilizes the unique properties of natural proteins and the mineralization ability of metal ions to combine nanoparticles through biomimetic mineralization processes, achieving the effective treatment of tumors. The precise control of the mineralization process between proteins and metal ions makes it possible to obtain nanoparticles with the ideal size, shape, and surface characteristics, thereby enhancing their stability and targeting ability in vivo. Herein, initially, we analyze the role of protein molecules in biomineralization and comprehensively review the functions, properties, and applications of various common proteins and metal particles. Subsequently, we systematically review and summarize the application directions of nanoparticles synthesized based on protein biomineralization in tumor treatment. Specifically, we discuss their use as efficient drug delivery carriers and role in mediating monotherapy and synergistic therapy using multiple modes. Also, we specifically review the application of nanomedicine constructed through biomimetic mineralization strategies using natural proteins and metal ions in improving the efficiency of tumor immunotherapy.

2.
Adv Healthc Mater ; : e2401436, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923231

RESUMEN

Contrast-enhanced ultrasound (CEUS) plays a crucial role in cancer diagnosis. The use of ultrasound contrast agents (UCAs) is inevitable in CEUS. However, current applications of UCAs primarily focus on enhancing imaging quality of ultrasound contrast rather than serving as integrated platforms for both diagnosis and treatment in clinical settings. In this study, a novel UCA, termed NPs-DPPA(C3F8), is innovatively prepared using a combination of nanoprecipitation and ultrasound vibration methods. The DPPA lipid possesses inherent antiangiogenic and antitumor activities, and when combined with C3F8, it functions as a theranostic agent. Notably, the preparation of NPs-DPPA(C3F8) is straightforward, requiring only one hour from raw materials to the final product due to the use of a single material, DPPA. NPs-DPPA(C3F8) exhibits inherent antiangiogenic and biotherapeutic activities, effectively inhibiting triple-negative breast cancer (TNBC) angiogenesis and reducing VEGFA expression both in vitro and in vivo. Clinically, NPs-DPPA(C3F8) enables simultaneous real-time imaging, tumor assessment, and antitumor activity. Additionally, through ultrasound cavitation, NPs-DPPA(C3F8) can overcome the dense vascular walls to increase accumulation at the tumor site and facilitate internalization by tumor cells. The successful preparation of NPs-DPPA(C3F8) offers a novel approach for integrating clinical diagnosis and treatment of TNBC.

3.
ACS Nano ; 17(15): 14424-14441, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37498878

RESUMEN

High expression of programmed death ligand 1 (PD-L1) and strong immune evasion ability of the tumor microenvironment (TME) are maintained through mutual regulation between different immune and stromal cells, which causes obstructions for cancer immunotherapy, especially immunosuppressive M2-like phenotype tumor-associated macrophages (TAMs). Repolarization of TAMs to the M1-like phenotype could secrete proinflammatory cytokines and reverse the immunosuppressive state of the TME. However, we found that reactive oxygen species (ROS) generated by repolarized TAMs could be a double-edged sword: ROS cause a stronger suppressive effect on CD8 T cells through an increased proportion of apoptotic regulatory T (Treg) cells. Thus, simply repolarizing TAMs while ignoring the suppressed function of T cells is insufficient for generating adequate antitumor immunity. Accordingly, we engineered multifunctional redox-responsive nanoplatform NPs (M+C+siPD-L1) with Toll-like receptor agonist (M), catalase (C), and siPD-L1 encased for coregulation of both TAMs and T cells to maximize cancer immunotherapy. Our results demonstrated that NPs (M+C+siPD-L1) showed superior biocompatibility and intratumor accumulation. For in vitro experiments, NPs (M+C+siPD-L1) simultaneously repolarized TAMs to the M1-like phenotype, hydrolyzed extra ROS, knocked down the expression of PD-L1 on tumor cells, and rescued the function of CD8 T cells suppressed by Treg cells. In both orthotopic Hepa1-6 and 4T1 tumor-bearing mouse models, NPs (M+C+siPD-L1) could effectively evoke active systemic antitumor immunity and inhibit tumor growth. The combination of repolarizing TAMs, hydrolyzing extra ROS, and knocking down the expression of PD-L1 proves to be a synergistic approach in cancer immunotherapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Ratones , Animales , Antígeno B7-H1/genética , Especies Reactivas de Oxígeno/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo , Inmunoterapia , Inmunosupresores/farmacología , Microambiente Tumoral , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA