Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Methods ; 19(7): 833-844, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35697834

RESUMEN

Inosine is a prevalent RNA modification in animals and is formed when an adenosine is deaminated by the ADAR family of enzymes. Traditionally, inosines are identified indirectly as variants from Illumina RNA-sequencing data because they are interpreted as guanosines by cellular machineries. However, this indirect method performs poorly in protein-coding regions where exons are typically short, in non-model organisms with sparsely annotated single-nucleotide polymorphisms, or in disease contexts where unknown DNA mutations are pervasive. Here, we show that Oxford Nanopore direct RNA sequencing can be used to identify inosine-containing sites in native transcriptomes with high accuracy. We trained convolutional neural network models to distinguish inosine from adenosine and guanosine, and to estimate the modification rate at each editing site. Furthermore, we demonstrated their utility on the transcriptomes of human, mouse and Xenopus. Our approach expands the toolkit for studying adenosine-to-inosine editing and can be further extended to investigate other RNA modifications.


Asunto(s)
Nanoporos , ARN , Adenosina/genética , Animales , Inosina/genética , Ratones , ARN/genética , ARN/metabolismo , Edición de ARN , Análisis de Secuencia de ARN
2.
Acc Chem Res ; 56(21): 3033-3044, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37827987

RESUMEN

Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by the adenosine deaminase acting on the RNA (ADAR) family of enzymes of which there are three members (ADAR1, ADAR2, and ADAR3), is a major gene regulatory mechanism that diversifies the transcriptome. It is widespread in many metazoans, including humans. As inosine is interpreted by cellular machineries mainly as guanosine, A-to-I editing effectively gives A-to-G nucleotide changes. Depending on its location, an editing event can generate new protein isoforms or influence other RNA processing pathways. Researchers have found that ADAR-mediated editing performs diverse functions. For example, it enables living organisms such as cephalopods to adapt rapidly to fluctuating environmental conditions such as water temperature. In development, the loss of ADAR1 is embryonically lethal partly because endogenous double-stranded RNAs (dsRNAs) are no longer marked by inosines, which signal "self", and thus cause the melanoma differentiation-associated protein 5 (MDA5) sensor to trigger a deleterious interferon response. Hence, ADAR1 plays a key role in preventing aberrant activation of the innate immune system. Furthermore, ADAR enzymes have been implicated in myriad human diseases. Intriguingly, some cancer cells are known to exploit ADAR1 activity to dodge immune responses. However, the exact identities of immunogenic RNAs in different biological contexts have remained elusive. Consequently, there is tremendous interest in identifying inosine-containing RNAs in the cell.The identification of A-to-I RNA editing sites is dependent on the sequencing of nucleic acids. Technological and algorithmic advancements over the past decades have revolutionized the way editing events are detected. At the beginning, the discovery of editing sites relies on Sanger sequencing, a first-generation technology. Both RNA, which is reverse transcribed into complementary DNA (cDNA), and genomic DNA (gDNA) from the same source are analyzed. After sequence alignment, one would require an adenosine to be present in the genome but a guanosine to be detected in the RNA sample for a position to be declared as an editing site. However, an issue with Sanger sequencing is its low throughput. Subsequently, Illumina sequencing, a second-generation technology, was invented. By permitting the simultaneous interrogation of millions of molecules, it enables many editing sites to be identified rapidly. However, a key challenge is that the Illumina platform produces short sequencing reads that can be difficult to map accurately. To tackle the challenge, we and others developed computational workflows with a series of filters to discard sites that are likely to be false positives. When Illumina sequencing data sets are properly analyzed, A-to-G variants should emerge as the most dominant mismatch type. Moreover, the quantitative nature of the data allows us to build a comprehensive atlas of editing-level measurements across different biological contexts, providing deep insights into the spatiotemporal dynamics of RNA editing. However, difficulties remain in identifying true A-to-I editing sites in short protein-coding exons or in organisms and diseases where DNA mutations and genomic polymorphisms are prevalent and mostly unknown. Nanopore sequencing, a third-generation technology, promises to address the difficulties, as it allows native RNAs to be sequenced without conversion to cDNA, preserving base modifications that can be directly detected through machine learning. We recently demonstrated that nanopore sequencing could be used to identify A-to-I editing sites in native RNA directly. Although further work is needed to enhance the detection accuracy in single molecules from fewer cells, the nanopore technology holds the potential to revolutionize epitranscriptomic studies.


Asunto(s)
Edición de ARN , ARN Bicatenario , Humanos , ADN Complementario/genética , ADN Complementario/metabolismo , Inosina/metabolismo , Guanosina/metabolismo
3.
BMC Biol ; 21(1): 251, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946231

RESUMEN

BACKGROUND: Xenopus has served as a valuable model system for biomedical research over the past decades. Notably, ADAR was first detected in frog oocytes and embryos as an activity that unwinds RNA duplexes. However, the scope of A-to-I RNA editing by the ADAR enzymes in Xenopus remains underexplored. RESULTS: Here, we identify millions of editing events in Xenopus with high accuracy and systematically map the editome across developmental stages, adult organs, and species. We report diverse spatiotemporal patterns of editing with deamination activity highest in early embryogenesis before zygotic genome activation and in the ovary. Strikingly, editing events are poorly conserved across different Xenopus species. Even sites that are detected in both X. laevis and X. tropicalis show largely divergent editing levels or developmental profiles. In protein-coding regions, only a small subset of sites that are found mostly in the brain are well conserved between frogs and mammals. CONCLUSIONS: Collectively, our work provides fresh insights into ADAR activity in vertebrates and suggest that species-specific editing may play a role in each animal's unique physiology or environmental adaptation.


Asunto(s)
Edición de ARN , ARN , Animales , Femenino , Xenopus laevis/genética , Xenopus laevis/metabolismo , Perfilación de la Expresión Génica , Mamíferos/genética , Transcriptoma , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo
4.
Nature ; 550(7675): 249-254, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-29022589

RESUMEN

Adenosine-to-inosine (A-to-I) RNA editing is a conserved post-transcriptional mechanism mediated by ADAR enzymes that diversifies the transcriptome by altering selected nucleotides in RNA molecules. Although many editing sites have recently been discovered, the extent to which most sites are edited and how the editing is regulated in different biological contexts are not fully understood. Here we report dynamic spatiotemporal patterns and new regulators of RNA editing, discovered through an extensive profiling of A-to-I RNA editing in 8,551 human samples (representing 53 body sites from 552 individuals) from the Genotype-Tissue Expression (GTEx) project and in hundreds of other primate and mouse samples. We show that editing levels in non-repetitive coding regions vary more between tissues than editing levels in repetitive regions. Globally, ADAR1 is the primary editor of repetitive sites and ADAR2 is the primary editor of non-repetitive coding sites, whereas the catalytically inactive ADAR3 predominantly acts as an inhibitor of editing. Cross-species analysis of RNA editing in several tissues revealed that species, rather than tissue type, is the primary determinant of editing levels, suggesting stronger cis-directed regulation of RNA editing for most sites, although the small set of conserved coding sites is under stronger trans-regulation. In addition, we curated an extensive set of ADAR1 and ADAR2 targets and showed that many editing sites display distinct tissue-specific regulation by the ADAR enzymes in vivo. Further analysis of the GTEx data revealed several potential regulators of editing, such as AIMP2, which reduces editing in muscles by enhancing the degradation of the ADAR proteins. Collectively, our work provides insights into the complex cis- and trans-regulation of A-to-I editing.


Asunto(s)
Adenosina Desaminasa , Primates/genética , Edición de ARN/genética , Proteínas de Unión al ARN , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Animales , Femenino , Genotipo , Células HEK293 , Humanos , Masculino , Ratones , Músculos/metabolismo , Proteínas Nucleares/metabolismo , Especificidad de Órganos/genética , Proteolisis , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Análisis Espacio-Temporal , Especificidad de la Especie , Transcriptoma/genética
5.
Nucleic Acids Res ; 46(14): 7379-7395, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29992293

RESUMEN

Adenosine-to-inosine (A-to-I) RNA editing displays diverse spatial patterns across different tissues. However, the human genome encodes only two catalytically active editing enzymes (ADAR1 and ADAR2), suggesting that other regulatory factors help shape the editing landscape. Here, we show that the splicing factor SRSF9 selectively controls the editing of many brain-specific sites in primates. SRSF9 is more lowly expressed in the brain than in non-brain tissues. Gene perturbation experiments and minigene analysis of candidate sites demonstrated that SRSF9 could robustly repress A-to-I editing by ADAR2. We found that SRSF9 biochemically interacted with ADAR2 in the nucleus via its RRM2 domain. This interaction required the presence of the RNA substrate and disrupted the formation of ADAR2 dimers. Transcriptome-wide location analysis and RNA sequencing revealed 1328 editing sites that are controlled directly by SRSF9. This regulon is significantly enriched for brain-specific sites. We further uncovered a novel motif in the ADAR2-dependent SRSF9 binding sites and provided evidence that the splicing factor prevents loss of cell viability by inhibiting ADAR2-mediated editing of genes involved in proteostasis, energy metabolism, the cell cycle and DNA repair. Collectively, our results highlight the importance of SRSF9 as an editing regulator and suggest potential roles for other splicing factors.


Asunto(s)
Adenosina Desaminasa/metabolismo , Sitios de Unión/genética , Encéfalo/citología , Edición de ARN/genética , Proteínas de Unión al ARN/genética , Factores de Empalme Serina-Arginina/metabolismo , Adenosina/metabolismo , Secuencia de Bases , Línea Celular , Núcleo Celular/genética , Células HEK293 , Humanos , Inosina/metabolismo , Proteínas de Unión al ARN/metabolismo
6.
Nat Chem Biol ; 12(11): 980-987, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27618190

RESUMEN

CRISPR-Cas9 has emerged as a powerful technology that enables ready modification of the mammalian genome. The ability to modulate Cas9 activity can reduce off-target cleavage and facilitate precise genome engineering. Here we report the development of a Cas9 variant whose activity can be switched on and off in human cells with 4-hydroxytamoxifen (4-HT) by fusing the Cas9 enzyme with the hormone-binding domain of the estrogen receptor (ERT2). The final optimized variant, termed iCas, showed low endonuclease activity without 4-HT but high editing efficiency at multiple loci with the chemical. We also tuned the duration and concentration of 4-HT treatment to reduce off-target genome modification. Additionally, we benchmarked iCas against other chemical-inducible methods and found that it had the fastest on rate and that its activity could be toggled on and off repeatedly. Collectively, these results highlight the utility of iCas for rapid and reversible control of genome-editing function.


Asunto(s)
Sistemas CRISPR-Cas/efectos de los fármacos , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Tamoxifeno/análogos & derivados , Células HEK293 , Humanos , Tamoxifeno/química , Tamoxifeno/farmacología
7.
Genome Res ; 23(1): 201-16, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22960373

RESUMEN

The Xenopus embryo has provided key insights into fate specification, the cell cycle, and other fundamental developmental and cellular processes, yet a comprehensive understanding of its transcriptome is lacking. Here, we used paired end RNA sequencing (RNA-seq) to explore the transcriptome of Xenopus tropicalis in 23 distinct developmental stages. We determined expression levels of all genes annotated in RefSeq and Ensembl and showed for the first time on a genome-wide scale that, despite a general state of transcriptional silence in the earliest stages of development, approximately 150 genes are transcribed prior to the midblastula transition. In addition, our splicing analysis uncovered more than 10,000 novel splice junctions at each stage and revealed that many known genes have additional unannotated isoforms. Furthermore, we used Cufflinks to reconstruct transcripts from our RNA-seq data and found that ∼13.5% of the final contigs are derived from novel transcribed regions, both within introns and in intergenic regions. We then developed a filtering pipeline to separate protein-coding transcripts from noncoding RNAs and identified a confident set of 6686 noncoding transcripts in 3859 genomic loci. Since the current reference genome, XenTro3, consists of hundreds of scaffolds instead of full chromosomes, we also performed de novo reconstruction of the transcriptome using Trinity and uncovered hundreds of transcripts that are missing from the genome. Collectively, our data will not only aid in completing the assembly of the Xenopus tropicalis genome but will also serve as a valuable resource for gene discovery and for unraveling the fundamental mechanisms of vertebrate embryogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Análisis de Secuencia de ARN , Transcriptoma , Xenopus/genética , Animales , Ectima Contagioso , Embrión no Mamífero/metabolismo , Intrones , Larva/genética , Larva/metabolismo , Mapeo Físico de Cromosoma , Empalme del ARN , ARN no Traducido , Alineación de Secuencia , Xenopus/crecimiento & desarrollo
8.
PLoS Med ; 12(2): e1001782, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25647612

RESUMEN

BACKGROUND: We know very little about the genetic factors affecting susceptibility to drug-induced central nervous system (CNS) toxicities, and this has limited our ability to optimally utilize existing drugs or to develop new drugs for CNS disorders. For example, haloperidol is a potent dopamine antagonist that is used to treat psychotic disorders, but 50% of treated patients develop characteristic extrapyramidal symptoms caused by haloperidol-induced toxicity (HIT), which limits its clinical utility. We do not have any information about the genetic factors affecting this drug-induced toxicity. HIT in humans is directly mirrored in a murine genetic model, where inbred mouse strains are differentially susceptible to HIT. Therefore, we genetically analyzed this murine model and performed a translational human genetic association study. METHODS AND FINDINGS: A whole genome SNP database and computational genetic mapping were used to analyze the murine genetic model of HIT. Guided by the mouse genetic analysis, we demonstrate that genetic variation within an ABC-drug efflux transporter (Abcb5) affected susceptibility to HIT. In situ hybridization results reveal that Abcb5 is expressed in brain capillaries, and by cerebellar Purkinje cells. We also analyzed chromosome substitution strains, imaged haloperidol abundance in brain tissue sections and directly measured haloperidol (and its metabolite) levels in brain, and characterized Abcb5 knockout mice. Our results demonstrate that Abcb5 is part of the blood-brain barrier; it affects susceptibility to HIT by altering the brain concentration of haloperidol. Moreover, a genetic association study in a haloperidol-treated human cohort indicates that human ABCB5 alleles had a time-dependent effect on susceptibility to individual and combined measures of HIT. Abcb5 alleles are pharmacogenetic factors that affect susceptibility to HIT, but it is likely that additional pharmacogenetic susceptibility factors will be discovered. CONCLUSIONS: ABCB5 alleles alter susceptibility to HIT in mouse and humans. This discovery leads to a new model that (at least in part) explains inter-individual differences in susceptibility to a drug-induced CNS toxicity.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/genética , Alelos , Encéfalo/metabolismo , Haloperidol/toxicidad , Síndromes de Neurotoxicidad/genética , Polimorfismo de Nucleótido Simple , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Adolescente , Adulto , Animales , Antipsicóticos/toxicidad , Barrera Hematoencefálica/metabolismo , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
9.
Nat Methods ; 9(6): 579-81, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22484847

RESUMEN

We developed a computational framework to robustly identify RNA editing sites using transcriptome and genome deep-sequencing data from the same individual. As compared with previous methods, our approach identified a large number of Alu and non-Alu RNA editing sites with high specificity. We also found that editing of non-Alu sites appears to be dependent on nearby edited Alu sites, possibly through the locally formed double-stranded RNA structure.


Asunto(s)
Elementos Alu , Edición de ARN , Análisis de Secuencia de ARN/métodos , Desaminasas APOBEC-1 , Línea Celular , Citidina Desaminasa/metabolismo , Humanos , Mapeo Nucleótido/métodos , ARN Bicatenario
10.
Mol Syst Biol ; 9: 632, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23295861

RESUMEN

Landmark events occur in a coordinated manner during pre-implantation development of the mammalian embryo, yet the regulatory network that orchestrates these events remains largely unknown. Here, we present the first systematic investigation of the network in pre-implantation mouse embryos using morpholino-mediated gene knockdowns of key embryonic stem cell (ESC) factors followed by detailed transcriptome analysis of pooled embryos, single embryos, and individual blastomeres. We delineated the regulons of Oct4, Sall4, and Nanog and identified a set of metabolism- and transport-related genes that were controlled by these transcription factors in embryos but not in ESCs. Strikingly, the knockdown embryos arrested at a range of developmental stages. We provided evidence that the DNA methyltransferase Dnmt3b has a role in determining the extent to which a knockdown embryo can develop. We further showed that the feed-forward loop comprising Dnmt3b, the pluripotency factors, and the miR-290-295 cluster exemplifies a network motif that buffers embryos against gene expression noise. Our findings indicate that Oct4, Sall4, and Nanog form a robust and integrated network to govern mammalian pre-implantation development.


Asunto(s)
Blastocisto/fisiología , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/fisiología , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción/genética , Animales , Blastocisto/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Técnicas de Cultivo de Embriones , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , MicroARNs/genética , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Transcripción/metabolismo , ADN Metiltransferasa 3B
11.
Proc Natl Acad Sci U S A ; 107(44): 18985-90, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-20956288

RESUMEN

A cyclical control circuit composed of four master regulators drives the Caulobacter cell cycle. We report that SciP, a helix-turn-helix transcription factor, is an essential component of this circuit. SciP is cell cycle-controlled and co-conserved with the global cell cycle regulator CtrA in the α-proteobacteria. SciP is expressed late in the cell cycle and accumulates preferentially in the daughter swarmer cell. At least 58 genes, including many flagellar and chemotaxis genes, are regulated by a type 1 incoherent feedforward motif in which CtrA activates sciP, followed by SciP repression of ctrA and CtrA target genes. We demonstrate that SciP binds to DNA at a motif distinct from the CtrA binding motif that is present in the promoters of genes co-regulated by SciP and CtrA. SciP overexpression disrupts the balance between activation and repression of the CtrA-SciP coregulated genes yielding filamentous cells and loss of viability. The type 1 incoherent feedforward circuit motif enhances the pulse-like expression of the downstream genes, and the negative feedback to ctrA expression reduces peak CtrA accumulation. The presence of SciP in the control network enhances the robustness of the cell cycle to varying growth rates.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter/metabolismo , Ciclo Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Caulobacter/genética , Proteínas de Unión al ADN/genética , Secuencias Hélice-Giro-Hélice , Unión Proteica/fisiología , Factores de Transcripción/genética
12.
Drug Discov Today ; 27(9): 2510-2525, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35738528

RESUMEN

CRISPR technologies are increasingly being investigated and utilized for the treatment of human genetic diseases via genome editing. CRISPR-Cas9 first generates a targeted DNA double-stranded break, and a functional gene can then be introduced to replace the defective copy in a precise manner by templated repair via the homology-directed repair (HDR) pathway. However, this is challenging owing to the relatively low efficiency of the HDR pathway compared with a rival random repair pathway known as non-homologous end joining (NHEJ). Small molecules can be employed to increase the efficiency of HDR and decrease that of NHEJ to improve the efficiency of precise knock-in genome editing. This review discusses the potential usage of such small molecules in the context of gene therapy and their drug-likeness, from a medicinal chemist's perspective.


Asunto(s)
Sistemas CRISPR-Cas , Reparación del ADN por Recombinación , Reparación del ADN por Unión de Extremidades , Edición Génica , Terapia Genética , Humanos
13.
ACS Synth Biol ; 11(1): 448-463, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34981924

RESUMEN

The raging COVID-19 pandemic has created an unprecedented demand for frequent and widespread testing to limit viral transmission. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) has emerged as a promising diagnostic platform for rapid detection of SARS-CoV-2, in part because it can be performed with simple instrumentation. However, isothermal amplification methods frequently yield spurious amplicons even in the absence of a template. Consequently, RT-LAMP assays can produce false positive results when they are based on generic intercalating dyes or pH-sensitive indicators. Here, we report the development of a sensitive RT-LAMP assay that leverages on a novel sequence-specific probe to guard against spurious amplicons. We show that our optimized fluorescent assay, termed LANTERN, takes only 30 min to complete and can be applied directly on swab or saliva samples. Furthermore, utilizing clinical RNA samples from 52 patients with COVID-19 infection and 21 healthy individuals, we demonstrate that our diagnostic test exhibits a specificity and positive predictive value of 95% with a sensitivity of 8 copies per reaction. Hence, our new probe-based RT-LAMP assay can serve as an inexpensive method for point-of-need diagnosis of COVID-19 and other infectious diseases.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , COVID-19/genética , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , ARN Viral/genética , SARS-CoV-2/genética , Humanos
14.
Methods Mol Biol ; 2181: 163-176, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32729080

RESUMEN

Adenosine-to-inosine (A-to-I) RNA editing is a fundamental posttranscriptional mechanism that greatly diversifies the transcriptome in many living organisms, including mammals. Multiple studies have demonstrated the importance of this process not just in normal development and physiology but also in various human diseases. Importantly, the precise editing level of a site may have downstream consequences on cellular behavior. Hence, the editing levels should be quantified as accurately as possible. In this chapter, we describe how to examine RNA editing in human and mouse tissues. The rapid development of next-generation sequencing technologies is affording us an unprecedented ability to accurately measure the editing levels of numerous sites simultaneously. Our experimental workflow includes the harvesting of high-quality RNA samples and the construction of different high-throughput sequencing libraries. We also delineate the computational steps needed to analyze the sequencing data from an Illumina platform.


Asunto(s)
Adenosina/análisis , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Inosina/análisis , Edición de ARN/genética , ARN/genética , Transcriptoma , Adenosina/genética , Animales , Genoma , Humanos , Inosina/genética , Ratones
15.
Nat Commun ; 12(1): 1739, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741959

RESUMEN

Extensive testing is essential to break the transmission of SARS-CoV-2, which causes the ongoing COVID-19 pandemic. Here, we present a CRISPR-based diagnostic assay that is robust to viral genome mutations and temperature, produces results fast, can be applied directly on nasopharyngeal (NP) specimens without RNA purification, and incorporates a human internal control within the same reaction. Specifically, we show that the use of an engineered AsCas12a enzyme enables detection of wildtype and mutated SARS-CoV-2 and allows us to perform the detection step with loop-mediated isothermal amplification (LAMP) at 60-65 °C. We also find that the use of hybrid DNA-RNA guides increases the rate of reaction, enabling our test to be completed within 30 minutes. Utilizing clinical samples from 72 patients with COVID-19 infection and 57 healthy individuals, we demonstrate that our test exhibits a specificity and positive predictive value of 100% with a sensitivity of 50 and 1000 copies per reaction (or 2 and 40 copies per microliter) for purified RNA samples and unpurified NP specimens respectively.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , ARN Guía de Kinetoplastida , SARS-CoV-2/genética , Proteínas Bacterianas/genética , COVID-19/virología , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endodesoxirribonucleasas/genética , Humanos , Técnicas de Diagnóstico Molecular/métodos , Mutación , Nasofaringe/virología , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/genética , Sensibilidad y Especificidad
16.
Nat Biotechnol ; 39(3): 336-346, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33106685

RESUMEN

Current methods for determining RNA structure with short-read sequencing cannot capture most differences between distinct transcript isoforms. Here we present RNA structure analysis using nanopore sequencing (PORE-cupine), which combines structure probing using chemical modifications with direct long-read RNA sequencing and machine learning to detect secondary structures in cellular RNAs. PORE-cupine also captures global structural features, such as RNA-binding-protein binding sites and reactivity differences at single-nucleotide variants. We show that shared sequences in different transcript isoforms of the same gene can fold into different structures, highlighting the importance of long-read sequencing for obtaining phase information. We also demonstrate that structural differences between transcript isoforms of the same gene lead to differences in translation efficiency. By revealing isoform-specific RNA structure, PORE-cupine will deepen understanding of the role of structures in controlling gene regulation.


Asunto(s)
Secuenciación de Nanoporos/métodos , Conformación de Ácido Nucleico , ARN/química , Análisis de Secuencia de ARN/métodos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Isomerismo , ARN/genética , Tetrahymena/genética , Transcriptoma
17.
Nat Biotechnol ; 25(5): 584-92, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17401361

RESUMEN

Using 62 probe-level datasets obtained with a custom-designed Caulobacter crescentus microarray chip, we identify transcriptional start sites of 769 genes, 53 of which are transcribed from multiple start sites. Transcriptional start sites are identified by analyzing probe signal cross-correlation matrices created from probe pairs tiled every 5 bp upstream of the genes. Signals from probes binding the same message are correlated. The contribution of each promoter for genes transcribed from multiple promoters is identified. Knowing the transcription start site enables targeted searching for regulatory-protein binding motifs in the promoter regions of genes with similar expression patterns. We identified 27 motifs, 17 of which share no similarity to the characterized motifs of other C. crescentus transcriptional regulators. Using these motifs, we predict coregulated genes. We verified novel promoter motifs that regulate stress-response genes, including those responding to uranium challenge, a stress-response sigma factor and a stress-response noncoding RNA.


Asunto(s)
Caulobacter crescentus/genética , Secuencia Conservada/genética , ADN Bacteriano/genética , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Regulón/genética , Transcripción Genética/genética , Secuencia de Bases , Simulación por Computador , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Análisis de Secuencia de ADN/métodos
18.
J Vis Exp ; (146)2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-31033959

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR) system functions naturally in bacterial adaptive immunity, but has been successfully repurposed for genome engineering in many different living organisms. Most commonly, the wildtype CRISPR associated 9 (Cas9) or Cas12a endonuclease is used to cleave specific sites in the genome, after which the DNA double-stranded break is repaired via the non-homologous end joining (NHEJ) pathway or the homology-directed repair (HDR) pathway depending on whether a donor template is absent or present respectively. To date, CRISPR systems from different bacterial species have been shown to be capable of performing genome editing in mammalian cells. However, despite the apparent simplicity of the technology, multiple design parameters need to be considered, which often leave users perplexed about how best to carry out their genome editing experiments. Here, we describe a complete workflow from experimental design to identification of cell clones that carry desired DNA modifications, with the goal of facilitating successful execution of genome editing experiments in mammalian cell lines. We highlight key considerations for users to take note of, including the choice of CRISPR system, the spacer length, and the design of a single-stranded oligodeoxynucleotide (ssODN) donor template. We envision that this workflow will be useful for gene knockout studies, disease modeling efforts, or the generation of reporter cell lines.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica , Genoma , Mamíferos/genética , Animales , Secuencia de Bases , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Plásmidos/genética , ARN Guía de Kinetoplastida/genética , Reparación del ADN por Recombinación
19.
ACS Synth Biol ; 8(4): 708-723, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30865830

RESUMEN

The availability of different host chassis will greatly expand the range of applications in synthetic biology. Members of the Acetobacteraceae family of Gram-negative bacteria form an attractive class of nonmodel microorganisms that can be exploited to produce industrial chemicals, food and beverage, and biomaterials. One such biomaterial is bacterial cellulose, which is a strong and ultrapure natural polymer used in tissue engineering scaffolds, wound dressings, electronics, food additives, and other products. However, despite the potential of Acetobacteraceae in biotechnology, there has been considerably little effort to fundamentally reprogram the bacteria for enhanced performance. One limiting factor is the lack of a well-characterized, comprehensive toolkit to control expression of genes in biosynthetic pathways and regulatory networks to optimize production and cell viability. Here, we address this shortcoming by building an expanded genetic toolkit for synthetic biology applications in Acetobacteraceae. We characterized the performance of multiple natural and synthetic promoters, ribosome binding sites, terminators, and degradation tags in three different strains, namely, Gluconacetobacter xylinus ATCC 700178, Gluconacetobacter hansenii ATCC 53582, and Komagataeibacter rhaeticus iGEM. Our quantitative data revealed strain-specific and common design rules for the precise control of gene expression in these industrially relevant bacterial species. We further applied our tools to synthesize a biodegradable cellulose-chitin copolymer, adjust the structure of the cellulose film produced, and implement CRISPR interference for ready down-regulation of gene expression. Collectively, our genetic parts will enable the efficient engineering of Acetobacteraceae bacteria for the biomanufacturing of cellulose-based materials and other commercially valuable products.


Asunto(s)
Acetobacteraceae/genética , Expresión Génica/genética , Bebidas/microbiología , Materiales Biocompatibles/metabolismo , Vías Biosintéticas/genética , Biotecnología/métodos , Celulosa/genética , Quitina/genética , Alimentos , Biología Sintética/métodos , Ingeniería de Tejidos/métodos
20.
Sci Rep ; 9(1): 16768, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727983

RESUMEN

Mammalian host cell lines are the preferred expression systems for the manufacture of complex therapeutics and recombinant proteins. However, the most utilized mammalian host systems, namely Chinese hamster ovary (CHO), Sp2/0 and NS0 mouse myeloma cells, can produce glycoproteins with non-human glycans that may potentially illicit immunogenic responses. Hence, we developed a fully human expression system based on HEK293 cells for the stable and high titer production of recombinant proteins by first knocking out GLUL (encoding glutamine synthetase) using CRISPR-Cas9 system. Expression vectors using human GLUL as selection marker were then generated, with recombinant human erythropoietin (EPO) as our model protein. Selection was performed using methionine sulfoximine (MSX) to select for high EPO expression cells. EPO production of up to 92700 U/mL of EPO as analyzed by ELISA or 696 mg/L by densitometry was demonstrated in a 2 L stirred-tank fed batch bioreactor. Mass spectrometry analysis revealed that N-glycosylation of the produced EPO was similar to endogenous human proteins and non-human glycan epitopes were not detected. Collectively, our results highlight the use of a human cellular expression system for the high titer and xenogeneic-free production of EPO and possibly other complex recombinant proteins.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Eritropoyetina/genética , Eritropoyetina/metabolismo , Glutamato-Amoníaco Ligasa/genética , Ingeniería de Proteínas/métodos , Sistemas CRISPR-Cas , Expresión Génica , Técnicas de Inactivación de Genes , Vectores Genéticos/genética , Glicosilación , Células HEK293 , Humanos , Modelos Biológicos , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA