Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(12): 8260-8268, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38497725

RESUMEN

We report the synthesis, crystal structure, and physical properties of a novel ternary compound, Th2Cu4As5. The material crystallizes in a tetragonal structure with lattice parameters a = 4.0639(3) Å and c = 24.8221(17) Å. Its structure can be described as an alternating stacking of fluorite-type Th2As2 layers with antifluorite-type double-layered Cu4As3 slabs. The measurement of electrical resistivity, magnetic susceptibility, and specific heat reveals that Th2Cu4As5 undergoes bulk superconducting transition at 4.2 K. Additionally, all these physical quantities exhibit anomalies at 48 K, accompanied by a sign change in the Hall coefficient, suggesting a charge-density-wave-like (CDW) phase transition. Drawing from both experimental data and band calculations, we propose that the superconducting and CDW-like phase transitions are, respectively, associated with the Cu4As3 slabs and the As plane in the Th2As2 layers.

2.
Inorg Chem ; 63(1): 211-218, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38153326

RESUMEN

A quaternary compound, ThCr2Si2C, was synthesized by using the arc-melting technique. The compound adopts a tetragonal CeCr2Si2C-type crystal structure. The electronic resistivity and specific heat data exhibit metallic behavior, while the magnetic susceptibility displays a pronounced broad peak at around 370 K, indicating the antiferromagnetic phase transition. The first-principles calculations suggest A-type antiferromagnetic ordering of the Cr sublattice, which is confirmed by neutron diffraction experiments. By comparing the crystal structure of ThCr2Si2C with the isostructural Cr-based compounds, the magnetic state of Cr 3d orbital is discussed in terms of the band-filling effects and indirect spin exchange interaction.

3.
Inorg Chem ; 59(5): 2937-2944, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32064866

RESUMEN

Mn-based ZrCuSiAs-type pnictides ThMnPnN (Pn = P, As) containing PbO-type Th2N2 layers were synthesized. The crystal and magnetic structures are determined using X-ray and neutron powder diffraction. While neutron diffraction indicates a C-type antiferromagnetic state at 300 K, the temperature dependence of the magnetic susceptibility shows cusps at 36 and 52 K respectively for ThMnPN and ThMnAsN. The susceptibility cusps are ascribed to a spontaneous antiferromagnetic-to-antiferromagnetic transition for Mn2+ moments, which is observed for the first time in Mn-based ZrCuSiAs-type compounds. In addition, measurements of the resistivity and specific heat suggest an abnormal increase in the density of states at the Fermi energy. The result is discussed in terms of the internal chemical pressure effect.

4.
RSC Adv ; 13(27): 18812-18815, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37346940

RESUMEN

We have synthesized a series of Ni-doped layered oxyselenides Bi2YO4Cu2-xNixSe2 (0 ≤ x ≤ 0.4). The crystal structure and physical properties were studied through X-ray diffraction, and electric and thermo transport measurements. We also performed DFT calculations to study the electric structure of the designed Bi2YO4Ni2Se2, which is similar to that of KNi2Se2.

5.
RSC Adv ; 12(39): 25323-25331, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36199349

RESUMEN

A heterophase cobalt sulfide absorbing material with petal-like surface structure was prepared by a simple hydrothermal method. The cobalt sulfide sample with the optimal microwave absorption capacity was achieved through regulating the reaction temperature. By regulating the reaction temperature to 200 °C, the optimal reflection loss was -48.4 dB at 16.8 GHz with filler loading of 50%, and the effective absorption bandwidth was 4.3 GHz at Ku band corresponding to a thickness of only 1.5 mm. The petal-like surface structure of cobalt sulfide gradually disappears as the reaction temperature rises, and the reduction of specific surface area has a negative effect on the microwave absorption capacity of the sample. Meanwhile, by adjusting the sample thickness from 1.5 to 5.0 mm, the effective absorption bandwidth could cover almost the whole test frequency range. The results show that the cobalt sulfide absorbing material with regulated reaction temperature has a strong electromagnetic wave absorption ability, light weight, thin thickness and simple synthesis, which is a promising microwave absorbing material for actual application.

6.
Dalton Trans ; 49(30): 10407-10412, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32672781

RESUMEN

Based on anti-perovskite Mn3ZnN, the negative thermal expansion (NTE) temperature can be effectively broadened via co-substituting Sn, Mn. Using optimized components, the room-temperature NTE effect covering a wide temperature range can be realized. Both the competing ferromagnetic order from Mn and local lattice disorder from Sn should be the reason for the physical origination of the broadening of the NTE temperature. By compositing with epoxy, the low thermal expansion could be achieved around room temperature, which exhibits great potential in the field of electronic packaging.

7.
RSC Adv ; 10(24): 14033-14039, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35498479

RESUMEN

We have synthesized a new series of layered oxyselenides La2O3(Mn1-x Co x )2Se2 through a solid state reaction method. Their structure and physical properties were studied through powder X-ray diffraction, electric transport measurements, absorption spectroscopy, bulk magnetization and specific heat experiments. These compounds crystallize in layered structures with the space group I4/mmm. All the samples present semiconducting or insulating behavior with the activation energy ranging from 0.134 eV to 0.400 eV. The ferromagnetic (FM) component is induced as Co enters the lattice, and the FM component raises to its maximum when x is 0.6. The competing of FM and antiferromagnetic (AFM) components led to the emergence of a spin-glass like behavior in the intermediate alloys.

8.
R Soc Open Sci ; 7(10): 201078, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33204466

RESUMEN

We have synthesized a new series of layered oxyselenides Bi2LnO4Cu2Se2 (Ln=Nd, Sm, Eu, Dy, Er, Yb). Their crystal structures and physical properties were studied through X-ray diffraction, electric transport measurements, bulk magnetization and first-principle calculation. All these compounds have a tetragonal structure with space group I4/mmm. They exhibit hole-type metallic behaviours which is also verified by the DFT calculation. The new Bi2LnO4-type block in these compounds may give people some enlightenment in synthesizing new iron-based superconductors or other layered compounds.

9.
J Phys Condens Matter ; 30(25): 255602, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29749964

RESUMEN

ThFeAsN1-x O x ([Formula: see text]) system with heavy electron doping has been studied by the measurements of x-ray diffraction, electrical resistivity, magnetic susceptibility and specific heat. The non-doped compound exhibits superconductivity at [Formula: see text] K, which is possibly due to an internal uniaxial chemical pressure that is manifested by the extremely small value of As height with respect to the Fe plane. With the oxygen substitution, the T c value decreases rapidly to below 2 K for [Formula: see text], and surprisingly, superconductivity re-appears in the range of [Formula: see text] with a maximum [Formula: see text] of 17.5 K at x = 0.3. For the normal-state resistivity, while the samples in intermediate non-superconducting interval exhibit Fermi liquid behavior, those in other regions show a non-Fermi-liquid behavior. The specific heat jump for the superconducting sample of x = 0.4 is [Formula: see text], which is discussed in terms of anisotropic superconducting gap. The peculiar phase diagram in ThFeAsN1-x O x presents additional ingredients for understanding the superconducting mechanism in iron-based superconductors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA