Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Hazard Mater ; 467: 133698, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38335603

RESUMEN

Mangrove leaves have been acknowledged as crucial sink for coastal microplastics (MPs). Whereas, the temporal dynamics of MPs intercepted by mangrove leaves have remained poorly understood. Here, we detected MPs intercepted by submerged and non-submerged mangrove leaves over time and the potential driving factors. Abundance and characteristics of MPs interception by mangrove leaves exhibited dynamic fluctuations, with the coefficient of variation (CV) of submerged mangrove leaves (CV = 0.604; 1.76 n/g to 15.45 n/g) being approximately twofold higher than non-submerged mangrove leaves (CV = 0.377; 0.74 n/g to 3.28 n/g). Partial least squares path model (PLS-PM) analysis further illustrated that MPs abundance on submerged mangrove leaves were negative correlated to hydrodynamic factors (i.e., current velocity and tidal range). Intriguingly, secreted salt as a significantly driver of MPs intercepted by mangrove leaves. Results of this work highlights that MPs intercepted by mangrove leaves is characterized by dynamic fluctuations and reveals the importance of hydrodynamic factors and secreted salt. Overall, this work identifies the pivotal buffering role played by mangrove leaves in intercepting MPs, which provides basic knowledge for better understanding of microplastic pollution status and control from mangrove plants.


Asunto(s)
Microplásticos , Plásticos , Hidrodinámica , Cloruro de Sodio , Transporte Biológico , Nonoxinol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA